Search results for: logistic regression analysis
28678 Mechanical Properties and Microstructures of the Directional Solidified Zn-Al-Cu Alloy
Authors: Mehmet Izzettin Yilmazer, Emin Cadirli
Abstract:
Zn-7wt.%Al-2.96wt.%Cu eutectic alloy was directionally solidified upwards with different temperature gradients (from 6.70 K/mm to 10.67 K/mm) at a constant growth rate (16.4 Km/s) and also different growth rate (from 8.3 micron/s to 166 micron/s) at a constant temperature gradient (10.67 K/mm) using a Bridgman–type growth apparatus.The values of eutectic spacing were measured from longitudinal and transverse sections of the samples. The dependency of microstructures on the G and V were determined with linear regression analysis and experimental equations were found as λl=8.953xVexp-0.49, λt=5.942xVexp-0.42 and λl=0.008xGexp-1.23, λt=0.024xGexp-0.93. The measurements of microhardness of directionally solidified samples were obtained by using a microhardness test device. The dependence of microhardness HV on temperature gradient and growth rate were analyzed. The dependency of microhardness on the G and V were also determined with linear regression analysis as HVl=110.66xVexp0.02, HVt=111.94xVexp0.02 and HVl=69.66xGexp0.17, HVt=68.86xGexp0.18. The experimental results show that the microhardness of the directionally solidified Zn-Al-Cu alloy increases with increasing the growth rate. The results obtained in this work were compared with the previous similar experimental results.Keywords: directional solidification, eutectic alloys, microstructure, microhardness
Procedia PDF Downloads 45028677 Antecedents of Spinouts: Technology Relatedness, Intellectual Property Rights, and Venture Capital
Authors: Sepideh Yeganegi, Andre Laplume, Parshotam Dass, Cam-Loi Huynh
Abstract:
This paper empirically examines organizational and institutional antecedents of entrepreneurial entry. We employ multi-level logistic regression modelling methods on a sub-sample of the Global Entrepreneurship Monitor’s 2011 survey covering 30 countries. The results reveal that employees who have experience with activities unrelated to the core technology of their organizations are more likely to spin out entrepreneurial ventures, whereas those with experiences related to the core technology are less likely to do so. In support of the recent theory, we find that the strength of intellectual property rights and the availability of venture capital have negative and positive effects, respectively, on the likelihood that employees turn into entrepreneurs. These institutional factors also moderate the effect of relatedness to core technology such that entrepreneurial entries by employees with experiences related to core technology are curbed more severely by stronger intellectual property rights protection regimes and lack of venture capital.Keywords: spinouts, intellectual property rights, venture capital, entrepreneurship, organizational experiences, core technology
Procedia PDF Downloads 35628676 Prevalence of Near Visual Impairment and Associated Factors among School Teachers in Gondar City, North West Ethiopia, 2022
Authors: Bersufekad Wubie
Abstract:
Introduction: Near visual impairment is presenting near visual acuity of the eye worse than N6 at a 40 cm distance. Teachers' regular duties, such as reading books, writing on the blackboard, and recognizing students' faces, need good near vision. If a teacher has near-visual impairment, the work output is unsatisfactory. Objective: The study was aimed to assess the prevalence and associated factors near vision impairment among school teachers at Gondar city Northwest Ethiopia, August 2022. Methods: To select 567 teachers in Gondar city schools, an institutional-based cross-sectional study design with a multistage sampling technique were used. The study was conducted in selected schools from May 1 to May 30, 2022. Trained data collectors used well-structured Amharic and English language questionnaires and ophthalmic instruments for examination. The collected data were checked for completeness and entered into Epi data version 4.6, then exported to SPSS version 26 for further analysis. A binary and multivariate logistic regression model was fitted. And associated factors of the outcome variable. Result: The prevalence of near visual impairment was 64.6%, with a confidence interval of 60.3%–68.4%. Near visual impairment was significantly associated with age >= 35 years (AOR: 4.90 at 95% CI: 3.15, 7.65), having prolonged years of teaching experience (AOR: 3.29 at 95% CI: 1.70, 4.62), having a history of ocular surgery (AOR: 1.96 at 95% CI: 1.10, 4.62), smokers (AOR: 2.21 at 95% CI: 1.22, 4.07), history of ocular trauma (AOR : 1.80 at 95%CI:1.11,3.18 and uncorrected refractive error (AOR:2.01 at 95%CI:1.13,4.03). Conclusion and recommendations: This study showed the prevalence of near vision impairment among school teachers was high, and it is not a problem of the presbyopia age group alone; it also happens at a young age. So teachers' ocular health should be well accommodated in the school's eye health.Keywords: Gondar, near visual impairment, school, teachers
Procedia PDF Downloads 13828675 Predictive Analysis of the Stock Price Market Trends with Deep Learning
Authors: Suraj Mehrotra
Abstract:
The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.Keywords: machine learning, testing set, artificial intelligence, stock analysis
Procedia PDF Downloads 9528674 Investigation of Pollution and the Physical and Chemical Condition of Polour River, East of Tehran, Iran
Authors: Azita Behbahaninia
Abstract:
This research has been carried out to determine the water quality and physico-chemical properties Polour River, one of the most branch of Haraz River. Polour River was studied for a period of one year Samples were taken from different stations along the main branch of River polour. In water samples determined pH, DO, SO4, Cl, PO4, NO3, EC, BOD, COD, Temprature, color and number of Caliform per liter. ArcGIS was used for the zoning of phosphate concentration in the polour River basin. The results indicated that the river is polluted in polour village station, because of discharge domestic wastewater and also river is polluted in Ziar village station, because of agricultural wastewater and water is contaminated in aquaculture station, because of fish ponds wastewater. Statistical analysis shows that between independent traits and coliform regression relationship is significant at the 1% level. Coefficient explanation index indicated independent traits control 80% coliform and 20 % is for unknown parameters. The causality analysis showed Temperature (0.6) has the most positive and direct effect on coliform and sulfate has direct and negative effect on coliform. The results of causality analysis and the results of the regression analysis are matched and other forms direct and indirect effects were negligible and ignorable. Kruskal-Wallis test showed, there is different between sampling stations and studied characters. Between stations for temperature, DO, COD, EC, sulfate and coliform is at 1 % and for phosphate 5 % level of significance.Keywords: coliform, GIS, pollution, phosphate, river
Procedia PDF Downloads 46828673 Identifying Indicative Health Behaviours and Psychosocial Factors Affecting Multi-morbidity Conditions in Ageing Populations: Preliminary Results from the ELSA study of Ageing
Authors: Briony Gray, Glenn Simpson, Hajira Dambha-Miller, Andrew Farmer
Abstract:
Multimorbidity may be strongly affected by a variety of conditions, factors, and variables requiring higher demands on health and social care services, infrastructure, and expenses. Holding one or more conditions increases one’s risk for development of future conditions; with patients over 65 years old at highest risk. Psychosocial factors such as anxiety and depression are rising exponentially globally, which has been amplified by the COVID19 pandemic. These are highly correlated and predict poorer outcomes when held in coexistence and increase the likelihood of comorbid physical health conditions. While possible future reform of social and healthcare systems may help to alleviate some of these mounting pressures, there remains an urgent need to better understand the potential role health behaviours and psychosocial conditions - such as anxiety and depression – may have on aging populations. Using the UK healthcare scene as a lens for analysis, this study uses big data collected in the UK Longitudinal Study of Aging (ELSA) to examine the role of anxiety and depression in ageing populations (65yrs+). Using logistic regression modelling, results identify the 10 most significant variables correlated with both anxiety and depression from data categorised into the areas of health behaviour, psychosocial, socioeconomic, and life satisfaction (each demonstrated through literature review to be of significance). These are compared with wider global research findings with the aim of better understanding the areas in which social and healthcare reform can support multimorbidity interventions, making suggestions for improved patient-centred care. Scope of future research is outlined, which includes analysis of 59 total multimorbidity variables from the ELSA dataset, going beyond anxiety and depression.Keywords: multimorbidity, health behaviours, patient centred care, psychosocial factors
Procedia PDF Downloads 9228672 Assessment of Work Postures and Prevalence of Musculoskeletal Disorders among Diamond Polishers in Botswana: A Case Study
Authors: Oanthata Jester Sealetsa, Richie Moalosi
Abstract:
Musculoskeletal Disorders (MSDs) are reported to be amongst the leading contributing factors of low productivity in many industries across the world, and the most affected being New Emerging Economies (NEC) such as Botswana. This is due to lack of expertise and resources to deal with existing ergonomics challenges. This study was aimed to evaluate occupational postures and the prevalence of musculoskeletal disorders among diamond polishers in a diamond company in Botswana. A case study was conducted with about 106 diamond polishers in Gaborone, Botswana. A case study was chosen because it can investigate and explore an issue thoroughly and deeply, and record behaviour over time so changes in behaviour can be identified. The Corlett and Bishop Body Map was used to determine frequency of MSDs symptoms in different body parts of the workers. This was then followed by the use of the Rapid Entire Body Assessment (REBA) to evaluate the occupational postural risks of MSDs. Descriptive statistics, chi square, and logistic regression were used for data analysis. The results of the study reveal that workers experienced pain in the upper back, lower back, shoulders, neck, and wrists with the most pain reported in the upper back (44.6%) and lower back (44.2%). However, the mean REBA score of 6.07 suggests that sawing, bruiting and polishing were the most dangerous processes in diamond polishing. The study recommends that a redesign of the diamond polishing workstations is necessary to accommodate the anthropometry characteristic of Batswana (people from Botswana) to prevent the development of MSDs.Keywords: assessment, Botswana, diamond polishing, ergonomics, musculoskeletal disorders, occupational postural risks
Procedia PDF Downloads 18028671 Optimization of Hemp Fiber Reinforced Concrete for Various Environmental Conditions
Authors: Zoe Chang, Max Williams, Gautham Das
Abstract:
The purpose of this study is to evaluate the incorporation of hemp fibers (HF) in concrete. Hemp fiber reinforced concrete (HFRC) is becoming more popular as an alternative for regular mix designs. This study was done to evaluate the compressive strength of HFRC regarding mix procedure. Hemp fibers were obtained from the manufacturer and hand-processed to ensure uniformity in width and length. The fibers were added to the concrete as both wet and dry mixes to investigate and optimize the mix design process. Results indicated that the dry mix had a compressive strength of 1157 psi compared to the wet mix of 985 psi. This dry mix compressive strength was within range of the standard mix compressive strength of 1533 psi. The statistical analysis revealed that the mix design process needs further optimization and uniformity concerning the addition of HF. Regression analysis revealed the standard mix design had a coefficient of 0.9 as compared to the dry mix of 0.375, indicating a variation in the mixing process. While completing the dry mix, the addition of plain hemp fibers caused them to intertwine, creating lumps and inconsistency. However, during the wet mixing process, combining water and hemp fibers before incorporation allows the fibers to uniformly disperse within the mix; hence the regression analysis indicated a better coefficient of 0.55. This study concludes that HRFC is a viable alternative to regular mixes; however, more research surrounding its characteristics needs to be conducted.Keywords: hemp fibers, hemp reinforced concrete, wet & dry, freeze thaw testing, compressive strength
Procedia PDF Downloads 20028670 Parents of Mentally Disabled Children in Iran: A Study of Their Parenting Stress Levels and Mental Health
Authors: Mohsen Amiri
Abstract:
This study aimed at investigating the relationship between familial functioning, child characteristics, demographic variables and parenting stress and mental health among parents of children with mental disabilities. 200 parents (130 mothers and 70 fathers) were studied and they completed the Parenting Stress Index, General Health Questionnaire, Family Assessment Device and demographic questionnaires for parents and children. Data were analyzed using correlation and regression analysis. Regression analysis showed that child characteristics, familial functioning and parents demographic factors could predict 8, 4 and 17 percent of variance in parental stress and 3.6, 16 and 10 percent of variance in mental health, respectively. Familial functioning, child characteristics and parental demographic variables correlated with mental health and parental stress and could predict them.Keywords: parenting stress, mental health, mentally disabled children, familial functioning, demographic variables
Procedia PDF Downloads 44528669 Development of a Practical Screening Measure for the Prediction of Low Birth Weight and Neonatal Mortality in Upper Egypt
Authors: Prof. Ammal Mokhtar Metwally, Samia M. Sami, Nihad A. Ibrahim, Fatma A. Shaaban, Iman I. Salama
Abstract:
Objectives: Reducing neonatal mortality by 2030 is still a challenging goal in developing countries. low birth weight (LBW) is a significant contributor to this, especially where weighing newborns is not possible routinely. The present study aimed to determine a simple, easy, reliable anthropometric measure(s) that can predict LBW) and neonatal mortality. Methods: A prospective cohort study of 570 babies born in districts of El Menia governorate, Egypt (where most deliveries occurred at home) was examined at birth. Newborn weight, length, head, chest, mid-arm, and thigh circumferences were measured. Follow up of the examined neonates took place during their first four weeks of life to report any mortalities. The most predictable anthropometric measures were determined using the statistical package of SPSS, and multiple Logistic regression analysis was performed.: Results: Head and chest circumferences with cut-off points < 33 cm and ≤ 31.5 cm, respectively, were the significant predictors for LBW. They carried the best combination of having the highest sensitivity (89.8 % & 86.4 %) and least false negative predictive value (1.4 % & 1.7 %). Chest circumference with a cut-off point ≤ 31.5 cm was the significant predictor for neonatal mortality with 83.3 % sensitivity and 0.43 % false negative predictive value. Conclusion: Using chest circumference with a cut-off point ≤ 31.5 cm is recommended as a single simple anthropometric measurement for the prediction of both LBW and neonatal mortality. The predicted measure could act as a substitute for weighting newborns in communities where scales to weigh them are not routinely available.Keywords: low birth weight, neonatal mortality, anthropometric measures, practical screening
Procedia PDF Downloads 9928668 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data
Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill
Abstract:
Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function
Procedia PDF Downloads 27928667 The Effects of Teacher Efficacy, Instructional Leadership and Professional Learning Communities on Student Achievement in Literacy and Numeracy: A Look at Primary Schools within Sibu Division
Authors: Jarrod Sio Jyh Lih
Abstract:
This paper discusses the factors contributing to student achievement in literacy and numeracy in primary schools within Sibu division. The study involved 694 level 1 primary schoolteachers. Using descriptive statistics, the study observed high levels of practice for teacher efficacy, instructional leadership and professional learning communities (PLCs). The differences between gender, teaching experience and academic qualification were analyzed using the t-test and one-way analysis of variance (ANOVA). The study reported significant differences in respondent perceptions based on teaching experience vis-à-vis teacher efficacy. Here, the post hoc Tukey test revealed that efficaciousness grows with experience. A correlation test observed positive and significant correlations between all independent variables. Binary logistic regression was applied to predict the independent variables’ influence on student achievement. The findings revealed that a dimension of instructional leadership – ‘monitoring student progress’ - emerged as the best predictor of student achievement for literacy and numeracy. The result indicated the students were more than 4 times more likely to achieve the national key performance index for both literacy and numeracy when student progress was monitored. In conclusion, ‘monitoring student progress’ had a positive influence on students’ achievement for literacy and numeracy, hence making it a possible course of action for school heads. However, more comprehensive studies are needed to ascertain its consistency within the context of Malaysia.Keywords: efficacy, instructional, literacy, numeracy
Procedia PDF Downloads 26128666 Qsar Studies of Certain Novel Heterocycles Derived From bis-1, 2, 4 Triazoles as Anti-Tumor Agents
Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi
Abstract:
In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.Keywords: 3D QSAR, CoMSIA, triazoles, novel heterocycles
Procedia PDF Downloads 44428665 Dietary Habits and Cardiovascular Risk factors Among the Patients of the Coronary Artery Disease: A Case Control Study
Authors: Muhammad Kamran Hanif Khan, Fahad Mushtaq
Abstract:
Globally, the death rate from cardiovascular disease has risen over the past 20 years, but especially in low and middle-income countries (LMICS), reports the World Health Organization (WHO). Around 17.5 million deaths, or 31% of all deaths worldwide in 2012, were attributed to CVD, 80% of which occurred in low- and middle-income nations, and eighty five percent of all worldwide disability is attributable to cardiovascular disease. This study assessed the dietary habit and Cardiovascular Risk factors among the patients of coronary artery disease against matched controls. The research was a case-control study. Sample size for this case-control study was 410 CAD cases and 410 healthy controls. The case-control ratio was 1:1. Patients diagnosed with coronary artery disease were recruited from the outpatient departments and emergency rooms of four hospitals in Pakistan. The ages of people who were diagnosed with coronary artery disease were not significantly different from (mean 57.97 7.39 years) the healthy controls (mean 57.12 6.73 years). In order to determine the relationship between food consumption and the two binary outcomes, logistic regression analysis was carried out. Chicken (0.340 (0.245-0.47), p-value 0.0001), beef (0.38 (0.254-0.56), p-value 0.0001), eggs (0.297 (0.208-0.426), p-value 0.0001), and junk food (0.249 (0.167-0.372), p-value 0.0001)) were protective, while yogurt consumption more than twice weekly was risk. Conclusion: In conclusion, poor dietary habits are closely linked to the risk of CAD. Investigations based on dietary trends offer vital and practical knowledge about societal patterns.Keywords: dietary habbits, cardiovasculardisease, CVD risk factors, hypercholesterolemia
Procedia PDF Downloads 8228664 A Social Cognitive Investigation in the Context of Vocational Training Performance of People with Disabilities
Authors: Majid A. AlSayari
Abstract:
The study reported here investigated social cognitive theory (SCT) in the context of Vocational Rehab (VR) for people with disabilities. The prime purpose was to increase knowledge of VR phenomena and make recommendations for improving VR services. The sample consisted of 242 persons with Spinal Cord Injuries (SCI) who completed questionnaires. A further 32 participants were Trainers. Analysis of questionnaire data was carried out using factor analysis, multiple regression analysis, and thematic analysis. The analysis suggested that, in motivational terms, and consistent with research carried out in other academic contexts, self-efficacy was the best predictor of VR performance. The author concludes that that VR self-efficacy predicted VR training performance.Keywords: people with physical disabilities, social cognitive theory, self-efficacy, vocational training
Procedia PDF Downloads 31428663 Bridging the Communication Gap in Emergency Care: How Informational Pamphlet Enhance Satisfaction for Patients with Distal Radius Fractures
Authors: Amr Mansour, Boaz Granot, Amani Tatar, Assil Mahamid, Mohammad Haj Yahia, Fairoz Jayyusi, Eyal Behrbalk
Abstract:
INTRODUCTION: Distal radius fractures are common orthopedic injuries often treated in the fast-paced, high-stress environment of emergency departments (EDs). In such settings, patient satisfaction can be significantly influenced by the clarity of communication and the accessibility of information This study explores the impact of providing an informational pamphlet that outlines ED processes, treatment expectations, and follow-up instructions on patient satisfaction across key domains, including trust, communication, organization, responsiveness, and overall experience. We hypothesize that a structured informational pamphlet will enhance patient satisfaction by fostering better understanding and aligning patient expectations with the realities of the ED visit. METHODS: A total of 100 adult patients treated for distal radius fractures between January and August 2024 participated in this survey-based study. Patients were randomized into two equal groups: one group received an informational pamphlet detailing their condition and treatment, while the other did not. Satisfaction levels were assessed using a structured questionnaire addressing five domains. Fisher's exact test was used to compare satisfaction measures between the two groups, and multivariate logistic regression analysis was conducted to evaluate the association between receiving an information sheet and high satisfaction. The study was approved by the Institutional Review Board. RESULTS SECTION: Patients who received an informational pamphlet reported significantly higher satisfaction across all five domains (p < .001). In Trust and Understanding, 82% of info-sheet recipients felt “in good hands,” compared to 10% of non-recipients. For Communication, 86% rated doctor explanations as “very clear,” versus 16% among non-recipients. Logistic regression showed that receiving an informational pamphlet was a significant predictor of high satisfaction with Discharge Explanation—clarity on condition, treatment, and follow-up (OR = 17.65, 95% CI: 4.74 - 65.77, p < .001) and Reasonable Solution—feeling their primary concern was resolved (OR = 37.82, 95% CI: 8.75 - 163.42, p < .001). Other predictors, including fracture reduction, gender, and age, were not significant. DISCUSSION: This study highlights the substantial role that simple, cost-effective interventions like informational pamphlets can play in enhancing patient satisfaction in emergency care. By improving communication, fostering trust, and promoting a patient-centered approach, informational pamphlets offer a valuable tool for healthcare providers seeking to enhance the quality of care and patient experience in high-pressure emergency environments. However, the study's limitations, including its single-center design and reliance on self-reported satisfaction scores, may affect the generalizability of the results. Future research should consider a multi-center approach and explore long-term outcomes to further validate the efficacy of informational pamphlets in diverse ED settings. Ultimately, sustained improvement in patient satisfaction is a complex and dynamic issue necessitating a multifactorial approach, and other methods should also be explored to complement this strategy. SIGNIFICANCE/CLINICAL RELEVANCE: This study demonstrates that providing an informational pamphlet in the ED setting can significantly improve patient satisfaction across multiple domains, emphasizing its potential as a simple, cost-effective tool to enhance communication, trust, and overall patient experience during emergency care for distal radius fractures. Integrating such interventions into standard ED protocols may foster a more patient-centered approach, improving both patient outcomes and healthcare efficiency.Keywords: distal radius fracture, quality care, patient satisfaction, emergency medicine, patient-centered care, communication
Procedia PDF Downloads 1728662 Waterborne Platooning: Cost and Logistic Analysis of Vessel Trains
Authors: Alina P. Colling, Robert G. Hekkenberg
Abstract:
Recent years have seen extensive technological advancement in truck platooning, as reflected in the literature. Its main benefits are the improvement of traffic stability and the reduction of air drag, resulting in less fuel consumption, in comparison to using individual trucks. Platooning is now being adapted to the waterborne transport sector in the NOVIMAR project through the development of a Vessel Train (VT) concept. The main focus of VT’s, as opposed to the truck platoons, is the decrease in manning on board, ultimately working towards autonomous vessel operations. This crew reduction can prove to be an important selling point in achieving economic competitiveness of the waterborne approach when compared to alternative modes of transport. This paper discusses the expected benefits and drawbacks of the VT concept, in terms of the technical logistic performance and generalized costs. More specifically, VT’s can provide flexibility in destination choices for shippers but also add complexity when performing special manoeuvres in VT formation. In order to quantify the cost and performances, a model is developed and simulations are carried out for various case studies. These compare the application of VT’s in the short sea and inland water transport, with specific sailing regimes and technologies installed on board to allow different levels of autonomy. The results enable the identification of the most important boundary conditions for the successful operation of the waterborne platooning concept. These findings serve as a framework for future business applications of the VT.Keywords: autonomous vessels, NOVIMAR, vessel trains, waterborne platooning
Procedia PDF Downloads 22228661 Higher Consumption of White Rice Increase the Risk of Metabolic Syndrome in Adults with Abdominal Obesity
Authors: Zahra Bahadoran, Parvin Mirmiran, Fereidoun Azizi
Abstract:
Background: Higher consumption of white rice has been suggested as a risk factor for development of metabolic abnormalities. In this study we investigated the association between consumption of white rice and the 3-year occurrence of metabolic syndrome (MetS) in adults with and without abdominal obesity. Methods: This longitudinal study was conducted within the framework of the Tehran Lipid and Glucose Study on 1476 adults, aged 19-70 years. Dietary intakes were measured, using a 168-food items validated semi-quantitative food frequency questionnaire at baseline. Biochemical and anthropometric measurements were evaluated at both baseline (2006-2008) and after 3-year follow-up (2009-2011). MetS and its components were defined according to the diagnostic criteria proposed by NCEP ATP III, and the new cutoff points of waist circumference for Iranian adults. Multiple logistic regression models were used to estimate the occurrence of the MetS in each quartile of white rice consumption. Results: The mean age of participants was 37.8±12.3 y, and mean BMI was 26.0±4.5 kg/m2 at baseline. The prevalence of MetS in subjects with abdominal obesity was significantly higher (40.9 vs. 16.2%, P<0.01). There was no significant difference in white rice consumption between the two groups. Mean daily intake of white rice was 93±59, 209±58, 262±60 and 432±224 g/d, in the first to fourth quartiles of white rice, respectively. Stratified analysis by categories of waist circumference showed that higher consumption of white rice was more strongly related to the risk of metabolic syndrome in participants who had abdominal obesity (OR: 2.34, 95% CI:1.14-4.41 vs. OR:0.99, 95% CI:0.60-1.65) Conclusion: We demonstrated that higher consumption of white rice may be a risk for development of metabolic syndrome in adults with abdominal obesity.Keywords: white rice, abdominal obesity, metabolic syndrome, food science, triglycerides
Procedia PDF Downloads 44628660 The Sexual Knowledge, Attitudes and Behaviors of College Students from Only-Child Families: A National Survey in China
Authors: Jiashu Shen
Abstract:
This study aims at exploring the characteristics of sexual knowledge, attitudes, and behaviors of Chinese college students from the 'one-child' families compared with those with siblings. This study utilized the data from the 'National College Student Survey on Sexual and Reproductive Health 2019'. Multiple logistic regression analyses were used to assess the association between the 'only-child' and their sexual knowledge, sexual attitudes, sexual behaviors, and risky sexual behaviors (RSB) stratified by sex and home regions, respectively. Compared with students with siblings, the 'only-child' students scored higher in sex-related knowledge (only-child students: 4.49 ± 2.28, students with siblings: 3.60 ± 2.27). Stronger associations between only-child and more liberal sexual attitudes were found in urban areas, including the approval of premarital sexual intercourse (OR: 1.51, 95% CI: 1.50-1.65) and multiple sexual partners (OR: 1.85, 95% CI: 1.72-1.99). For risky sexual behaviors, being only-child is more likely to use condoms in first sexual intercourse, especially among male students (OR: 0.68, 95% CI: 0.58-0.80). Only-child students are more likely to have more sexual knowledge, more liberal sexual attitude, and less risky sexual behavior. Further health policy and sex education should focus more on students with siblings.Keywords: attitudes and behaviors, only-child students, sexual knowledge, students with siblings
Procedia PDF Downloads 18228659 Travel Delay and Modal Split Analysis: A Case Study
Authors: H. S. Sathish, H. S. Jagadeesh, Skanda Kumar
Abstract:
Journey time and delay study is used to evaluate the quality of service, the travel time and study can also be used to evaluate the quality of traffic movement along the route and to determine the location types and extent of traffic delays. Components of delay are boarding and alighting, issue of tickets, other causes and distance between each stops. This study investigates the total journey time required to travel along the stretch and the influence the delays. The route starts from Kempegowda Bus Station to Yelahanka Satellite Station of Bangalore City. The length of the stretch is 16.5 km. Modal split analysis has been done for this stretch. This stretch has elevated highway connecting to Bangalore International Airport and the extension of metro transit stretch. From the regression analysis of total journey time it is affected by delay due to boarding and alighting moderately, Delay due to issue of tickets affects the journey time to a higher extent. Some of the delay factors affecting significantly the journey time are evident from F-test at 10 percent level of confidence. Along this stretch work trips are more prevalent as indicated by O-D study. Modal shift analysis indicates about 70 percent of commuters are ready to shift from current system to Metro Rail System. Metro Rail System carries maximum number of trips compared to private mode. Hence Metro is a highly viable choice of mode for Bangalore Metropolitan City.Keywords: delay, journey time, modal choice, regression analysis
Procedia PDF Downloads 49628658 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 23128657 Determinants of Teenage Pregnancy: The Case of School Adolescents of Arba Minch Town, Southern Ethiopia
Authors: Aleme Mekuria, Samuel Mathewos
Abstract:
Background: Teenage pregnancy has long been a worldwide social, economic and educational concern for the developed, developing and underdeveloped countries. Studies on adolescent sexuality and pregnancy are very limited in our country. Therefore, this study aims at assessing the prevalence of teenage pregnancy and its determinants among school adolescents of Arba Minch town. Methods: Institution- based, cross-sectional study was conducted from 20-30 March 2014. Systematic sampling technique was used to select a total of 578 students from four schools of the town. Data were collected by trained data collectors using a pre-tested, self-administered structured questionnaire. The analysis was made using the software SPSS version 20.0 statistical packages. Multivariate logistic regression was used to identify the predictors of teenage pregnancy. Results: The prevalence of teenage pregnancy among school adolescents of Arba Minch town was 7.7%. Being grade11(AOR=4.6;95%CI:1.4,9.3) and grade12 student (AOR=5.8;95% CI:1.3,14.4), not knowing the correct time to take emergency contraceptives(AOR=3.3;95%CI:1.4,7.4), substance use(AOR=3.1;95%CI:1.1,8.8), living with either of biological parents (AOR=3.3;95%CI:1.1,8.7) and poor parent-daughter interaction (AOR=3.1;95%CI:1.1,8.7) were found to be significant predictors of teenage pregnancy. Conclusion: This study revealed a high level of teenage pregnancy among school adolescents of Arba Minch town. A significant number of adolescent female school students were at risk of facing the challenges of teenage pregnancy in the study area. School-based reproductive health education and strong parent-daughter relationships should be strengthened.Keywords: adolescent, Arba minch, risk factors, school, southern Ethiopia, teenage pregnancy
Procedia PDF Downloads 34828656 Estimating Visitor’s Willingness to Pay for the Conservation Fund: Sustainable Financing Approach in Protected Areas in Ethiopia
Authors: Sintayehu Aynalem Aseres, Raminder Kaur Sira
Abstract:
Increasingly, protected areas have been confronting with inadequate conservation funds that make it tough to antithesis the continuing of annihilation. The problem is even grave in developing countries, where Protected Areas (Pas) are mainly government-administered. Subsequently, it needs a strong effort to toughen the self-financing capability of PAs by ripening alternative sources of sustainable financing for realizing the conservation goals, in particular, to save the remaining natural planet. This study, therefore, designed to estimate visitors’ willingness to pay (WTP) for the additional conservation fees using a contingent valuation method. The effect relationship between WTP and both socio-demographic and non-economic factors was scrutinized by binary logistic regression. The mean WTP of foreign visitors has estimated at US$ 7.4 and for that of domestic visitors at US$1, with annual aggregate revenue of US$29, 200. The WTP was strongly influenced by income, satisfaction, environmental concern and attitude. The study has policy implications for the conservationists and park authorities to estimate the non-use values of PAs for developing market-based conservation instruments.Keywords: conservation, ecotourism, sustainable financing, willingness to pay, protected areas, bale mountains national park
Procedia PDF Downloads 16128655 Can Empowering Women Farmers Reduce Household Food Insecurity? Evidence from Malawi
Authors: Christopher Manyamba
Abstract:
Women in Malawi produce perform between 50-70 percent of all agricultural tasks and yet the majority remain food insecure. The aim of his paper is to build on existing mixed evidence that indicates that empowering women in agriculture is conducive to improving food security. The WEAI is used to provide evidence on the relationship between women’s empowerment in agriculture and household food security. A multinomial logistic regression is applied to the Women Empowerment in Agriculture Index (WEAI) components and the Household Hunger Scale. The overall results show that the WEAI can be used to determine household food insecurity; however it has to be contextually adapted. Assets ownership, credit, group membership and leisure time are positively associated with food security. Contrary to other literature, empowerment in having control and decisions on income indicate negative association with household food security. These results could potentially better inform public, private and civil society stakeholders’ dialogues in creating the most effective and sustainable interventions to help women attain long-term food security.Keywords: food security, gender, empowerment, agriculture index, framework for African food security, household hunger scale
Procedia PDF Downloads 36828654 Analysis of Spatial Heterogeneity of Residential Prices in Guangzhou: An Actual Study Based on Point of Interest Geographically Weighted Regression Model
Authors: Zichun Guo
Abstract:
Guangzhou's house price has long been lower than the other three major cities; with the gradual increase in Guangzhou's house price, the influencing factors of house price have gradually been paid attention to; this paper tries to use house price data and POI (Point of Interest) data, and explores the distribution of house price and influencing factors by applying the Kriging spatial interpolation method and geographically weighted regression model in ArcGIS. The results show that the interpolation result of house price has a significant relationship with the economic development and development potential of the region and that different POI types have different impacts on the growth of house prices in different regions.Keywords: POI, house price, spatial heterogeneity, Guangzhou
Procedia PDF Downloads 5528653 The Overlooked Problem Among Surgical Patients: Preoperative Anxiety at Ethiopian University Hospital
Authors: Yohtahe Woldegerima Berhe, Tadesse Belayneh Melkie, Girmay Fitiwi Lema, Marye Getnet, Wubie Birlie Chekol
Abstract:
Introduction: Anxiety was repeatedly reported as the worst aspect of the perioperative time. The objective of this study was to assess the prevalence of preoperative anxiety among adult surgical patients at the University of Gondar Comprehensive Specialized Hospital (UoGCSH), Northwest Ethiopia. Methodology: Hospital-based cross-sectional study was conducted among surgical patients at the university hospital. After obtaining ethical approval, 407 surgical patients were approached during the preoperative period. Preoperative anxiety was assessed by the State-Trait Anxiety Inventory. The association between variables was determined by using binary logistic regression analysis. The strength of association was described in adjusted odds ratio (AOR) and a p-value < 0.05 at a 95% confidence interval which was considered statistically significant. Results: A total of 400 patients were included in this study, with a 98.3% response rate. Preoperative anxiety was observed among 237 (59.3%) patients, and the median (IQR) STAI score was 50 (40 – 56.7). age ≥ 60 years (AOR: 5.7, CI: 1.6 – 20.4, P: 0.007), emergency surgery (AOR: 2.5, CI: 1.3 – 4.7, P: 0.005), preoperative pain (AOR: 2.6, CI: 1.2 – 5.4, P: 0.005), and rural residency (AOR: 1.8, CI: 1.1 – 2.9, P: 0.031) were found significantly associated with preoperative anxiety. Conclusions: The prevalence of preoperative anxiety among surgical patients was high. Older age (≥ 60 years), emergency surgery, preoperative pain, and rural residency were found to be significantly associated with preoperative anxiety. Assessment for preoperative anxiety should be a routine component of preoperative assessment of both elective and emergency surgical patients. Preoperative pain should be appropriately managed as it can help to reduce preoperative anxiety. Optimal anxiety reduction methods should be investigated and implemented in the hospital.Keywords: preoperative anxiety, anxiety, anxiety of anesthesia and surgery, state-trait anxiety inventory, preoperative care
Procedia PDF Downloads 1528652 High-Tech Based Simulation and Analysis of Maximum Power Point in Energy System: A Case Study Using IT Based Software Involving Regression Analysis
Authors: Enemeri George Uweiyohowo
Abstract:
Improved achievement with respect to output control of photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0∘N, with a corresponding tilt angle of 36∘, 26∘ and 16∘. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking.Keywords: poly-crystalline PV panels, information technology (IT), maximum power point tracking (MPPT), pulse width modulation (PWM)
Procedia PDF Downloads 21328651 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging
Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen
Abstract:
Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques
Procedia PDF Downloads 9928650 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control
Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza
Abstract:
In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing
Procedia PDF Downloads 14728649 Social Economic Factors Associated with the Nutritional Status of Children In Western Uganda
Authors: Baguma Daniel Kajura
Abstract:
The study explores socio-economic factors, health related and individual factors that influence the breastfeeding habits of mothers and their effect on the nutritional status of their infants in the Rwenzori region of Western Uganda. A cross-sectional research design was adopted, and it involved the use of self-administered questionnaires, interview guides, and focused group discussion guides to assess the extent to which socio-demographic factors associated with breastfeeding practices influence child malnutrition. Using this design, data was collected from 276 mother-paired infants out of the selected 318 mother-paired infants over a period of ten days. Using a sample size formula by Kish Leslie for cross-sectional studies N= Zα2 P (1- P) / δ2, where N= sample size estimate of paired mother paired infants. P= assumed true population prevalence of mother–paired infants with malnutrition cases, P = 29.3%. 1-P = the probability of mother-paired infants not having malnutrition, so 1-P = 70.7% Zα = Standard normal deviation at 95% confidence interval corresponding to 1.96.δ = Absolute error between the estimated and true population prevalence of malnutrition of 5%. The calculated sample size N = 1.96 × 1.96 (0.293 × 0.707) /0,052= 318 mother paired infants. Demographic and socio-economic data for all mothers were entered into Microsoft Excel software and then exported to STATA 14 (StataCorp, 2015). Anthropometric measurements were taken for all children by the researcher and the trained assistants who physically weighed the children. The use of immunization card was used to attain the age of the child. The bivariate logistic regression analysis was used to assess the relationship between socio-demographic factors associated with breastfeeding practices and child malnutrition. The multivariable regression analysis was used to draw a conclusion on whether or not there are any true relationships between the socio-demographic factors associated with breastfeeding practices as independent variables and child stunting and underweight as dependent variables in relation to breastfeeding practices. Descriptive statistics on background characteristics of the mothers were generated and presented in frequency distribution tables. Frequencies and means were computed, and the results were presented using tables, then, we determined the distribution of stunting and underweight among infants by the socioeconomic and demographic factors. Findings reveal that children of mothers who used milk substitutes besides breastfeeding are over two times more likely to be stunted compared to those whose mothers exclusively breastfed them. Feeding children with milk substitutes instead of breastmilk predisposes them to both stunting and underweight. Children of mothers between 18 and 34 years of age are less likely to be underweight, as were those who were breastfed over ten times a day. The study further reveals that 55% of the children were underweight, and 49% were stunted. Of the underweight children, an equal number (58/151) were either mildly or moderately underweight (38%), and 23% (35/151) were severely underweight. Empowering community outreach programs by increasing knowledge and increased access to services on integrated management of child malnutrition is crucial to curbing child malnutrition in rural areas.Keywords: infant and young child feeding, breastfeeding, child malnutrition, maternal health
Procedia PDF Downloads 20