Search results for: historic constructions
10 A Descriptive Study on Water Scarcity as a One Health Challenge among the Osiram Community, Kajiado County, Kenya
Authors: Damiano Omari, Topirian Kerempe, Dibo Sama, Walter Wafula, Sharon Chepkoech, Chrispine Juma, Gilbert Kirui, Simon Mburu, Susan Keino
Abstract:
The One Health concept was officially adopted by the international organizations and scholarly bodies in 1984. It aims at combining human, animal and environmental components to address global health challenges. Using collaborative efforts optimal health to people, animals, and the environment can be achieved. One health approach plays a significant approach role in prevention and control of zoonosis diseases. It has also been noted that 75% of new emerging human infectious diseases are zoonotic. In Kenya, one health has been embraced and strongly advocated for by One Health East and Central Africa (OHCEA). It was inaugurated on 17th of October 2010 at a historic meeting facilitated by USAID with participants from 7 public health schools, seven faculties of veterinary medicine in Eastern Africa and 2 American universities (Tufts and University of Minnesota) in addition to respond project staff. The study was conducted in Loitoktok Sub County, specifically in the Amboseli Ecosystem. The Amboseli ecosystem covers an area of 5,700 square kilometers and stretches between Mt. Kilimanjaro, Chyulu Hills, Tsavo West National park and the Kenya/Tanzania border. The area is arid to semi-arid and is more suitable for pastoralism with a high potential for conservation of wildlife and tourism enterprises. The ecosystem consists of the Amboseli National Park, which is surrounded by six group ranches which include Kimana, Olgulului, Selengei, Mbirikani, Kuku and Rombo in Loitoktok District. The Manyatta of study was Osiram Cultural Manyatta in Mbirikani group ranch. Apart from visiting the Manyatta, we also visited the sub-county hospital, slaughter slab, forest service, Kimana market, and the Amboseli National Park. The aim of the study was to identify the one health issues facing the community. This was done by a conducting a community needs assessment and prioritization. Different methods were used in data collection for the qualitative and numerical data. They include among others; key informant interviews and focus group discussions. We also guided the community members in drawing their Resource Map this helped identify the major resources in their land and also help them identify some of the issues they were facing. Matrix piling, root cause analysis, and force field analysis tools were used to establish the one health related priority issues facing community members. Skits were also used to present to the community interventions to the major one health issues. Some of the prioritized needs among the community were water scarcity and inadequate markets for their beadwork. The group intervened on the various needs of the Manyatta. For water scarcity, we educated the community on water harvesting methods using gutters as well as proper storage by the use of tanks and earth dams. The community was also encouraged to recycle and conserve water. To improve markets; we educated the community to upload their products online, a page was opened for them and uploading the photos was demonstrated to them. They were also encouraged to be innovative to attract more clients.Keywords: Amboseli ecosystem, community interventions, community needs assessment and prioritization, one health issues
Procedia PDF Downloads 1699 Development & Standardization of a Literacy Free Cognitive Rehabilitation Program for Patients Post Traumatic Brain Injury
Authors: Sakshi Chopra, Ashima Nehra, Sumit Sinha, Harsimarpreet Kaur, Ravindra Mohan Pandey
Abstract:
Background: Cognitive rehabilitation aims to retrain brain injured individuals with cognitive deficits to restore or compensate lost functions. As illiterates or people with low literacy levels represent a significant proportion of the world, specific rehabilitation modules for such populations are indispensable. Literacy is significantly associated with all neuropsychological measures and retraining programs widely use written or spoken techniques which essentially require the patient to read or write. So, the aim of the study was to develop and standardize a literacy free neuropsychological rehabilitation program for improving cognitive functioning in patients with mild and moderate Traumatic Brain Injury (TBI). Several studies have pointed out to the impairments seen in memory, executive functioning, and attention and concentration post-TBI, so the rehabilitation program focussed on these domains. Visual item memorization, stick constructions, symbol cancellations, and colouring techniques were used to construct the retraining program. Methodology: The development of the program consisted of planning, preparing, analyzing, and revising the different modules. The construction focussed on areas of retraining immediate and delayed visual memory, planning ability, focused and divided attention, concentration, and response inhibition (to control irritability and aggression). A total of 98 home based retraining modules were prepared in the 4 domains (42 for memory, 42 for executive functioning, 7 for attention and concentration, and 7 for response inhibition). The standardization was done on 20 healthy controls to review, select and edit items. For each module, the time, errors made and errors per second were noted down, to establish the difficulty level of each module and were arranged in increasing level of difficulty over a period of 6 weeks. The retraining tasks were then administered on 11 brain injured individuals (5 after Mild TBI and 6 after Moderate TBI). These patients were referred from the Trauma Centre to Clinical Neuropsychology OPD, All India Institute of Medical Sciences, New Delhi, India. Results: The time was taken, errors made and errors per second were analysed for all domains. Education levels were divided into illiterates, up to 10 years, 10 years to graduation and graduation and above. Mean and standard deviations were calculated. Between group and within group analysis was done using the t-test. The performance of 20 healthy controls was analyzed and only a significant difference was observed on the time taken for the attention tasks and all other domains had non-significant differences in performance between different education levels. Comparing the errors, time taken between patient and control group, there was a significant difference in all the domains at the 0.01 level except the errors made on executive functioning, indicating that the tool can successfully differentiate between healthy controls and patient groups. Conclusions: Apart from the time taken for symbol cancellations, the entire cognitive rehabilitation program is literacy free. As it taps the major areas of impairment post-TBI, it could be a useful tool to rehabilitate the patient population with low literacy levels across the world. The next step is already underway to test its efficacy in improving cognitive functioning in a randomized clinical controlled trial.Keywords: cognitive rehabilitation, illiterates, India, traumatic brain injury
Procedia PDF Downloads 3338 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 187 Sheep Pox Virus Recombinant Proteins To Develop Subunit Vaccines
Authors: Olga V. Chervyakova, Elmira T. Tailakova, Vitaliy M. Strochkov, Kulyaisan T. Sultankulova, Nurlan T. Sandybayev, Lev G. Nemchinov, Rosemarie W. Hammond
Abstract:
Sheep pox is a highly contagious infection that OIE regards to be one of the most dangerous animal diseases. It causes enormous economic losses because of death and slaughter of infected animals, lower productivity, cost of veterinary and sanitary as well as quarantine measures. To control spread of sheep pox infection the attenuated vaccines are widely used in the Republic of Kazakhstan and other Former Soviet Union countries. In spite of high efficiency of live vaccines, the possible presence of the residual virulence, potential genetic instability restricts their use in disease-free areas that leads to necessity to exploit new approaches in vaccine development involving recombinant DNA technology. Vaccines on the basis of recombinant proteins are the newest generation of prophylactic preparations. The main advantage of these vaccines is their low reactogenicity and this fact makes them widely used in medical and veterinary practice for vaccination of humans and farm animals. The objective of the study is to produce recombinant immunogenic proteins for development of the high-performance means for sheep pox prophylaxis. The SPV proteins were chosen for their homology with the known immunogenic vaccinia virus proteins. Assay of nucleotide and amino acid sequences of the target SPV protein genes. It has been shown that four proteins SPPV060 (ortholog L1), SPPV074 (ortholog H3), SPPV122 (ortholog A33) and SPPV141 (ortholog B5) possess transmembrane domains at N- or C-terminus while in amino acid sequences of SPPV095 (ortholog А 4) and SPPV117 (ortholog А 27) proteins these domains were absent. On the basis of these findings the primers were constructed. Target genes were amplified and subsequently cloned into the expression vector рЕТ26b(+) or рЕТ28b(+). Six constructions (pSPPV060ΔТМ, pSPPV074ΔТМ, pSPPV095, pSPPV117, pSPPV122ΔТМ and pSPPV141ΔТМ) were obtained for expression of the SPV genes under control of T7 promoter in Escherichia coli. To purify and detect recombinant proteins the amino acid sequences were modified by adding six histidine molecules at C-terminus. Induction of gene expression by IPTG was resulted in production of the proteins with molecular weights corresponding to the estimated values for SPPV060, SPPV074, SPPV095, SPPV117, SPPV122 and SPPV141, i.e. 22, 30, 20, 19, 17 and 22 kDa respectively. Optimal protocol of expression for each gene that ensures high yield of the recombinant protein was identified. Assay of cellular lysates by western blotting confirmed expression of the target proteins. Recombinant proteins bind specifically with antibodies to polyhistidine. Moreover all produced proteins are specifically recognized by the serum from experimentally SPV-infected sheep. The recombinant proteins SPPV060, SPPV074, SPPV117, SPPV122 and SPPV141 were also shown to induce formation of antibodies with virus-neutralizing activity. The results of the research will help to develop a new-generation high-performance means for specific sheep pox prophylaxis that is one of key moments in animal health protection. The research was conducted under the International project ISTC # K-1704 “Development of methods to construct recombinant prophylactic means for sheep pox with use of transgenic plants” and under the Grant Project RK MES G.2015/0115RK01983 "Recombinant vaccine for sheep pox prophylaxis".Keywords: prophylactic preparation, recombinant protein, sheep pox virus, subunit vaccine
Procedia PDF Downloads 2426 A Case Study of Brownfield Revitalization in Taiwan
Authors: Jen Wang, Wei-Chia Hsu, Zih-Sin Wang, Ching-Ping Chu, Bo-Shiou Guo
Abstract:
In the late 19th century, the Jinguashi ore deposit in northern Taiwan was discovered, and accompanied with flourishing mining activities. However, tons of contaminants including heavy metals, sulfur dioxide, and total petroleum hydrocarbons (TPH) were released to surroundings and caused environmental problems. Site T was one of copper smelter located on the coastal hill near Jinguashi ore deposit. In over ten years of operation, variety contaminants were emitted that it polluted the surrounding soil and groundwater quality. In order to exhaust fumes produced from smelting process, three stacks were built along the hill behind the factory. The sediment inside the stacks contains high concentration of heavy metals such as arsenic, lead, copper, etc. Moreover, soil around the discarded stacks suffered a serious contamination when deposition leached from the ruptures of stacks. Consequently, Site T (including the factory and its surroundings) was declared as a pollution remediation site that visiting the site and land-use activities on it are forbidden. However, the natural landscape and cultural attractions of Site T are spectacular that it attracts a lot of visitors annually. Moreover, land resources are extremely precious in Taiwan. In addition, Taiwan Environmental Protection Administration (EPA) is actively promoting the contaminated land revitalization policy. Therefore, this study took Site T as case study for brownfield revitalization planning to the limits of activate and remediate the natural resources. Land-use suitability analysis and risk mapping were applied in this study to make appropriate risk management measures and redevelopment plan for the site. In land-use suitability analysis, surrounding factors into consideration such as environmentally sensitive areas, biological resources, land use, contamination, culture, and landscapes were collected to assess the development of each area; health risk mapping was introduced to show the image of risk assessments results based on the site contamination investigation. According to land-use suitability analysis, the site was divided into four zones: priority area (for high-efficiency development), secondary area (for co-development with priority area), conditional area (for reusing existing building) and limited area (for Eco-tourism and education). According to the investigation, polychlorinated biphenyls (PCB), heavy metals and TPH were considered as target contaminants while oral, inhalation and dermal would be the major exposure pathways in health risk assessment. In accordance with health risk map, the highest risk was found in the southwest and eastern side. Based on the results, the development plan focused on zoning and land use. Site T was recommended be divides to public facility zone, public architectonic art zone, viewing zone, existing building preservation zone, historic building zone, and cultural landscape zone for various purpose. In addition, risk management measures including sustained remediation, extinguish exposure and administration management are applied to ensure particular places are suitable for visiting and protect the visitors’ health. The consolidated results are corroborated available by analyzing aspects of law, land acquired method, maintenance and management and public participation. Therefore, this study has a certain reference value to promote the contaminated land revitalization policy in Taiwan.Keywords: brownfield revitalization, land-use suitability analysis, health risk map, risk management
Procedia PDF Downloads 1845 The Use of the TRIGRS Model and Geophysics Methodologies to Identify Landslides Susceptible Areas: Case Study of Campos do Jordao-SP, Brazil
Authors: Tehrrie Konig, Cassiano Bortolozo, Daniel Metodiev, Rodolfo Mendes, Marcio Andrade, Marcio Moraes
Abstract:
Gravitational mass movements are recurrent events in Brazil, usually triggered by intense rainfall. When these events occur in urban areas, they end up becoming disasters due to the economic damage, social impact, and loss of human life. To identify the landslide-susceptible areas, it is important to know the geotechnical parameters of the soil, such as cohesion, internal friction angle, unit weight, hydraulic conductivity, and hydraulic diffusivity. The measurement of these parameters is made by collecting soil samples to analyze in the laboratory and by using geophysical methodologies, such as Vertical Electrical Survey (VES). The geophysical surveys analyze the soil properties with minimal impact in its initial structure. Statistical analysis and mathematical models of physical basis are used to model and calculate the Factor of Safety for steep slope areas. In general, such mathematical models work from the combination of slope stability models and hydrological models. One example is the mathematical model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope- Stability Model) which calculates the variation of the Factor of Safety of a determined study area. The model relies on changes in pore-pressure and soil moisture during a rainfall event. TRIGRS was written in the Fortran programming language and associates the hydrological model, which is based on the Richards Equation, with the stability model based on the principle of equilibrium limit. Therefore, the aims of this work are modeling the slope stability of Campos do Jordão with TRIGRS, using geotechnical and geophysical methodologies to acquire the soil properties. The study area is located at southern-east of Sao Paulo State in the Mantiqueira Mountains and has a historic landslide register. During the fieldwork, soil samples were collected, and the VES method applied. These procedures provide the soil properties, which were used as input data in the TRIGRS model. The hydrological data (infiltration rate and initial water table height) and rainfall duration and intensity, were acquired from the eight rain gauges installed by Cemaden in the study area. A very high spatial resolution digital terrain model was used to identify the slopes declivity. The analyzed period is from March 6th to March 8th of 2017. As results, the TRIGRS model calculates the variation of the Factor of Safety within a 72-hour period in which two heavy rainfall events stroke the area and six landslides were registered. After each rainfall, the Factor of Safety declined, as expected. The landslides happened in areas identified by the model with low values of Factor of Safety, proving its efficiency on the identification of landslides susceptible areas. This study presents a critical threshold for landslides, in which an accumulated rainfall higher than 80mm/m² in 72 hours might trigger landslides in urban and natural slopes. The geotechnical and geophysics methods are shown to be very useful to identify the soil properties and provide the geological characteristics of the area. Therefore, the combine geotechnical and geophysical methods for soil characterization and the modeling of landslides susceptible areas with TRIGRS are useful for urban planning. Furthermore, early warning systems can be developed by combining the TRIGRS model and weather forecast, to prevent disasters in urban slopes.Keywords: landslides, susceptibility, TRIGRS, vertical electrical survey
Procedia PDF Downloads 1734 Implementing Equitable Learning Experiences to Increase Environmental Awareness and Science Proficiency in Alabama’s Schools and Communities
Authors: Carly Cummings, Maria Soledad Peresin
Abstract:
Alabama has a long history of racial injustice and unsatisfactory educational performance. In the 1870s Jim Crow laws segregated public schools and disproportionally allocated funding and resources to white institutions across the South. Despite the Supreme Court ruling to integrate schools following Brown vs. the Board of Education in 1954, Alabama’s school system continued to exhibit signs of segregation, compounded by “white flight” and the establishment of exclusive private schools, which still exist today. This discriminatory history has had a lasting impact of the state’s education system, reflected in modern school demographics and achievement data. It is well known that Alabama struggles with education performance, especially in science education. On average, minority groups scored the lowest in science proficiency. In Alabama, minority populations are concentrated in a region known as the Black Belt, which was once home to countless slave plantations and was the epicenter of the Civil Rights Movement. Today the Black Belt is characterized by a high density of woodlands and plays a significant role in Alabama’s leading economic industry-forest products. Given the economic importance of forestry and agriculture to the state, environmental science proficiency is essential to its stability; however, it is neglected in areas where it is needed most. To better understand the inequity of science education within Alabama, our study first investigates how geographic location, demographics and school funding relate to science achievement scores using ArcGIS and Pearson’s correlation coefficient. Additionally, our study explores the implementation of a relevant, problem-based, active learning lesson in schools. Relevant learning engages students by connecting material to their personal experiences. Problem-based active learning involves real-world problem-solving through hands-on experiences. Given Alabama’s significant woodland coverage, educational materials on forest products were developed with consideration of its relevance to students, especially those located in the Black Belt. Furthermore, to incorporate problem solving and active learning, the lesson centered around students using forest products to solve environmental challenges, such as water pollution- an increasing challenge within the state due to climate change. Pre and post assessment surveys were provided to teachers to measure the effectiveness of the lesson. In addition to pedagogical practices, community and mentorship programs are known to positively impact educational achievements. To this end, our work examines the results of surveys measuring educational professionals’ attitudes toward a local mentorship group within the Black Belt and its potential to address environmental and science literacy. Additionally, our study presents survey results from participants who attended an educational community event, gauging its effectiveness in increasing environmental and science proficiency. Our results demonstrate positive improvements in environmental awareness and science literacy with relevant pedagogy, mentorship, and community involvement. Implementing these practices can help provide equitable and inclusive learning environments and can better equip students with the skills and knowledge needed to bridge this historic educational gap within Alabama.Keywords: equitable education, environmental science, environmental education, science education, racial injustice, sustainability, rural education
Procedia PDF Downloads 683 Modern Technology for Strengthening Concrete Structures Makes Them Resistant to Earthquakes
Authors: Mohsen Abdelrazek Khorshid Ali Selim
Abstract:
Disadvantages and errors of current concrete reinforcement methodsL: Current concrete reinforcement methods are adopted in most parts of the world in their various doctrines and names. They adopt the so-called concrete slab system, where these slabs are semi-independent and isolated from each other and from the surrounding environment of concrete columns or beams, so that the reinforcing steel does not cross from one slab to another or from one slab to adjacent columns. It or the beams surrounding it and vice versa are only a few centimeters and no more. The same applies exactly to the concrete columns that support the building, where the reinforcing steel does not extend from the slabs or beams to the inside of the columns or vice versa except for a few centimeters and no more, just as the reinforcing steel does not extend from inside the column at the top. The ceiling is only a few centimetres, and the same thing is literally repeated in the concrete beams that connect the columns and separate the slabs, where the reinforcing steel does not cross from one beam to another or from one beam to the slabs or columns adjacent to it and vice versa, except for a few centimeters, which makes the basic building elements of columns, slabs and beams They all work in isolation from each other and from the environment surrounding them from all sides. This traditional method of reinforcement may be valid and lasting in geographical areas that are not exposed to earthquakes and earthquakes, where all the loads and tensile forces in the building are constantly directed vertically downward due to gravity and are borne directly by the vertical reinforcement of the building. However, in the case of earthquakes and earthquakes, the loads and tensile forces in the building shift from the vertical direction to the horizontal direction at an angle of inclination that depends on the strength of the earthquake, and most of them are borne by the horizontal reinforcement extending between the basic elements of the building, such as columns, slabs and beams, and since the crossing of the reinforcement between each of the columns, slabs and beams between them And each other, and vice versa, does not exceed several centimeters. In any case, the tensile strength, cohesion and bonding between the various parts of the building are very weak, which causes the buildings to disintegrate and collapse in the horrific manner that we saw in the earthquake in Turkey and Syria in February 2023, which caused the collapse of tens of thousands of buildings in A few seconds later, it left more than 50,000 dead, hundreds of thousands injured, and millions displaced. Description of the new earthquake-resistant model: The idea of the new model in the reinforcement of concrete buildings and constructions is based on the theory that we have formulated as follows: [The tensile strength, cohesion and bonding between the basic parts of the concrete building (columns, beams and slabs) increases as the lengths of the reinforcing steel bars increase and they extend and branch and the different parts of the building share them with each other.] . In other words, the strength, solidity, and cohesion of concrete buildings increase and they become resistant to earthquakes as the lengths of the reinforcing steel bars increase, extend, branch, and share with the various parts of the building, such as columns, beams, and slabs. That is, the reinforcing skewers of the columns must extend in their lengths without cutting to cross from one floor to another until their end. Likewise, the reinforcing skewers of the beams must extend in their lengths without cutting to cross from one beam to another. The ends of these skewers must rest at the bottom of the columns adjacent to the beams. The same thing applies to the reinforcing skewers of the slabs where they must These skewers should be extended in their lengths without cutting to cross from one tile to another, and the ends of these skewers should rest either under the adjacent columns or inside the beams adjacent to the slabs as follows: First, reinforce the columns: The columns have the lion's share of the reinforcing steel in this model in terms of type and quantity, as the columns contain two types of reinforcing bars. The first type is large-diameter bars that emerge from the base of the building, which are the nerves of the column. These bars must extend over their normal length of 12 meters or more and extend to a height of three floors, if desired. In raising other floors, bars with the same diameter and the same length are added to the top after the second floor. The second type is bars with a smaller diameter, and they are the same ones that are used to reinforce beams and slabs, so that the bars that reinforce the beams and slabs facing each column are bent down inside this column and along the entire length of the column. This requires an order. Most engineers do not prefer it, which is to pour the entire columns and pour the roof at once, but we prefer this method because it enables us to extend the reinforcing bars of both the beams and slabs to the bottom of the columns so that the entire building becomes one concrete block that is cohesive and resistant to earthquakes. Secondly, arming the cameras: The beams' reinforcing skewers must also extend to a full length of 12 meters or more without cutting. The ends of the skewers are bent and dropped inside the column at the beginning of the beam to its bottom. Then the skewers are extended inside the beam so that their other end falls under the facing column at the end of the beam. The skewers may cross over the head of a column. Another passes through another adjacent beam and rests at the bottom of a third column, according to the lengths of each of the skewers and beams. Third, reinforcement of slabs: The slab reinforcing skewers must also extend their entire length, 12 meters or more, without cutting, distinguishing between two cases. The first case is the skewers opposite the columns, and their ends are dropped inside one of the columns. Then the skewers cross inside the adjacent slab and their other end falls below the opposite column. The skewers may cross over The head of the adjacent column passes through another adjacent slab and rests at the bottom of a third column, according to the dimensions of the slabs and the lengths of the skewers. The second case is the skewers opposite the beams, and their ends must be bent in the form of a square or rectangle according to the dimensions of the beam’s width and height, and this square or rectangle is dropped inside the beam at the beginning of the slab, and it serves as The skewers are for the beams, then the skewers are extended along the length of the slab, and at the end of the slab, the skewers are bent down to the bottom of the adjacent beam in the shape of the letter U, after which the skewers are extended inside the adjacent slab, and this is repeated in the same way inside the other adjacent beams until the end of the skewer, then it is bent downward in the form of a square or rectangle inside the beam, as happened. In its beginning.Keywords: earthquake resistant buildings, earthquake resistant concrete constructions, new technology for reinforcement of concrete buildings, new technology in concrete reinforcement
Procedia PDF Downloads 642 Reassembling a Fragmented Border Landscape at Crossroads: Indigenous Rights, Rural Sustainability, Regional Integration and Post-Colonial Justice in Hong Kong
Authors: Chiu-Yin Leung
Abstract:
This research investigates a complex assemblage among indigenous identities, socio-political organization and national apparatus in the border landscape of post-colonial Hong Kong. This former British colony had designated a transient mode of governance in its New Territories and particularly the northernmost borderland in 1951-2012. With a discriminated system of land provisions for the indigenous villagers, the place has been inherited with distinctive village-based culture, historic monuments and agrarian practices until its sovereignty return into the People’s Republic of China. In its latest development imperatives by the national strategic planning, the frontier area of Hong Kong has been identified as a strategy site for regional economic integration in South China, with cross-border projects of innovation and technology zones, mega-transport infrastructure and inter-jurisdictional arrangement. Contemporary literature theorizes borders as the material and discursive production of territoriality, which manifest in state apparatus and the daily lives of its citizens and condense in the contested articulations of power, security and citizenship. Drawing on the concept of assemblage, this paper attempts to tract how the border regime and infrastructure in Hong Kong as a city are deeply ingrained in the everyday lived spaces of the local communities but also the changing urban and regional strategies across different longitudinal moments. Through an intensive ethnographic fieldwork among the borderland villages since 2008 and the extensive analysis of colonial archives, new development plans and spatial planning frameworks, the author navigates the genealogy of the border landscape in Ta Kwu Ling frontier area and its implications as the milieu for new state space, covering heterogeneous fields particularly in indigenous rights, heritage preservation, rural sustainability and regional economy. Empirical evidence suggests an apparent bias towards indigenous power and colonial representation in classifying landscape values and conserving historical monuments. Squatter and farm tenants are often deprived of property rights, statutory participation and livelihood option in the planning process. The postcolonial bureaucracies have great difficulties in mobilizing resources to catch up with the swift, political-first approach of the mainland counterparts. Meanwhile, the cultural heritage, lineage network and memory landscape are not protected altogether with any holistic view or collaborative effort across the border. The enactment of land resumption and compensation scheme is furthermore disturbed by lineage-based customary law, technocratic bureaucracy, intra-community conflicts and multi-scalar political mobilization. As many traces of colonial misfortune and tyranny have been whitewashed without proper management, the author argues that postcolonial justice is yet reconciled in this fragmented border landscape. The assemblage of border in mainstream representation has tended to oversimplify local struggles as a collective mist and setup a wider production of schizophrenia experiences in the discussion of further economic integration among Hong Kong and other mainland cities in the Pearl River Delta Region. The research is expected to shed new light on the theorizing of border regions and postcolonialism beyond Eurocentric perspectives. In reassembling the borderland experiences with other arrays in state governance, village organization and indigenous identities, the author also suggests an alternative epistemology in reconciling socio-spatial differences and opening up imaginaries for positive interventions.Keywords: heritage conservation, indigenous communities, post-colonial borderland, regional development, rural sustainability
Procedia PDF Downloads 2071 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 65