Search results for: energetic material detonation reaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8928

Search results for: energetic material detonation reaction

8358 Role of Cellulose Fibers in Tuning the Microstructure and Crystallographic Phase of α-Fe₂O₃ and α-FeOOH Nanoparticles

Authors: Indu Chauhan, Bhupendra S. Butola, Paritosh Mohanty

Abstract:

It is very well known that properties of material changes as their size approach to nanoscale level due to the high surface area to volume ratio. However, in last few decades, a tenet ‘structure dictates function’ is quickly being adopted by researchers working with nanomaterials. The design and exploitation of nanoparticles with tailored shape and size has become one of the primary goals of materials science researchers to expose the properties of nanostructures. To date, various methods, including soft/hard template/surfactant assisted route hydrothermal reaction, seed mediated growth method, capping molecule-assisted synthesis, polyol process, etc. have been adopted to synthesize the nanostructures with controlled size and shape and monodispersity. However controlling the shape and size of nanoparticles is an ultimate challenge of modern material research. In particular, many efforts have been devoted to rational and skillful control of hierarchical and complex nanostructures. Thus in our research work, role of cellulose in manipulating the nanostructures has been discussed. Nanoparticles of α-Fe₂O₃ (diameter ca. 15 to 130 nm) were immobilized on the cellulose fiber surface by a single step in situ hydrothermal method. However, nanoflakes of α-FeOOH having thickness ca. ~25 nm and length ca. ~250 nm were obtained by the same method in absence of cellulose fibers. A possible nucleation and growth mechanism of the formation of nanostructures on cellulose fibers have been proposed. The covalent bond formation between the cellulose fibers and nanostructures has been discussed with supporting evidence from the spectroscopic and other analytical studies such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The role of cellulose in manipulating the nanostructures has been discussed.

Keywords: cellulose fibers, α-Fe₂O₃, α-FeOOH, hydrothermal, nanoflakes, nanoparticles

Procedia PDF Downloads 150
8357 The Effects and Interactions of Synthesis Parameters on Properties of Mg Substituted Hydroxyapatite

Authors: S. Sharma, U. Batra, S. Kapoor, A. Dua

Abstract:

In this study, the effects and interactions of reaction time and capping agent assistance during sol-gel synthesis of magnesium substituted hydroxyapatite nanopowder (MgHA) on hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P ratio and mean crystallite size was examined experimentally as well as through statistical analysis. MgHA nanopowders were synthesized by sol-gel technique at room temperature using aqueous solution of calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and potassium dihydrogen phosphate as starting materials. The reaction time for sol-gel synthesis was varied between 15 to 60 minutes. Two process routes were followed with and without addition of triethanolamine (TEA) in the solutions. The elemental compositions of as-synthesized powders were determined using X-ray fluorescence (XRF) spectroscopy. The functional groups present in the as-synthesized MgHA nanopowders were established through Fourier Transform Infrared Spectroscopy (FTIR). The amounts of phases present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders were determined using X-ray diffraction (XRD). The HA content in biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized MgHA nanopowders increased effectively with reaction time of sols (p < 0.0001, two way Anova), however, these were independent of TEA addition (p > 0.15, two way Anova). The MgHA nanopowders synthesized with TEA assistance exhibited 14 nm lower crystallite size (p < 0.018, 2 sample t-test) compared to the powder synthesized without TEA assistance.

Keywords: capping agent, hydroxyapatite, regression analysis, sol-gel, 2- sample t-test, two-way analysis of variance (ANOVA)

Procedia PDF Downloads 370
8356 Development of Low-Cost Vibro-Acoustic, and Fire-Resistant, Insulation Material from Natural and Sustainable Sources

Authors: K. Nasir, S. Ahmad, A. Khan, H. Benkreira

Abstract:

The topic of the research is to develop sustainable fire-resistant materials for vibration and acoustic damping of structure and airborne noises from sustainable recycled materials and biodegradable binders. The paper reports, methods and techniques of enhancing fire resistive, vibration and acoustic properties of building insulation materials made from natural resources like wood and recycled materials like rubber and textile waste. The structures are designed to optimize the number, size and stratification of closed (heat insulating) and open (noise insulating) pores. The samples produced are tested for their heat and noise insulating properties, including vibration damping and their structural properties (airflow resistivity, porosity, tortuosity and elastic modulus). The structural properties are then used in theoretical models to check the acoustic insulation measurements. Initial data indicate that one layer of such material can yield as much as 18 times more damping, increasing the loss factor by 18%.

Keywords: fire resistant, vibration damping, acoustic material, vibro-acoustic, thermal insulation, sustainable material, low cost materials, recycled materials, construction material

Procedia PDF Downloads 134
8355 Experimental Characterization of the AA7075 Aluminum Alloy Using Hot Shear Tensile Test

Authors: Trunal Bhujangrao, Catherine Froustey, Fernando Veiga, Philippe Darnis, Franck Girot Mata

Abstract:

The understanding of the material behavior under shear loading has great importance for a researcher in manufacturing processes like cutting, machining, milling, turning, friction stir welding, etc. where the material experiences large deformation at high temperature. For such material behavior analysis, hot shear tests provide a useful means to investigate the evolution of the microstructure at a wide range of temperature and to improve the material behavior model. Shear tests can be performed by direct shear loading (e.g. torsion of thin-walled tubular samples), or appropriate specimen design to convert a tensile or compressive load into shear (e.g. simple shear tests). The simple shear tests are straightforward and designed to obtained very large deformation. However, many of these shear tests are concerned only with the elastic response of the material. It is becoming increasingly important to capture a plastic response of the material. Plastic deformation is significantly more complex and is known to depend more heavily on the strain rate, temperature, deformation, etc. Besides, there is not enough work is done on high-temperature shear loading, because of geometrical instability occurred during the plastic deformation. The aim of this study is to design a new shear tensile specimen geometry to convert the tensile load into dominant shear loading under plastic deformation. Design of the specimen geometry is based on FEM. The material used in this paper is AA7075 alloy, tested quasi statically under elevated temperature. Finally, the microstructural changes taking place during

Keywords: AA7075 alloy, dynamic recrystallization, edge effect, large strain, shear tensile test

Procedia PDF Downloads 146
8354 Maintenance Dredging at Port of Townsville

Authors: Mohamed Jaditager, Julie Lovisa, Nagaratnam Sivakugan

Abstract:

The Port of Townsville conducts regular annual maintenance dredging to maintain depths of its harbor basin and approach channels for the navigational safety of the vessels against the natural accumulation of marine sediments. In addition to the regular maintenance dredging, the port undertakes emergency dredging in cases where large quantities of sediments are mobilized and deposited in port waters by cyclone or major flood events. The maintenance dredging material derived from the port may be disposed at sea or on land in accordance with relevant state and commonwealth regulations. For the land disposal, the dredged mud slurry is hydraulically placed into containment ponds and left to undergo sedimentation and self-weight consolidation to form fill material for land reclamation. This paper provides an overview of the maintenance dredging at the Port of Townsville and emphasis on maintenance dredging requirements, sediment quality, bathymetry, dredging methods used, and dredged material disposal options.

Keywords: consolidation, dredged material, maintenance dredging, marine sediments, sedimentation

Procedia PDF Downloads 445
8353 Bayesian Optimization for Reaction Parameter Tuning: An Exploratory Study of Parameter Optimization in Oxidative Desulfurization of Thiophene

Authors: Aman Sharma, Sonali Sengupta

Abstract:

The study explores the utility of Bayesian optimization in tuning the physical and chemical parameters of reactions in an offline experimental setup. A comparative analysis of the influence of the acquisition function on the optimization performance is also studied. For proxy first and second-order reactions, the results are indifferent to the acquisition function used, whereas, while studying the parameters for oxidative desulphurization of thiophene in an offline setup, upper confidence bound (UCB) provides faster convergence along with a marginal trade-off in the maximum conversion achieved. The work also demarcates the critical number of independent parameters and input observations required for both sequential and offline reaction setups to yield tangible results.

Keywords: acquisition function, Bayesian optimization, desulfurization, kinetics, thiophene

Procedia PDF Downloads 182
8352 Technical and Economic Potential of Partial Electrification of Railway Lines

Authors: Rafael Martins Manzano Silva, Jean-Francois Tremong

Abstract:

Electrification of railway lines allows to increase speed, power, capacity and energetic efficiency of rolling stocks. However, this process of electrification is complex and costly. An electrification project is not just about design of catenary. It also includes installation of structures around electrification, as substation installation, electrical isolation, signalling, telecommunication and civil engineering structures. France has more than 30,000 km of railways, whose only 53% are electrified. The others 47% of railways use diesel locomotive and represent only 10% of the circulation (tons.km). For this reason, a new type of electrification, less expensive than the usual, is requested to enable the modernization of these railways. One solution could be the use of hybrids trains. This technology opens up new opportunities for less expensive infrastructure development such as the partial electrification of railway lines. In a partially electrified railway, the power supply of theses hybrid trains could be made either by the catenary or by the on-board energy storage system (ESS). Thus, the on-board ESS would feed the energetic needs of the train along the non-electrified zones while in electrified zones, the catenary would feed the train and recharge the on-board ESS. This paper’s objective deals with the technical and economic potential identification of partial electrification of railway lines. This study provides different scenarios of electrification by replacing the most expensive places to electrify using on-board ESS. The target is to reduce the cost of new electrification projects, i.e. reduce the cost of electrification infrastructures while not increasing the cost of rolling stocks. In this study, scenarios are constructed in function of the electrification’s cost of each structure. The electrification’s cost varies considerably because of the installation of catenary support in tunnels, bridges and viaducts is much more expensive than in others zones of the railway. These scenarios will be used to describe the power supply system and to choose between the catenary and the on-board energy storage depending on the position of the train on the railway. To identify the influence of each partial electrification scenario in the sizing of the on-board ESS, a model of the railway line and of the rolling stock is developed for a real case. This real case concerns a railway line located in the south of France. The energy consumption and the power demanded at each point of the line for each power supply (catenary or on-board ESS) are provided at the end of the simulation. Finally, the cost of a partial electrification is obtained by adding the civil engineering costs of the zones to be electrified plus the cost of the on-board ESS. The study of the technical and economic potential ends with the identification of the most economically interesting scenario of electrification.

Keywords: electrification, hybrid, railway, storage

Procedia PDF Downloads 429
8351 Nano-Zinc Oxide: A Powerful and Recyclable Catalyst for Chemospecific Synthesis of Dicoumarols Based on Aryl Glyoxals

Authors: F. Jafari, S. GharehzadehShirazi, S. Khodabakhshi

Abstract:

An efficient, simple, and environmentally benign procedure for the one-pot synthesis of dicoumarols was reported. The reaction entails the condensation of aryl glyoxals and 4-hydroxyxoumarin in the presence of catalytic amount of zinc oxide nanoparticles (ZnO NPs) as recyclable catalyst in aqueous media. High product yields and use of clean conditions are important factors of green chemistry.Part of our continued interest to achieve high atom economic reactions by the use safe catalysts. The reaction mixture was refluxed with catalytic amount (3 mol%) of zinc oxide nanoparticles.Reducing the amount of toxic waste and byproducts arising from chemical reactions is an important issue in the context of green chemistry. In comparison with commonly organic solvents, the aqueous media is cheaper and more environmentally friendly. Avoiding the use of organic solvents is an important way to prevent waste in chemical processes. In the context of green and sustainable chemistry, one ofthe most promising approaches is the use of water as the reaction media. In recent years, there has been increasing recognition that water is an attractive media for manyorganic reactions. Using water continues to attract wide attention among synthetic chemists in the design of new synthetic methods.

Keywords: zinc oxide, dicoumarol, aryl glyoxal, green chemistry, catalyst

Procedia PDF Downloads 354
8350 Study of the Phenomenon of Collapse and Buckling the Car Body Frame

Authors: Didik Sugiyanto

Abstract:

Conditions that often occur in the framework of a particular vehicle at a car is a collision or collision with another object, an example of such damage is to the frame or chassis for the required design framework that is able to absorb impact energy. Characteristics of the material are influenced by the value of the stiffness of the material that need to be considered in choosing the material properties of the material. To obtain material properties that can be adapted to the experimental conditions tested the tensile and compression testing. In this study focused on the chassis at an angle of 150, 300, and 450. It is based on field studies that vehicle primarily for freight cars have a point of order light between 150 to 450. Research methods include design tools, design framework, procurement of materials and experimental tools, tool-making, the manufacture of the test framework, and the testing process, experiment is testing the power of the press to know the order. From this test obtained the maximum force on the corner of 150 was 569.76 kg at a distance of 16 mm, angle 300 is 370.3 kg at a distance of 15 mm, angle 450 is 391.71 kg at a distance of 28 mm. After reaching the maximum force the order will occur collapse, followed by a decrease in the next distance. It can be concluded that the greatest strain energy occurs at an angle of 150. So it is known that the frame at an angle of 150 produces the best level of security.

Keywords: buckling, collapse, body frame, vehicle

Procedia PDF Downloads 578
8349 H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis of α-Aminophosphonates from Amino Acids Esters

Authors: Sarra Boughaba

Abstract:

α-aminophosphonates have found a wide range of applications in organic and medicinal chemistry; they are considered as pharmacological agents, anti-inflammatory antitumor agents, and antibiotics. A number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution, utilization of organic solvents, and expensive catalysts. In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this context, an efficient and eco-friendly protocol has been described for the synthesis of α-aminophosphonates via one pot, three component reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of amino acids esters, various aromatic aldehydes and triethylphosphite under solvent-free conditions, the corresponding α-aminophosphonates were formed in good yields as racemic or diastereomericmixture. All the new products were systematically characterized by IR, MS, and ¹H, ¹³C-³¹P-NMR analyses. This method offers advantages such as simplicity workup with the green aspects by avoiding expensive catalysts and toxic solvents, good yields, short reaction times.

Keywords: amino acids esters, α-aminophosphonates, H₆P₂W₁₈O₆₂.14H₂O catalyst, green chemistry

Procedia PDF Downloads 127
8348 Development of Membrane Reactor for Auto Thermal Reforming of Dimethyl Ether for Hydrogen Production

Authors: Tie-Qing Zhang, Seunghun Jung, Young-Bae Kim

Abstract:

This research is devoted to developing a membrane reactor to flexibly meet the hydrogen demand of onboard fuel cells, which is an important part of green energy development. Among many renewable chemical products, dimethyl ether (DME) has the advantages of low reaction temperature (400 °C in this study), high hydrogen atom content, low toxicity, and easy preparation. Autothermal reforming, on the other hand, has a high hydrogen recovery rate and exhibits thermal neutrality during the reaction process, so the additional heat source in the hydrogen production process can be omitted. Therefore, the DME auto thermal reforming process was adopted in this study. To control the temperature of the reaction catalyst bed and hydrogen production rate, a Model Predictive Control (MPC) scheme was designed. Taking the above two variables as the control objectives, stable operation of the reformer can be achieved by controlling the flow rates of DME, steam, and high-purity air in real-time. To prevent catalyst poisoning in the fuel cell, the hydrogen needs to be purified to reduce the carbon monoxide content to below 50 ppm. Therefore, a Pd-Ag hydrogen semi-permeable membrane with a thickness of 3-5 μm was inserted into the auto thermal reactor, and the permeation efficiency of hydrogen was improved by steam purging on the permeation side. Finally, hydrogen with a purity of 99.99 was obtained.

Keywords: hydrogen production, auto thermal reforming, membrane, fuel cell

Procedia PDF Downloads 104
8347 Wettability of Superhydrophobic Polymer Layers Filled with Hydrophobized Silica on Glass

Authors: Diana Rymuszka, Konrad Terpiłowski, Lucyna Hołysz, Elena Goncharuk, Iryna Sulym

Abstract:

Superhydrophobic surfaces exhibit extremely high water repellency. The commonly accepted basic criterion for such surfaces is a water contact angle larger than 150°, low contact angle hysteresis and low sliding angle. These surfaces are of special interest, because properties such as anti-sticking, anti-contamination and self-cleaning are expected. These properties are attractive for many applications such as anti-sticking of snow for antennas and windows, anti-biofouling paints for boats, waterproof clothing, self-cleaning windshields for automobiles, dust-free coatings or metal refining. The various methods for the preparation of superhydrophobic surfaces since last two decades have been reported, such as phase separation, electrochemical deposition, template method, plasma method, chemical vapor deposition, wet chemical reaction, sol-gel processing, lithography and so on. The aim of the study was to investigate the influence of modified colloidal silica, used as a filler, on the hydrophobicity of the polymer film deposited on the glass support activated with plasma. On prepared surfaces water advancing (ӨA) and receding (ӨR) contact angles were measured and then their total apparent surface free energy was determined using the contact angle hysteresis approach (CAH). The structures of deposited films were observed with the help of an optical microscope. Topographies of selected films were also determined using an optical profilometer. It was found that plasma treatment influence glass surface wetting and energetic properties that is observed in higher adhesion between polymer/filler film and glass support. Using the colloidal silica particles as a filler for the polymer thin film deposited on the glass support, it is possible to produce strongly adhering layers of superhydrophobic properties. The best superhydrophobic properties were obtained for surfaces of the film glass/polimer + modified silica covered in 89 and 100%. The advancing contact angle measured on these surfaces amounts above 150° that leads to under 2 mJ/m2 value of the apparent surface free energy. Such films may have many practical applications, among others, as dust-free coatings or anticorrosion protection.

Keywords: contact angle, plasma, superhydrophobic, surface free energy

Procedia PDF Downloads 481
8346 Procedure for Impact Testing of Fused Recycled Glass

Authors: David Halley, Tyra Oseng-Rees, Luca Pagano, Juan A Ferriz-Papi

Abstract:

Recycled glass material is made from 100% recycled bottle glass and consumes less energy than re-melt technology. It also uses no additives in the manufacturing process allowing the recycled glass material, in principal, to go back to the recycling stream after end-of-use, contributing to the circular economy with a low ecological impact. The aim of this paper is to investigate the procedure for testing the recycled glass material for impact resistance, so it can be applied to pavements and other surfaces which are at risk of impact during service. A review of different impact test procedures for construction materials was undertaken, comparing methodologies and international standards applied to other materials such as natural stone, ceramics and glass. A drop weight impact testing machine was designed and manufactured in-house to perform these tests. As a case study, samples of the recycled glass material were manufactured with two different thicknesses and tested. The impact energy was calculated theoretically, obtaining results with 5 and 10 J. The results on the material were subsequently discussed. Improvements on the procedure can be made using high speed video technology to calculate velocity just before and immediately after the impact to know the absorbed energy. The initial results obtained in this procedure were positive although repeatability needs to be developed to obtain a correlation of results and finally be able to validate the procedure. The experiment with samples showed the practicality of this procedure and application to the recycled glass material impact testing although further research needs to be developed.

Keywords: construction materials, drop weight impact, impact testing, recycled glass

Procedia PDF Downloads 296
8345 The Gasification of Fructose in Supercritical Water

Authors: Shyh-Ming Chern, H. Y. Cheng

Abstract:

Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H2, CO, CO2, CH4 and C2H6. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa.

Keywords: biomass, fructose, gasification, supercritical water

Procedia PDF Downloads 353
8344 Synthesis of 5'-Azidonucleosides as Building Blocks for the Preparation of Biologically Active Bioconjugates

Authors: Brigitta Bodnár, Lajos Kovács, Zoltán Kupihár

Abstract:

The cancer cells require higher amount of nucleoside building blocks for their proliferation, therefore they have significantly higher uptake of nucleosides by the different nucleoside transporters. Therefore, the conjugation with nucleosides may significantly increase the efficiency and selectivity of potential active pharmaceutical ingredients. On the other hand, the advantage of using a nucleoside could be either the higher activity on targeted enzymes overrepresented in cancer cells or an enhanced cellular uptake of the bioconjugates in these cells compared to the healthy ones. This fact can be used to make the nucleosides, as targeting moieties covalently bound to anti-cancer drug molecules which can selectively accumulate in cancer cells. However, in order to form the nucleoside-drug conjugates, such nucleoside building blocks are needed, which can selectively be coupled to the drug molecules containing even a high number of diverse functional groups. One of the most selective conjugation techniques is the copper-catalyzed azide-alkyne click reaction that requires the presence of an alkyl group on one of the conjugated molecules and an azide group on the other. In case of nucleosides, the development of azide group is simpler for which the replacement of the 5'-hydroxy group is the most suitable. This transformation generally involves many side reactions and result in very low yields. In addition, during our experiments, the transformation of the 2'-deoxyguanosine to the corresponding 5'-deoxy-5’-azido-2’-deoxyguanosine could not be performed with any of the methods described in the literature. Therefore, we have tried to overcome these difficulties with not only using the traditional process based on the 2 step exchange of tosyl to azide, but also using the Mitsunobu reaction which requires only one step. However, this path proved to be unsuccessful in spite of the optimizing the reaction conditions. Finally, a method has been developed whereby the azide groups were incorporated into the 5’-position resulting in significantly better yields compared to all other previous methods, and we were able to produce all the four nucleoside derivatives.

Keywords: 5'-azidonucleosides, bioconjugate, click reaction, proliferation

Procedia PDF Downloads 245
8343 MHD Chemically Reacting Viscous Fluid Flow towards a Vertical Surface with Slip and Convective Boundary Conditions

Authors: Ibrahim Yakubu Seini, Oluwole Daniel Makinde

Abstract:

MHD chemically reacting viscous fluid flow towards a vertical surface with slip and convective boundary conditions has been conducted. The temperature and the chemical species concentration of the surface and the velocity of the external flow are assumed to vary linearly with the distance from the vertical surface. The governing differential equations are modeled and transformed into systems of ordinary differential equations, which are then solved numerically by a shooting method. The effects of various parameters on the heat and mass transfer characteristics are discussed. Graphical results are presented for the velocity, temperature, and concentration profiles whilst the skin-friction coefficient and the rate of heat and mass transfers near the surface are presented in tables and discussed. The results revealed that increasing the strength of the magnetic field increases the skin-friction coefficient and the rate of heat and mass transfers toward the surface. The velocity profiles are increased towards the surface due to the presence of the Lorenz force, which attracts the fluid particles near the surface. The rate of chemical reaction is seen to decrease the concentration boundary layer near the surface due to the destructive chemical reaction occurring near the surface.

Keywords: boundary layer, surface slip, MHD flow, chemical reaction, heat transfer, mass transfer

Procedia PDF Downloads 539
8342 Use of a New Multiplex Quantitative Polymerase Chain Reaction Based Assay for Simultaneous Detection of Neisseria Meningitidis, Escherichia Coli K1, Streptococcus agalactiae, and Streptococcus pneumoniae

Authors: Nastaran Hemmati, Farhad Nikkhahi, Amir Javadi, Sahar Eskandarion, Seyed Mahmuod Amin Marashi

Abstract:

Neisseria meningitidis, Escherichia coli K, Streptococcus agalactiae, and Streptococcus pneumoniae cause 90% of bacterial meningitis. Almost all infected people die or have irreversible neurological complications. Therefore, it is essential to have a diagnostic kit with the ability to quickly detect these fatal infections. The project involved 212 patients from whom cerebrospinal fluid samples were obtained. After total genome extraction and performing multiplex quantitative polymerase chain reaction (qPCR), the presence or absence of each infectious factor was determined by comparing with standard strains. The specificity, sensitivity, positive predictive value, and negative predictive value calculated were 100%, 92.9%, 50%, and 100%, respectively. So, due to the high specificity and sensitivity of the designed primers, they can be used instead of bacterial culture that takes at least 24 to 48 hours. The remarkable benefit of this method is associated with the speed (up to 3 hours) at which the procedure could be completed. It is also worth noting that this method can reduce the personnel unintentional errors which may occur in the laboratory. On the other hand, as this method simultaneously identifies four common factors that cause bacterial meningitis, it could be used as an auxiliary method diagnostic technique in laboratories particularly in cases of emergency medicine.

Keywords: cerebrospinal fluid, meningitis, quantitative polymerase chain reaction, simultaneous detection, diagnosis testing

Procedia PDF Downloads 116
8341 Recycling of Sclareolide in the Crystallization Mother Liquid of Sclareolide by Adsorption and Chromatography

Authors: Xiang Li, Kui Chen, Bin Wu, Min Zhou

Abstract:

Sclareolide is made from sclareol by oxidiative synthesis and subsequent crystallization, while the crystallization mother liquor still contains 15%~30%wt of sclareolide to be reclaimed. With the reaction material of sclareol is provided as plant extract, many sorts of complex impurities exist in the mother liquor. Due to the difficulty in recycling sclareolide after solvent recovery, it is common practice for the factories to discard the mother liquor, which not only results in loss of sclareolide, but also contributes extra environmental burden. In this paper, a process based on adsorption and elution has been presented for recycling of sclareolide from mother liquor. After pretreatment of the crystallization mother liquor by HZ-845 resin to remove parts of impurities, sclareolide is adsorbed by HZ-816 resin. The HZ-816 resin loaded with sclareolide is then eluted by elution solvent. Finally, the eluent containing sclareolide is concentrated and fed into the crystallization step in the process. By adoption of the recycle from mother liquor, total yield of sclareolide increases from 86% to 90% with a stable purity of the final sclareolide products maintained.

Keywords: sclareolide, resin, adsorption, chromatography

Procedia PDF Downloads 238
8340 Influence of MgO Physically Mixed with Tungsten Oxide Supported Silica Catalyst on Coke Formation

Authors: Thidaya Thitiapichart

Abstract:

The effect of additional magnesium oxide (MgO) was investigated by using the tungsten oxide supported on silica catalyst (WOx/SiO2) physically mixed with MgO in a weight ratio 1:1. The both fresh and spent catalysts were characterized by FT-Raman spectrometer, UV-Vis spectrometer, X-Ray diffraction (XRD), and temperature programmed oxidation (TPO). The results indicated that the additional MgO could enhance the conversion of trans-2-butene due to isomerization reaction. However, adding MgO would increase the amount of coke deposit on the WOx/SiO2 catalyst. The TPO profile presents two peaks when the WOx/SiO2 catalyst was physically mixed with MgO. The further peak was suggested to be coming from the coke precursor that could be produced by isomerization reaction of the undesired product. Then, the occurred coke precursor could deposit and form coke on the acid catalyst.

Keywords: coke formation, metathesis, magnesium oxide, physically mix

Procedia PDF Downloads 248
8339 Revealing the Nitrogen Reaction Pathway for the Catalytic Oxidative Denitrification of Fuels

Authors: Michael Huber, Maximilian J. Poller, Jens Tochtermann, Wolfgang Korth, Andreas Jess, Jakob Albert

Abstract:

Aside from the desulfurisation, the denitrogenation of fuels is of great importance to minimize the environmental impact of transport emissions. The oxidative reaction pathway of organic nitrogen in the catalytic oxidative denitrogenation could be successfully elucidated. This is the first time such a pathway could be traced in detail in non-microbial systems. It was found that the organic nitrogen is first oxidized to nitrate, which is subsequently reduced to molecular nitrogen via nitrous oxide. Hereby, the organic substrate serves as a reducing agent. The discovery of this pathway is an important milestone for the further development of fuel denitrogenation technologies. The United Nations aims to counteract global warming with Net Zero Emissions (NZE) commitments; however, it is not yet foreseeable when crude oil-based fuels will become obsolete. In 2021, more than 50 million barrels per day (mb/d) were consumed for the transport sector alone. Above all, heteroatoms such as sulfur or nitrogen produce SO₂ and NOx during combustion in the engines, which is not only harmful to the climate but also to health. Therefore, in refineries, these heteroatoms are removed by hy-drotreating to produce clean fuels. However, this catalytic reaction is inhibited by the basic, nitrogenous reactants (e.g., quinoline) as well as by NH3. The ion pair of the nitrogen atom forms strong pi-bonds to the active sites of the hydrotreating catalyst, which dimin-ishes its activity. To maximize the desulfurization and denitrogenation effectiveness in comparison to just extraction and adsorption, selective oxidation is typically combined with either extraction or selective adsorption. The selective oxidation produces more polar compounds that can be removed from the non-polar oil in a separate step. The extraction step can also be carried out in parallel to the oxidation reaction, as a result of in situ separation of the oxidation products (ECODS; extractive catalytic oxidative desulfurization). In this process, H8PV5Mo7O40 (HPA-5) is employed as a homogeneous polyoxometalate (POM) catalyst in an aqueous phase, whereas the sulfur containing fuel components are oxidized after diffusion from the organic fuel phase into the aqueous catalyst phase, to form highly polar products such as H₂SO₄ and carboxylic acids, which are thereby extracted from the organic fuel phase and accumulate in the aqueous phase. In contrast to the inhibiting properties of the basic nitrogen compounds in hydrotreating, the oxidative desulfurization improves with simultaneous denitrification in this system (ECODN; extractive catalytic oxidative denitrogenation). The reaction pathway of ECODS has already been well studied. In contrast, the oxidation of nitrogen compounds in ECODN is not yet well understood and requires more detailed investigations.

Keywords: oxidative reaction pathway, denitrogenation of fuels, molecular catalysis, polyoxometalate

Procedia PDF Downloads 180
8338 Production of Biodiesel Using Brine Waste as a Heterogeneous Catalyst

Authors: Hilary Rutto, Linda Sibali

Abstract:

In these modern times, we constantly search for new and innovative technologies to lift the burden of our extreme energy demand. The overall purpose of biofuel production research is to source an alternative energy source to replace the normal use of fossil fuel as liquid petroleum products. This experiment looks at the basis of biodiesel production with regards to alternative catalysts that can be used to produce biodiesel. The key factors that will be addressed during the experiments will focus on temperature variation, catalyst additions to the overall reaction, methanol to oil ratio, and the impact of agitation on the reaction. Brine samples sources from nearby plants will be evaluated and tested thoroughly and the key characteristics of these brine samples analysed for the verification of its use as a possible catalyst in biodiesel production. The one factor at a time experimental approach was used in this experiment, and the recycle and reuse characteristics of the heterogeneous catalyst was evaluated.

Keywords: brine sludge, heterogenous catalyst, biodiesel, one factor

Procedia PDF Downloads 171
8337 Adiabatic Flame Temperature: New Calculation Methode

Authors: Muthana Abdul Mjed Jamel Al-gburi

Abstract:

The present paper introduces the methane-air flame and its main chemical reaction, the mass burning rate, the burning velocity, and the most important parameter, the adiabatic and its evaluation. Those major important flame parameters will be mathematically formulated and computerized using the MATLAB program. The present program established a new technique to decide the true adiabatic flame temperature. The new technique implements the trial and error procedure to obtained the calculated total internal energy of the product species then evaluate of the reactants ones, from both, we can draw two energy lines their intersection will decide the true required temperature. The obtained results show accurate evaluation for the atmospheric Stoichiometric (Φ=1.05) methane-air flame, and the value was 2136.36 K.

Keywords: 1- methane-air flame, 2-, adiabatic flame temperature, 3-, reaction model, 4- matlab program, 5-, new technique

Procedia PDF Downloads 74
8336 Cement Bond Characteristics of Artificially Fabricated Sandstones

Authors: Ashirgul Kozhagulova, Ainash Shabdirova, Galym Tokazhanov, Minh Nguyen

Abstract:

The synthetic rocks have been advantageous over the natural rocks in terms of availability and the consistent studying the impact of a particular parameter. The artificial rocks can be fabricated using variety of techniques such as mixing sand and Portland cement or gypsum, firing the mixture of sand and fine powder of borosilicate glass or by in-situ precipitation of calcite solution. In this study, sodium silicate solution has been used as the cementing agent for the quartz sand. The molded soft cylindrical sandstone samples are placed in the gas-tight pressure vessel, where the hardening of the material takes place as the chemical reaction between carbon dioxide and the silicate solution progresses. The vessel allows uniform disperse of carbon dioxide and control over the ambient gas pressure. Current paper shows how the bonding material is initially distributed in the intergranular space and the surface of the sand particles by the usage of Electron Microscopy and the Energy Dispersive Spectroscopy. During the study, the strength of the cement bond as a function of temperature is observed. The impact of cementing agent dosage on the micro and macro characteristics of the sandstone is investigated. The analysis of the cement bond at micro level helps to trace the changes to particles bonding damage after a potential yielding. Shearing behavior and compressional response have been examined resulting in the estimation of the shearing resistance and cohesion force of the sandstone. These are considered to be main input values to the mathematical prediction models of sand production from weak clastic oil reservoir formations.

Keywords: artificial sanstone, cement bond, microstructure, SEM, triaxial shearing

Procedia PDF Downloads 167
8335 Structural Optimization of Shell and Arched Structures

Authors: Mitchell Gohnert, Ryan Bradley

Abstract:

This paper reviews some fundamental concepts of structural optimization, which are based on the type of materials used in construction and the shape of the structure. The first step in structural optimization is to break down all internal forces in a structure into fundamental stresses, which are tensions and compressions. Knowing the stress patterns directs our selection of structural shapes and the most appropriate type of construction material. In our selection of materials, it is essential to understand all construction materials have flaws, or micro-cracks, which reduce the capacity of the material, especially when subjected to tensions. Because of material defects, many construction materials perform significantly better when subjected to compressive forces. Structures are also more efficient if bending moments are eliminated. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure also has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape. Catenary, triangular and linear shapes are the fundamental structural forms to achieve optimal stress flow. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined.

Keywords: arches, economy of stresses, material strength, optimization, shells

Procedia PDF Downloads 116
8334 Degradation of Diclofenac in Water Using FeO-Based Catalytic Ozonation in a Modified Flotation Cell

Authors: Miguel A. Figueroa, José A. Lara-Ramos, Miguel A. Mueses

Abstract:

Pharmaceutical residues are a section of emerging contaminants of anthropogenic origin that are present in a myriad of waters with which human beings interact daily and are starting to affect the ecosystem directly. Conventional waste-water treatment systems are not capable of degrading these pharmaceutical effluents because their designs cannot handle the intermediate products and biological effects occurring during its treatment. That is why it is necessary to hybridize conventional waste-water systems with non-conventional processes. In the specific case of an ozonation process, its efficiency highly depends on a perfect dispersion of ozone, long times of interaction of the gas-liquid phases and the size of the ozone bubbles formed through-out the reaction system. In order to increase the efficiency of these parameters, the use of a modified flotation cell has been proposed recently as a reactive system, which is used at an industrial level to facilitate the suspension of particles and spreading gas bubbles through the reactor volume at a high rate. The objective of the present work is the development of a mathematical model that can closely predict the kinetic rates of reactions taking place in the flotation cell at an experimental scale by means of identifying proper reaction mechanisms that take into account the modified chemical and hydrodynamic factors in the FeO-catalyzed Ozonation of Diclofenac aqueous solutions in a flotation cell. The methodology is comprised of three steps: an experimental phase where a modified flotation cell reactor is used to analyze the effects of ozone concentration and loading catalyst over the degradation of Diclofenac aqueous solutions. The performance is evaluated through an index of utilized ozone, which relates the amount of ozone supplied to the system per milligram of degraded pollutant. Next, a theoretical phase where the reaction mechanisms taking place during the experiments must be identified and proposed that details the multiple direct and indirect reactions the system goes through. Finally, a kinetic model is obtained that can mathematically represent the reaction mechanisms with adjustable parameters that can be fitted to the experimental results and give the model a proper physical meaning. The expected results are a robust reaction rate law that can simulate the improved results of Diclofenac mineralization on water using the modified flotation cell reactor. By means of this methodology, the following results were obtained: A robust reaction pathways mechanism showcasing the intermediates, free-radicals and products of the reaction, Optimal values of reaction rate constants that simulated Hatta numbers lower than 3 for the system modeled, degradation percentages of 100%, TOC (Total organic carbon) removal percentage of 69.9 only requiring an optimal value of FeO catalyst of 0.3 g/L. These results showed that a flotation cell could be used as a reactor in ozonation, catalytic ozonation and photocatalytic ozonation processes, since it produces high reaction rate constants and reduces mass transfer limitations (Ha > 3) by producing microbubbles and maintaining a good catalyst distribution.

Keywords: advanced oxidation technologies, iron oxide, emergent contaminants, AOTS intensification

Procedia PDF Downloads 112
8333 Sulfur Removal of Hydrocarbon Fuels Using Oxidative Desulfurization Enhanced by Fenton Process

Authors: Mahsa Ja’fari, Mohammad R. Khosravi-Nikou, Mohsen Motavassel

Abstract:

A comprehensive development towards the production of ultra-clean fuels as a feed stoke is getting to raise due to the increasing use of diesel fuels and global air pollution. Production of environmental-friendly fuels can be achievable by some limited single methods and most integrated ones. Oxidative desulfurization (ODS) presents vast ranges of technologies possessing suitable characteristics with regard to the Fenton process. Using toluene as a model fuel feed with dibenzothiophene (DBT) as a sulfur compound under various operating conditions is the attempt of this study. The results showed that this oxidative process followed a pseudo-first order kinetics. Removal efficiency of 77.43% is attained under reaction time of 40 minutes with (Fe+2/H2O2) molar ratio of 0.05 in acidic pH environment. In this research, temperature of 50 °C represented the most influential role in proceeding the reaction.

Keywords: design of experiment (DOE), dibenzothiophene (DBT), optimization, oxidative desulfurization (ODS)

Procedia PDF Downloads 217
8332 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Authors: Motahar Reza, Rajni Chahal, Neha Sharma

Abstract:

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

Keywords: boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation

Procedia PDF Downloads 399
8331 Numerical Solution of Space Fractional Order Linear/Nonlinear Reaction-Advection Diffusion Equation Using Jacobi Polynomial

Authors: Shubham Jaiswal

Abstract:

During modelling of many physical problems and engineering processes, fractional calculus plays an important role. Those are greatly described by fractional differential equations (FDEs). So a reliable and efficient technique to solve such types of FDEs is needed. In this article, a numerical solution of a class of fractional differential equations namely space fractional order reaction-advection dispersion equations subject to initial and boundary conditions is derived. In the proposed approach shifted Jacobi polynomials are used to approximate the solutions together with shifted Jacobi operational matrix of fractional order and spectral collocation method. The main advantage of this approach is that it converts such problems in the systems of algebraic equations which are easier to be solved. The proposed approach is effective to solve the linear as well as non-linear FDEs. To show the reliability, validity and high accuracy of proposed approach, the numerical results of some illustrative examples are reported, which are compared with the existing analytical results already reported in the literature. The error analysis for each case exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.

Keywords: space fractional order linear/nonlinear reaction-advection diffusion equation, shifted Jacobi polynomials, operational matrix, collocation method, Caputo derivative

Procedia PDF Downloads 445
8330 The Effect of Ice in Pain Control before Digital Nerve Block

Authors: Fatemeh Rasooli, Behzad Simiari, Pooya Payandemehr, Amir Nejati, Maryam Bahreini, Atefeh Abdollahi

Abstract:

Introduction: Pain is a complex physiological reaction to tissue injury. In the course of painful procedures such as nerve block, ice has been shown to be a feasible and inexpensive material to control pain. It delays nerve conduction, actives other senses and reduces inflammatory and painful responses. This study assessed the effect of ice in reducing pain caused by needling and infiltration during digital block. Patient satisfaction recorded as a secondary outcome. Methods: This study was designed as a non-blinded randomized clinical trial approved by Tehran University of Medical Sciences Ethical Committee. Informed consent was taken from all the participants who were then randomly divided into two groups. Digital block performed by standard approach in selected patients. Tubes of ice were prepared in gloves and were fragmented at a time of application for circling around the finger. Tubes were applied for 6 minutes before digital nerve block in the site of needling in the case group. Patients in the control group underwent digital nerve block with the conventional method without ice administration. Numeric Rating Scale (NRS) used for grading pain. 0 used for no pain and 10 for the worst pain that patient had experienced until now. Scores were analyzed by Wilcoxon Rank Sum test and compared in case and control groups. Results: 100 patients aged 16-50 years were enrolled. Mean NRS scores with and without ice were 1.5 mm (S.D ± 1.44) and 6.8 mm (S.D ± 1.40) for needling pain and for infiltration pain were 2.7mm ( S.D ±1.65) and 8.5mm ( S.D ± 1.47), respectively (p<0.001). Besides, patients’ satisfactions were significantly higher in the ice group (p<0.001). Conclusion: Application of ice for 6 minutes significantly reduced pain of needling and infiltration in digital nerve block; thus, it seems to be a feasible and inexpensive material which acts effectively to decrease pain and stress before the procedure.

Keywords: digital block, ice, needle, pain

Procedia PDF Downloads 236
8329 Synthesis of Biolubricant Base Stock from Palm Methyl Ester

Authors: Nur Sulihatimarsyila Abd Wafti, Harrison Lik Nang Lau, Nabilah Kamaliah Mustaffa, Nur Azreena Idris

Abstract:

The use of biolubricant has gained its popularity over the last decade. Base stock produced using methyl ester and trimethylolethane (TME) can be potentially used for biolubricant production due to its biodegradability, non-toxicity and good thermal stability. The synthesis of biolubricant base stock e.g. triester (TE) via transesterification of palm methyl ester and TME in the presence of sodium methoxide as the catalyst was conducted. Factors influencing the reaction conditions were investigated including reaction time, temperature and pressure. The palm-based biolubricant base stock produced was analysed for its monoester (ME), diester (DE) and TE contents using gas chromatography as well as its lubricating properties such as viscosity, viscosity index, oxidation stability, and density. The resulting base stock containing 90 wt% TE was successfully synthesized.

Keywords: biolubricant, methyl ester, triester transesterification, lubricating properties

Procedia PDF Downloads 445