Search results for: aerosol extinction optical depth
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5027

Search results for: aerosol extinction optical depth

4457 Spectroscopic Characterization of Indium-Tin Laser Ablated Plasma

Authors: Muhammad Hanif, Muhammad Salik

Abstract:

In the present research work we present the optical emission studies of the Indium (In)-Tin (Sn) plasma produced by the first (1064 nm) harmonic of an Nd: YAG nanosecond pulsed laser. The experimentally observed line profiles of neutral Indium (InI) and Tin (SnI) are used to extract the electron temperature (Te) using the Boltzmann plot method. Whereas, the electron number density (Ne) has been determined from the Stark broadening line profile method. The Te is calculated by varying the distance from the target surface along the line of propagation of plasma plume and also by varying the laser irradiance. Beside we have studied the variation of Ne as a function of laser irradiance as well as its variation with distance from the target surface.

Keywords: indium-tin plasma, laser ablation, optical emission spectroscopy, electron temperature, electron number density

Procedia PDF Downloads 525
4456 Overview of Fiber Optic Gyroscopes as Ring Laser Gyros and Fiber Optic Gyros and the Comparison Between Them

Authors: M. Abdo, Mohamed Shalaby

Abstract:

A key development in the field of inertial sensors, fiber-optic gyroscopes (FOGs) are currently thought to be a competitive alternative to mechanical gyroscopes for inertial navigation and control applications. For the past few years, research and development efforts have been conducted all around the world using the FOG as a crucial sensor for high-accuracy inertial navigation systems. The main fundamentals of optical gyros were covered in this essay, followed by discussions of the main types of optical gyros and fiber optic gyroscopes and ring laser gyroscopes and comparisons between them. We also discussed different types of fiber optic gyros, including interferometric, resonator, and Brillion fiber optic gyroscopes.

Keywords: mechanical gyros, ring laser gyros, interferometric finer optic gyros, Resonator fiber optic gyros

Procedia PDF Downloads 70
4455 Dynamics of Mach Zehnder Modulator in Open and Closed Loop Bias Condition

Authors: Ramonika Sengupta, Stuti Kachhwaha, Asha Adhiya, K. Satya Raja Sekhar, Rajwinder Kaur

Abstract:

Numerous efforts have been done in the past decade to develop the methods of secure communication that are free from interception and eavesdropping. In fiber optic communication, chaotic optical carrier signals are used for data encryption in secure data transmission. Mach-Zehnder Modulators (MZM) are the key components for generating the chaotic signals to be used as optical carriers. This paper presents the dynamics of a lithium niobate MZM modulator under various biasing conditions. The chaotic fluctuations of the intensity of a laser diode have been generated using the electro-optic MZM modulator operating in a highly nonlinear regime. The modulator is driven in closed loop by its own output at an earlier time. When used as an electro-optic oscillator employing delayed feedback, the MZM displays a wide range of output waveforms of varying complexity. The dynamical behavior of the system ranges from periodic to nonlinear oscillations. The nonlinearity displayed by the system is reproducible and is easily controllable. In this paper, we demonstrate a wide variety of optical signals generated by MZM using easily controllable device parameters in both open and close loop bias conditions.

Keywords: chaotic carrier, fiber optic communication, Mach-Zehnder modulator, secure data transmission

Procedia PDF Downloads 267
4454 Ab initio Simulation of Y2O3 -Doped Cerium Using Heyd–Scuseria–Ernzerhof HSE Hybrid Functional and DFT+U Approaches

Authors: M. Taibeche, L. Guerbous, M. Kechouane, R. Nedjar, T. Zergoug

Abstract:

It is known that Y2O3 Material is the most important among the sesquioxides within the general class of refractory ceramics. Indeed, this compound has many applications such as sintering optical windows, components for rare-earth doped lasers as well as inorganic scintillators in the detection scintillation. In particular Eu2+ and Ce3+ are favored dopants in many the scintillators due to its allowed optical 5d-4f transition. In this work, we present new results concerning structural and electronic properties of Ce-doped Y2O3, investigated by density functional theory (DFT), using the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional and DFT+U two approaches. When, we compared the results from the two methods we obtain a good agreement available experimental data. Furthermore, the effect of cerium on the material has also been studied and discussed in the same framework.

Keywords: DFT, vienne ab initio simulation packages, scintillators, Heyd–Scuseria–Ernzerhof (HSE) hybrid functional

Procedia PDF Downloads 510
4453 Structural and Optical Characterization of Silica@PbS Core–Shell Nanoparticles

Authors: A. Pourahmad, Sh. Gharipour

Abstract:

The present work describes the preparation and characterization of nanosized SiO2@PbS core-shell particles by using a simple wet chemical route. This method utilizes silica spheres formation followed by successive ionic layer adsorption and reaction method assisted lead sulphide shell layer formation. The final product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis spectroscopic, infrared spectroscopy (IR) and transmission electron microscopy (TEM) experiments. The morphological studies revealed the uniformity in size distribution with core size of 250 nm and shell thickness of 18 nm. The electron microscopic images also indicate the irregular morphology of lead sulphide shell layer. The structural studies indicate the face-centered cubic system of PbS shell with no other trace for impurities in the crystal structure.

Keywords: core-shell, nanostructure, semiconductor, optical property, XRD

Procedia PDF Downloads 295
4452 Appropriate Depth of Needle Insertion during Rhomboid Major Trigger Point Block

Authors: Seongho Jang

Abstract:

Objective: To investigate an appropriate depth of needle insertion during trigger point injection into the rhomboid major muscle. Methods: Sixty-two patients who visited our department with shoulder or upper back pain participated in this study. The distance between the skin and the rhomboid major muscle (SM) and the distance between the skin and rib (SB) were measured using ultrasonography. The subjects were divided into 3 groups according to BMI: BMI less than 23 kg/m2 (underweight or normal group); 23 kg/m2 or more to less than 25 kg/m2 (overweight group); and 25 kg/m2 or more (obese group). The mean ±standard deviation (SD) of SM and SB of each group were calculated. A range between mean+1 SD of SM and the mean-1 SD of SB was defined as a safe margin. Results: The underweight or normal group’s SM, SB, and the safe margin were 1.2±0.2, 2.1±0.4, and 1.4 to 1.7 cm, respectively. The overweight group’s SM and SB were 1.4±0.2 and 2.4±0.9 cm, respectively. The safe margin could not be calculated for this group. The obese group’s SM, SB, and the safe margin were 1.8±0.3, 2.7±0.5, and 2.1 to 2.2 cm, respectively. Conclusion: This study will help us to set the standard depth of safe needle insertion into the rhomboid major muscle in an effective manner without causing any complications.

Keywords: pneumothorax, rhomboid major muscle, trigger point injection, ultrasound

Procedia PDF Downloads 286
4451 Simulation Analysis of Wavelength/Time/Space Codes Using CSRZ and DPSK-RZ Formats for Fiber-Optic CDMA Systems

Authors: Jaswinder Singh

Abstract:

In this paper, comparative analysis is carried out to study the performance of wavelength/time/space optical CDMA codes using two well-known formats; those are CSRZ and DPSK-RZ using RSoft’s OptSIM. The analysis is carried out under the real-like scenario considering the presence of various non-linear effects such as XPM, SPM, SRS, SBS and FWM. Fiber dispersion and the multiple access interference are also considered. The codes used in this analysis are 3-D wavelength/time/space codes. These are converted into 2-D wavelength-time codes so that their requirement of space couplers and fiber ribbons is eliminated. Under the conditions simulated, this is found that CSRZ performs better than DPSK-RZ for fiber-optic CDMA applications.

Keywords: Optical CDMA, Multiple access interference (MAI), CSRZ, DPSK-RZ

Procedia PDF Downloads 642
4450 Predicting Depth of Penetration in Abrasive Waterjet Cutting of Polycrystalline Ceramics

Authors: S. Srinivas, N. Ramesh Babu

Abstract:

This paper presents a model to predict the depth of penetration in polycrystalline ceramic material cut by abrasive waterjet. The proposed model considered the interaction of cylindrical jet with target material in upper region and neglected the role of threshold velocity in lower region. The results predicted with the proposed model are validated with the experimental results obtained with Silicon Carbide (SiC) blocks.

Keywords: abrasive waterjet cutting, analytical modeling, ceramics, micro-cutting and inter-grannular cracking

Procedia PDF Downloads 301
4449 Thermal Conductivity and Optical Absorption of GaAsPN/GaP for Tandem Solar Cells: Effect of Rapid Thermal Annealing

Authors: S. Ilahi, S. Almosni, F. Chouchene, M. Perrin, K. Zelazna, N. Yacoubi, R. Kudraweic, P. Rale, L. Lombez, J. F. Guillemoles, O. Durand, C. Cornet

Abstract:

Great efforts have been dedicated to obtain high quality of GaAsPN. The properties of GaAsPN have played a great part on the development of solar cells devices based in Si substrate. The incorporation of N in GaAsPN that having a band gap around of 1.7 eV is of special interest in view of growing in Si substrate. In fact, post-growth and rapid thermal annealing (RTA) could be an effective way to improve the quality of the layer. Then, the influence of growth conditions and post-growth annealing on optical and thermal parameters is considered. We have used Photothermal deflection spectroscopy PDS to investigate the impact of rapid thermal annealing on thermal and optical properties of GaAsPN. In fact, the principle of the PDS consists to illuminate the sample by a modulated monochromatic light beam. Then, the absorbed energy is converted into heat through the nonradiative recombination process. The generated thermal wave propagates into the sample and surrounding media creating a refractive-index gradient giving rise to the deflection of a laser probe beam skimming the sample surface. The incident light is assumed to be uniform, and only the sample absorbs the light. In conclusion, the results are promising revealing an improvement in absorption coefficient and thermal conductivity.

Keywords: GaAsPN absorber, photothermal defelction technique PDS, photonics on silicon, thermal conductivity

Procedia PDF Downloads 350
4448 Impact of Glycation on Proteomics of Human Serum Albumin: Relevance to Diabetes Associated Pathologies

Authors: Alok Raghav, Jamal Ahmad

Abstract:

Background: Serum albumin glycation and advanced glycation end products (AGE) formation correlates in diabetes and its associated complications. Extensive modified human serum albumin is used to study the biochemical, electrochemical and functional properties in hyperglycemic environment with relevance to diabetes. We evaluate Spectroscopic, side chain modifications, amino acid analysis, biochemical and functional group properties in four glucose modified samples. Methods: A series four human serum albumin samples modified with glucose was characterized in terms of amino acid analysis, spectroscopic properties and side chain modifications. The diagnostic technique employed incorporates UV Spectroscopy, Fluorescence Spectroscopy, biochemical assays for side chain modifications, amino acid estimations, electrochemical and optical characterstic of glycated albumin. Conclusion: Glucose modified human serum albumin confers AGEs formation alters biochemical, electrochemical, optical, and functional property that depend on the reactivity of glucose and its concentration used for in-vitro glycation. A biochemical, electrochemical, optical, and functional characterization of modified albumin in-vitro produced AGE product that will be useful to interpret the complications and pathophysiological significance in diabetes.

Keywords: human serum albumin, glycated albumin, adavanced glycation end products, associated pathologies

Procedia PDF Downloads 396
4447 Theoretical Study of Structural, Magnetic, and Magneto-Optical Properties of Ultrathin Films of Fe/Cu (001)

Authors: Mebarek Boukelkoul, Abdelhalim Haroun

Abstract:

By means of the first principle calculation, we have investigated the structural, magnetic and magneto-optical properties of the ultra-thin films of Fen/Cu(001) with (n=1, 2, 3). We adopted a relativistic approach using DFT theorem with local spin density approximation (LSDA). The electronic structure is performed within the framework of the Spin-Polarized Relativistic (SPR) Linear Muffin-Tin Orbitals (LMTO) with the Atomic Sphere Approximation (ASA) method. During the variational principle, the crystal wave function is expressed as a linear combination of the Bloch sums of the so-called relativistic muffin-tin orbitals centered on the atomic sites. The crystalline structure is calculated after an atomic relaxation process using the optimization of the total energy with respect to the atomic interplane distance. A body-centered tetragonal (BCT) pseudomorphic crystalline structure with a tetragonality ratio c/a larger than unity is found. The magnetic behaviour is characterized by an enhanced magnetic moment and a ferromagnetic interplane coupling. The polar magneto-optical Kerr effect spectra are given over a photon energy range extended to 15eV and the microscopic origin of the most interesting features are interpreted by interband transitions. Unlike thin layers, the anisotropy in the ultra-thin films is characterized by a perpendicular magnetization which is perpendicular to the film plane.

Keywords: ultrathin films, magnetism, magneto-optics, pseudomorphic structure

Procedia PDF Downloads 329
4446 Best Season for Seismic Survey in Zaria Area, Nigeria: Data Quality and Implications

Authors: Ibe O. Stephen, Egwuonwu N. Gabriel

Abstract:

Variations in seismic P-wave velocity and depth resolution resulting from variations in subsurface water saturation were investigated in this study in order to determine the season of the year that gives the most reliable P-wave velocity and depth resolution of the subsurface in Zaria Area, Nigeria. A 2D seismic refraction tomography technique involving an ABEM Terraloc MK6 Seismograph was used to collect data across a borehole of standard log with the centre of the spread situated at the borehole site. Using the same parameters this procedure was repeated along the same spread for at least once in a month for at least eight months in a year for four years. The choice for each survey time depended on when there was significant variation in rainfall data. The seismic data collected were tomographically inverted. The results suggested that the average P-wave velocity ranges of the subsurface in the area are generally higher when the ground was wet than when it was dry. The results also suggested that the overburden of about 9.0 m in thickness, the weathered basement of about 14.0 m in thickness and the fractured basement at a depth of about 23.0 m best fitted the borehole log. This best fit was consistently obtained in the months between March and May when the average total rainfall was about 44.8 mm in the area. The results had also shown that the velocity ranges in both dry and wet formations fall within the standard ranges as provided in literature. In terms of velocity, this study has not in any way clearly distinguished the quality of the results of the seismic data obtained when the subsurface was dry from the results of the data collected when the subsurface was wet. It was concluded that for more detailed and reliable seismic studies in Zaria Area and its environs with similar climatic condition, the surveys are best conducted between March and May. The most reliable seismic data for depth resolution are most likely obtainable in the area between March and May.

Keywords: best season, variations in depth resolution, variations in P-wave velocity, variations in subsurface water saturation, Zaria area

Procedia PDF Downloads 284
4445 Effective Training System for Riding Posture Using Depth and Inertial Sensors

Authors: Sangseung Kang, Kyekyung Kim, Suyoung Chi

Abstract:

A good posture is the most important factor in riding. In this paper, we present an effective posture correction system for a riding simulator environment to provide position error detection and customized training functions. The proposed system detects and analyzes the rider's posture using depth data and inertial sensing data. Our experiments show that including these functions will help users improve their seat for a riding.

Keywords: posture correction, posture training, riding posture, riding simulator

Procedia PDF Downloads 471
4444 Detailed Analysis of Multi-Mode Optical Fiber Infrastructures for Data Centers

Authors: Matej Komanec, Jan Bohata, Stanislav Zvanovec, Tomas Nemecek, Jan Broucek, Josef Beran

Abstract:

With the exponential growth of social networks, video streaming and increasing demands on data rates, the number of newly built data centers rises proportionately. The data centers, however, have to adjust to the rapidly increased amount of data that has to be processed. For this purpose, multi-mode (MM) fiber based infrastructures are often employed. It stems from the fact, the connections in data centers are typically realized within a short distance, and the application of MM fibers and components considerably reduces costs. On the other hand, the usage of MM components brings specific requirements for installation service conditions. Moreover, it has to be taken into account that MM fiber components have a higher production tolerance for parameters like core and cladding diameters, eccentricity, etc. Due to the high demands for the reliability of data center components, the determination of properly excited optical field inside the MM fiber core belongs to the key parameters while designing such an MM optical system architecture. Appropriately excited mode field of the MM fiber provides optimal power budget in connections, leads to the decrease of insertion losses (IL) and achieves effective modal bandwidth (EMB). The main parameter, in this case, is the encircled flux (EF), which should be properly defined for variable optical sources and consequent different mode-field distribution. In this paper, we present detailed investigation and measurements of the mode field distribution for short MM links purposed in particular for data centers with the emphasis on reliability and safety. These measurements are essential for large MM network design. The various scenarios, containing different fibers and connectors, were tested in terms of IL and mode-field distribution to reveal potential challenges. Furthermore, we focused on estimation of particular defects and errors, which can realistically occur like eccentricity, connector shifting or dust, were simulated and measured, and their dependence to EF statistics and functionality of data center infrastructure was evaluated. The experimental tests were performed at two wavelengths, commonly used in MM networks, of 850 nm and 1310 nm to verify EF statistics. Finally, we provide recommendations for data center systems and networks, using OM3 and OM4 MM fiber connections.

Keywords: optical fiber, multi-mode, data centers, encircled flux

Procedia PDF Downloads 373
4443 The Effect of the Side-Weir Crest Height to Scour in Clay-Sand Mixed Sediments

Authors: F. A. Saracoglu Varol, H. Agaccıoglu

Abstract:

Experimental studies to investigate the depth of the scour conducted at a side-weir intersection located at the 1800 curved flume which located Hydraulic Laboratory of Yıldız Technical University, Istanbul, Turkey. Side weirs were located at the middle of the straight part of the main channel. Three different lengths (25, 40 and 50 cm) and three different weir crest height (7, 10 and 12 cm) of the side weir placed on the side weir station. There is no scour when the material is only kaolin. Therefore, the cohesive bed was prepared by properly mixing clay material (kaolin) with 31% sand in all experiments. Following 24h consolidation time, in order to observe the effect of flow intensity on the scour depth, experiments were carried out for five different upstream Froude numbers in the range of 0.33-0.81. As a result of this study the relation between scour depth and upstream flow intensity as a function of time have been established. The longitudinal velocities decreased along the side weir; towards the downstream due to overflow over the side-weirs. At the beginning, the scour depth increases rapidly with time and then asymptotically approached constant values in all experiments for all side weir dimensions as in non-cohesive sediment. Thus, the scour depth reached equilibrium conditions. Time to equilibrium depends on the approach flow intensity and the dimensions of side weirs. For different heights of the weir crest, dimensionless scour depths increased with increasing upstream Froude number. Equilibrium scour depths which formed 7 cm side-weir crest height were obtained higher than that of the 12 cm side-weir crest height. This means when side-weir crest height increased equilibrium scour depths decreased. Although the upstream side of the scour hole is almost vertical, the downstream side of the hole is inclined.

Keywords: clay-sand mixed sediments, scour, side weir, hydraulic structures

Procedia PDF Downloads 301
4442 Iron Doped Biomaterial Calcium Borate: Synthesis and Characterization

Authors: G. Çelik Gül, F. Kurtuluş

Abstract:

Colemanite is the most common borate mineral, and the main source of the boron required by plants, human, and earth. Transition metals exhibit optical and physical properties such as; non-linear optical character, structural diversity, thermal stability, long cycle life and luminescent radiation. The doping of colemanite with a transition metal, bring it very interesting and attractive properties which make them applicable in industry. Iron doped calcium borate was synthesized by conventional solid state method at 1200 °C for 12 h with a systematic pathway. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS) were used to characterize structural and morphological properties. Also, thermal properties were recorded by thermogravimetric-differential thermal analysis (TG/DTA). 

Keywords: colemanite, conventional synthesis, powder x-ray diffraction, borates

Procedia PDF Downloads 328
4441 Exposure to Radio Frequency Waves of Mobile Phone and Temperature Changes of Brain Tissue

Authors: Farhad Forouharmajd, Hossein Ebrahimi, Siamak Pourabdian

Abstract:

Introduction: Prevalent use of cell phones (mobile phones) has led to increasing worries about the effect of radiofrequency waves on the physiology of human body. This study was done to determine different reactions of the temperatures in different depths of brain tissue in confronting with radiofrequency waves of cell phones. Methodology: This study was an empirical research. A cow's brain tissue was placed in a compartment and the effects of radiofrequency waves of the cell phone was analyzed during confrontation and after confrontation, in three different depths of 2, 12, and 22 mm of the tissue, in 4 mm and 4 cm distances of the tissue to a cell phone, for 15 min. Lutron thermometer was used to measure the tissue temperatures. Data analysis was done by Lutron software. Findings: The rate of increasing the temperature at the depth of 22 mm was higher than 2 mm and 12mm depths, during confrontation of the brain tissue at the distance of 4 mm with the cell phone, such that the tissue temperatures at 2, 12, and 22 mm depths increased by 0.29 ˚C, 0.31 ˚C, and 0.37 ˚C, respectively, relative to the base temperature (tissue temperature before confrontation). Moreover, the temperature of brain tissue at the distance of 4 cm by increasing the tissue depth was more than other depths. Increasing the tissue temperature also existed by increasing the brain tissue depth after the confrontation with the cell phone. The temperature of the 22 mm depth increased with higher speed at the time confrontation. Conclusion: Not only radiofrequency waves of cell phones increased the tissue temperature in all the depths of the brain tissue, but also the temperature due to radiofrequency waves of the cell phone was more at the depths higher than 22 mm of the tissue. In fact, the thermal effect of radiofrequency waves was higher in higher depths.

Keywords: mobile phone, radio frequency waves, brain tissue, temperature

Procedia PDF Downloads 199
4440 Distorted Document Images Dataset for Text Detection and Recognition

Authors: Ilia Zharikov, Philipp Nikitin, Ilia Vasiliev, Vladimir Dokholyan

Abstract:

With the increasing popularity of document analysis and recognition systems, text detection (TD) and optical character recognition (OCR) in document images become challenging tasks. However, according to our best knowledge, no publicly available datasets for these particular problems exist. In this paper, we introduce a Distorted Document Images dataset (DDI-100) and provide a detailed analysis of the DDI-100 in its current state. To create the dataset we collected 7000 unique document pages, and extend it by applying different types of distortions and geometric transformations. In total, DDI-100 contains more than 100,000 document images together with binary text masks, text and character locations in terms of bounding boxes. We also present an analysis of several state-of-the-art TD and OCR approaches on the presented dataset. Lastly, we demonstrate the usefulness of DDI-100 to improve accuracy and stability of the considered TD and OCR models.

Keywords: document analysis, open dataset, optical character recognition, text detection

Procedia PDF Downloads 166
4439 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging

Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati

Abstract:

Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.

Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization

Procedia PDF Downloads 71
4438 Setting Ground for Improvement of Knowledge Managament System in the Educational Organization

Authors: Mladen Djuric, Ivan Janicijevic, Sasa Lazarevic

Abstract:

One of the organizational issues is how to develop and shape decision making and knowledge management systems which will continually avoid traps of both paralyses by analyses“ and extinction by instinct“, the concepts that are a kind of tolerant limits anti-patterns which define what we can call decision making and knowledge management patterns control zone. This paper discusses potentials for development of a core base for recognizing, capturing, and analyzing anti-patterns in the educational organization, thus creating a space for improving decision making and knowledge management processes in education.

Keywords: anti-patterns, decision making, education, knowledge management

Procedia PDF Downloads 626
4437 Synthesis and Characterization of Some Mono Chloro-S-Triazine Vinyl Sulphone Reactive Dyes

Authors: Nuradeen Abdullahi Nadabo, Kasali Adewale Bello, Chindo Istifanus

Abstract:

A series of ten bi functional mono-chloro-s-triazine vinyl sulphone reactive dyes were synthesized based on H-acid with varied substituents coded as (BRD). These dyes were characterized by IR spectroscopy. The results revealed an incorporation of various substituents. The visible absorption spectra of these dyes were examined in various solvents and results shows positive and negative salvatochromism as the solvent polarity; changes, melting point, percentage yield and molar extinction co-efficient of these dyes were also evaluated and the results obtained are within a reasonable range acceptable for commercial dyeing.

Keywords: bifunctional, characterization, reactive dyes, synthesis

Procedia PDF Downloads 428
4436 Design and Development of Optical Sensor Based Ground Reaction Force Measurement Platform for GAIT and Geriatric Studies

Authors: K. Chethana, A. S. Guru Prasad, S. N. Omkar, B. Vadiraj, S. Asokan

Abstract:

This paper describes an ab-initio design, development and calibration results of an Optical Sensor Ground Reaction Force Measurement Platform (OSGRFP) for gait and geriatric studies. The developed system employs an array of FBG sensors to measure the respective ground reaction forces from all three axes (X, Y and Z), which are perpendicular to each other. The novelty of this work is two folded. One is in its uniqueness to resolve the tri axial resultant forces during the stance in to the respective pure axis loads and the other is the applicability of inherently advantageous FBG sensors which are most suitable for biomechanical instrumentation. To validate the response of the FBG sensors installed in OSGRFP and to measure the cross sensitivity of the force applied in other directions, load sensors with indicators are used. Further in this work, relevant mathematical formulations are presented for extracting respective ground reaction forces from wavelength shifts/strain of FBG sensors on the OSGRFP. The result of this device has implications in understanding the foot function, identifying issues in gait cycle and measuring discrepancies between left and right foot. The device also provides a method to quantify and compare relative postural stability of different subjects under test, which has implications in post surgical rehabilitation, geriatrics and optimizing training protocols for sports personnel.

Keywords: balance and stability, gait analysis, FBG applications, optical sensor ground reaction force platform

Procedia PDF Downloads 400
4435 Detecting the Blood of Femoral and Carotid Artery of Swine Using Photoacoustic Tomography in-vivo

Authors: M. Y. Lee, S. H. Park, S. M. Yu, H. S. Jo, C. G. Song

Abstract:

Photoacoustic imaging is the imaging technology that combines the optical imaging with ultrasound. It also provides the high contrast and resolution due to optical and ultrasound imaging, respectively. For these reasons, many studies take experiment in order to apply this method for many diagnoses. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer. In this study, we conduct the experiment using swine and detect the blood of carotid artery and femoral artery. We measured the blood of femoral and carotid artery of swine and reconstructed the image using 950nm due to the HbO₂ absorption coefficient. The photoacoustic image is overlaid with ultrasound image in order to match the position. In blood of artery, major composition of blood is HbO₂. In this result, we can measure the blood of artery.

Keywords: photoacoustic tomography, swine artery, carotid artery, femoral artery

Procedia PDF Downloads 248
4434 The Review of Permanent Downhole Monitoring System

Authors: Jing Hu, Dong Yang

Abstract:

With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.

Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield

Procedia PDF Downloads 71
4433 Cd1−xMnxSe Thin Films Preparation by Cbd: Aspect on Optical and Electrical Properties

Authors: Jaiprakash Dargad

Abstract:

CdMnSe dilute semiconductor or semimagnetic semiconductors have become the focus of intense research due to their interesting combination of magnetic and semiconducting properties, and are employed in a variety of devices including solar cells, gas sensors etc. A series of thin films of this material, Cd1−xMnxSe (0 ≤ x ≤ 0.5), were therefore synthesized onto precleaned amorphous glass substrates using a solution growth technique. The sources of cadmium (Cd2+) and manganese (Mn2+) were aqueous solutions of cadmium sulphate and manganese sulphate, and selenium (Se2−) was extracted from a reflux of sodium selenosulphite. The different deposition parameters such as temperature, time of deposition, speed of mechanical churning, pH of the reaction mixture etc were optimized to yield good quality deposits. The as-grown samples were thin, relatively uniform, smooth and tightly adherent to the substrate support. The colour of the deposits changed from deep red-orange to yellowish-orange as the composition parameter, x, was varied from 0 to 0.5. The terminal layer thickness decreased with increasing value of, x. The optical energy gap decreased from 1.84 eV to 1.34 eV for the change of x from 0 to 0.5. The coefficient of optical absorption is of the order of 10-4 - 10-5 cm−1 and the type of transition (m = 0.5) is of the band-to-band direct type. The dc electrical conductivities were measured at room temperature and in the temperature range 300 K - 500 K. It was observed that the room temperature electrical conductivity increased with the composition parameter x up to 0.1, gradually decreasing thereafter. The thermo power measurements showed n-type conduction in these films.

Keywords: dilute semiconductor, reflux, CBD, thin film

Procedia PDF Downloads 227
4432 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity

Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj

Abstract:

This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.

Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares

Procedia PDF Downloads 68
4431 Unconventional Dating of Old Peepal Tree of Chandigarh (India) Using Optically Stimulated Luminescence

Authors: Rita Rani, Ramesh Kumar

Abstract:

The intend of the current study is to date an old grand Peepal tree that is still alive. The tree is situated in Kalibard village, Sector 9, Chandigarh (India). Due to its huge structure, it has got the status of ‘Heritage tree.’ Optically Stimulated Luminescence of sediments beneath the roots is used to determine the age of the tree. Optical dating is preferred over conventional dating methods due to more precession. The methodology includes OSL of quartz grain using SAR protocol for accumulated dose measurement. The age determination of an alive tree using sedimentary quartz is in close agreement with the approximated age provided by the related agency. This is the first attempt at using optically stimulated luminescence in the age determination of alive trees in this region. The study concludes that the Luminescence dating of alive trees is the nondestructive and more precise method.

Keywords: luminescence, dose rate, optical dating, sediments

Procedia PDF Downloads 172
4430 Comparison of Corneal Curvature Measurements Conducted with Tomey AO-2000® and the Current Standard Biometer IOL Master®

Authors: Mohd Radzi Hilmi, Khairidzan Mohd Kamal, Che Azemin Mohd Zulfaezal, Ariffin Azrin Esmady

Abstract:

Purpose: Corneal curvature (CC) is an important anterior segment parameter. This study compared CC measurements conducted with two optical devices in phakic eyes. Methods: Sixty phakic eyes of 30 patients were enrolled in this study. CC was measured three times with the optical biometer and topography-keratometer Tomey AO-2000 (Tomey Corporation, Nagoya, Japan), then with the standard partial optical coherence interferometry (PCI) IOL Master (Carl Zeiss Meditec, Dublin, CA) and data were statistically analysed. Results: The measurements resulted in a mean CC of 43.86 ± 1.57 D with Tomey AO-2000 and 43.84 ± 1.55 D with IOL Master. Distribution of data is normal, and no significance difference in CC values was detected (P = 0.952) between the two devices. Correlation between CC measurements was highly significant (r = 0. 99; P < 0.0001). The mean difference of CC values between devices was 0.017 D and 95% limit of agreement was -0.088 to 0.12. Duration taken for measurements with the standard biometer IOL Master was longer (55.17 ± 2.24 seconds) than with Tomey AO-2000 (39.88 ± 2.38 seconds) in automatic mode. Duration of manual measurement with Tomey AO-2000 in manual mode was the shortest (28.57 ± 2.71 seconds). Conclusion: In phakic eyes, CC measured with Tomey AO-2000 and IOL Master showed similar values, and high correlation was observed between these two devices. This shows that both devices can be used interchangeably. Tomey AO-2000 is better in terms of faster to operate and has its own topography systems.

Keywords: corneal topography, corneal curvature, IOL Master, Tomey AO2000

Procedia PDF Downloads 381
4429 Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain

Authors: K. Khelil, H. Ammar, K. Saouchi

Abstract:

Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings.

Keywords: Bragg wavelength, coupled mode theory, optical fiber, temperature measurement

Procedia PDF Downloads 492
4428 Pilot-Assisted Direct-Current Biased Optical Orthogonal Frequency Division Multiplexing Visible Light Communication System

Authors: Ayad A. Abdulkafi, Shahir F. Nawaf, Mohammed K. Hussein, Ibrahim K. Sileh, Fouad A. Abdulkafi

Abstract:

Visible light communication (VLC) is a new approach of optical wireless communication proposed to support the congested radio frequency (RF) spectrum. VLC systems are combined with orthogonal frequency division multiplexing (OFDM) to achieve high rate transmission and high spectral efficiency. In this paper, we investigate the Pilot-Assisted Channel Estimation for DC biased Optical OFDM (PACE-DCO-OFDM) systems to reduce the effects of the distortion on the transmitted signal. Least-square (LS) and linear minimum mean-squared error (LMMSE) estimators are implemented in MATLAB/Simulink to enhance the bit-error-rate (BER) of PACE-DCO-OFDM. Results show that DCO-OFDM system based on PACE scheme has achieved better BER performance compared to conventional system without pilot assisted channel estimation. Simulation results show that the proposed PACE-DCO-OFDM based on LMMSE algorithm can more accurately estimate the channel and achieves better BER performance when compared to the LS based PACE-DCO-OFDM and the traditional system without PACE. For the same signal to noise ratio (SNR) of 25 dB, the achieved BER is about 5×10-4 for LMMSE-PACE and 4.2×10-3 with LS-PACE while it is about 2×10-1 for system without PACE scheme.

Keywords: channel estimation, OFDM, pilot-assist, VLC

Procedia PDF Downloads 174