Search results for: ultrasonic machining
579 Capability Prediction of Machining Processes Based on Uncertainty Analysis
Authors: Hamed Afrasiab, Saeed Khodaygan
Abstract:
Prediction of machining process capability in the design stage plays a key role to reach the precision design and manufacturing of mechanical products. Inaccuracies in machining process lead to errors in position and orientation of machined features on the part, and strongly affect the process capability in the final quality of the product. In this paper, an efficient systematic approach is given to investigate the machining errors to predict the manufacturing errors of the parts and capability prediction of corresponding machining processes. A mathematical formulation of fixture locators modeling is presented to establish the relationship between the part errors and the related sources. Based on this method, the final machining errors of the part can be accurately estimated by relating them to the combined dimensional and geometric tolerances of the workpiece – fixture system. This method is developed for uncertainty analysis based on the Worst Case and statistical approaches. The application of the presented method is illustrated through presenting an example and the computational results are compared with the Monte Carlo simulation results.Keywords: process capability, machining error, dimensional and geometrical tolerances, uncertainty analysis
Procedia PDF Downloads 307578 Ultrasonic Densitometry of Bone Tissue of Jaws and Phalanges of Fingers in Patients after Orthodontic Treatment
Authors: Margarita Belousova
Abstract:
The ultrasonic densitometry (RU patent № 2541038) was used to assess the density of the bone tissue in the jaws of patients after orthodontic treatment. In addition, by ultrasonic densitometry assessed the state of the bone tissue in the region III phalanges of middle fingers in above mentioned patients. A comparative study was carried out in healthy volunteers of same age. It was established a significant decrease of the ultrasound wave speed and bone mineral density after active period of orthodontic treatment. Statistically, significant differences in bone mineral density of the fingers by ultrasonic densitometry in both groups of patients were not detected.Keywords: intraoral ultrasonic densitometry, bone tissue density of jaws, bone tissue density of phalanges of fingers, orthodontic treatment
Procedia PDF Downloads 276577 Ultra-High Precision Diamond Turning of Infrared Lenses
Authors: Khaled Abou-El-Hossein
Abstract:
The presentation will address the features of two IR convex lenses that have been manufactured using an ultra-high precision machining centre based on single-point diamond turning. The lenses are made from silicon and germanium with a radius of curvature of 500 mm. Because of the brittle nature of silicon and germanium, machining parameters were selected in such a way that ductile regime was achieved. The cutting speed was 800 rpm while the feed rate and depth cut were 20 mm/min and 20 um, respectively. Although both materials comprise a mono-crystalline microstructure and are quite similar in terms of optical properties, machining of silicon was accompanied with more difficulties in terms of form accuracy compared to germanium machining. The P-V error of the silicon profile was 0.222 um while it was only 0.055 um for the germanium lens. This could be attributed to the accelerated wear that takes place on the tool edge when turning mono-crystalline silicon. Currently, we are using other ranges of the machining parameters in order to determine their optimal range that could yield satisfactory performance in terms of form accuracy when fabricating silicon lenses.Keywords: diamond turning, optical surfaces, precision machining, surface roughness
Procedia PDF Downloads 317576 Effect of the Tooling Conditions on the Machining Stability of a Milling Machine
Authors: Jui-Pui Hung, Yong-Run Chen, Wei-Cheng Shih, Shen-He Tsui, Kung-Da Wu
Abstract:
This paper presents the effect on the tooling conditions on the machining stabilities of a milling machine tool. The machining stability was evaluated in different feeding direction in the X-Y plane, which was referred as the orientation-dependent machining stability. According to the machining mechanics, the machining stability was determined by the frequency response function of the cutter. Thus, we first conducted the vibration tests on the spindle tool of the milling machine to assess the tool tip frequency response functions along the principal direction of the machine tool. Then, basing on the orientation dependent stability analysis model proposed in this study, we evaluated the variation of the dynamic characteristics of the spindle tool and the corresponding machining stabilities at a specific feeding direction. Current results demonstrate that the stability boundaries and limited axial cutting depth of a specific cutter were affected to vary when it was fixed in the tool holder with different overhang length. The flute of the cutter also affects the stability boundary. When a two flute cutter was used, the critical cutting depth can be increased by 47 % as compared with the four flute cutter. The results presented in study provide valuable references for the selection of the tooling conditions for achieving high milling performance.Keywords: tooling condition, machining stability, milling machine, chatter
Procedia PDF Downloads 432575 Performance of Non-toxic, Corrosion Resistant, and Lubricious Metalworking Fluids under Machining
Authors: Ajay Pratap Singh Lodhi, Deepak Kumar
Abstract:
Vegetable oil-based environmentally friendly metalworking fluids (MWFs) are formulated. The tribological performance, cytotoxicity, and corrosion resistance of the formulated fluids (FFs) are evaluated and benchmarked with commercial mineral oil-based MWFs (CF). Results show that FFs exhibited better machining characteristics (roughness, cutting forces, and surface morphology) during machining than CF. MTT assay and Live dead cell assay confirm the cytocompatibility nature of the FFs relative to the toxic CF. Electrochemical analysis shows that FFs and CF exhibited comparable corrosion current density.Keywords: corrosion inhibitors, cytotoxicity, machining, MTT assay, Taguchi method, vegetable oil
Procedia PDF Downloads 188574 Vibration Analysis and Optimization Design of Ultrasonic Horn
Authors: Kuen Ming Shu, Ren Kai Ho
Abstract:
Ultrasonic horn has the functions of amplifying amplitude and reducing resonant impedance in ultrasonic system. Its primary function is to amplify deformation or velocity during vibration and focus ultrasonic energy on the small area. It is a crucial component in design of ultrasonic vibration system. There are five common design methods for ultrasonic horns: analytical method, equivalent circuit method, equal mechanical impedance, transfer matrix method, finite element method. In addition, the general optimization design process is to change the geometric parameters to improve a single performance. Therefore, in the general optimization design process, we couldn't find the relation of parameter and objective. However, a good optimization design must be able to establish the relationship between input parameters and output parameters so that the designer can choose between parameters according to different performance objectives and obtain the results of the optimization design. In this study, an ultrasonic horn provided by Maxwide Ultrasonic co., Ltd. was used as the contrast of optimized ultrasonic horn. The ANSYS finite element analysis (FEA) software was used to simulate the distribution of the horn amplitudes and the natural frequency value. The results showed that the frequency for the simulation values and actual measurement values were similar, verifying the accuracy of the simulation values. The ANSYS DesignXplorer was used to perform Response Surface optimization, which could shows the relation of parameter and objective. Therefore, this method can be used to substitute the traditional experience method or the trial-and-error method for design to reduce material costs and design cycles.Keywords: horn, natural frequency, response surface optimization, ultrasonic vibration
Procedia PDF Downloads 117573 Study of Tool Shape during Electrical Discharge Machining of AISI 52100 Steel
Authors: Arminder Singh Walia, Vineet Srivastava, Vivek Jain
Abstract:
In Electrical Discharge Machining (EDM) operations, the workpiece confers to the shape of the tool. Further, the cost of the tool contributes the maximum effect on total operation cost. Therefore, the shape and profile of the tool become highly significant. Thus, in this work, an attempt has been made to study the effect of process parameters on the shape of the tool. Copper has been used as the tool material for the machining of AISI 52100 die steel. The shape of the tool has been evaluated by determining the difference in out of roundness of tool before and after machining. Statistical model has been developed and significant process parameters have been identified which affect the shape of the tool. Optimum process parameters have been identified which minimizes the shape distortion.Keywords: discharge current, flushing pressure, pulse-on time, pulse-off time, out of roundness, electrical discharge machining
Procedia PDF Downloads 287572 Optimizing of the Micro EDM Parameters in Drilling of Titanium Ti-6Al-4V Alloy for Higher Machining Accuracy-Fuzzy Modelling
Authors: Ahmed A. D. Sarhan, Mum Wai Yip, M. Sayuti, Lim Siew Fen
Abstract:
Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy
Procedia PDF Downloads 496571 Effect of Vegetable Oil Based Nanofluids on Machining Performance: An Experimental Investigation
Authors: Krishna Mohana Rao Gurram, R. Padmini, P. Vamsi Krishna
Abstract:
As a part of extensive research for ecologically safe and operator friendly cutting fluids, this paper presents the experimental investigations on the performance of eco-friendly vegetable oil based nanofluids in turning operation. In order to assess the quality of nano cutting fluids used during machining, cutting temperatures, cutting forces and surface roughness under constant cutting conditions are measured. The influence of two types of nanofluids prepared from nano boric acid and CNT particles mixed separately with coconut oil, on machining performance during turning operation is examined. Comparative analysis of the results obtained is done under dry and lubricant environments. Results obtained using cutting fluids prepared from vegetable oil based nanofluids are encouraging and more pronouncing by the application of CCCNT at machining zone. The extent of improvement in reduction of cutting temperatures, main cutting force, tool wear and surface roughness is tracked to be 13%, 37.5%, 44% and 40% respectively by the application of CCCNT compared to dry machining.Keywords: nanoparticles, vegetable oil, machining, MQL, surface roughness
Procedia PDF Downloads 359570 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture
Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju
Abstract:
Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nano cutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.Keywords: economic analysis, machining, minimum quantity lubrication, nanofluid
Procedia PDF Downloads 380569 Optimization of Process Parameters for Rotary Electro Discharge Machining Using EN31 Tool Steel: Present and Future Scope
Authors: Goutam Dubey, Varun Dutta
Abstract:
In the present study, rotary-electro discharge machining of EN31 tool steel has been carried out using a pure copper electrode. Various response variables such as Material Removal Rate (MRR), Tool Wear Rate (TWR), and Machining Rate (MR) have been studied against the selected process variables. The selected process variables were peak current (I), voltage (V), duty cycle, and electrode rotation (N). EN31 Tool Steel is hardened, high carbon steel which increases its hardness and reduces its machinability. Reduced machinability means it not economical to use conventional methods to machine EN31 Tool Steel. So, non-conventional methods play an important role in machining of such materials.Keywords: electric discharge machining, EDM, tool steel, tool wear rate, optimization techniques
Procedia PDF Downloads 204568 A Machining Method of Cross-Shape Nano Channel and Experiments for Silicon Substrate
Authors: Zone-Ching Lin, Hao-Yuan Jheng, Zih-Wun Jhang
Abstract:
The paper innovatively proposes using the concept of specific down force energy (SDFE) and AFM machine to establish a machining method of cross-shape nanochannel on single-crystal silicon substrate. As for machining a cross-shape nanochannel by AFM machine, the paper develop a method of machining cross-shape nanochannel groove at a fixed down force by using SDFE theory and combining the planned cutting path of cross-shape nanochannel up to 5th machining layer it finally achieves a cross-shape nanochannel at a cutting depth of around 20nm. Since there may be standing burr at the machined cross-shape nanochannel edge, the paper uses a smaller down force to cut the edge of the cross-shape nanochannel in order to lower the height of standing burr and converge the height of standing burr at the edge to below 0.54nm as set by the paper. Finally, the paper conducts experiments of machining cross-shape nanochannel groove on single-crystal silicon by AFM probe, and compares the simulation and experimental results. It is proved that this proposed machining method of cross-shape nanochannel is feasible.Keywords: atomic force microscopy (AFM), cross-shape nanochannel, silicon substrate, specific down force energy (SDFE)
Procedia PDF Downloads 375567 Non-Destructing Testing of Sandstones from Unconventional Reservoir in Poland with Use of Ultrasonic Pulse Velocity Technique and X-Ray Computed Microtomography
Authors: Michał Maksimczuk, Łukasz Kaczmarek, Tomasz Wejrzanowski
Abstract:
This study concerns high-resolution X-ray computed microtomography (µCT) and ultrasonic pulse analysis of Cambrian sandstones from a borehole located in the Baltic Sea Coast of northern Poland. µCT and ultrasonic technique are non-destructive methods commonly used to determine the internal structure of reservoir rock sample. The spatial resolution of the µCT images obtained was 27 µm, which enabled the author to create accurate 3-D visualizations of structure geometry and to calculate the ratio of pores volume to the total sample volume. A copper X-ray source filter was used to reduce image artifacts. Furthermore, samples Young’s modulus and Poisson ratio were obtained with use of ultrasonic pulse technique. µCT and ultrasonic pulse technique provide complex information which can be used for explorations and characterization of reservoir rocks.Keywords: elastic parameters, linear absorption coefficient, northern Poland, tight gas
Procedia PDF Downloads 251566 An Ultrasonic Signal Processing System for Tomographic Imaging of Reinforced Concrete Structures
Authors: Edwin Forero-Garcia, Jaime Vitola, Brayan Cardenas, Johan Casagua
Abstract:
This research article presents the integration of electronic and computer systems, which developed an ultrasonic signal processing system that performs the capture, adaptation, and analog-digital conversion to later carry out its processing and visualization. The capture and adaptation of the signal were carried out from the design and implementation of an analog electronic system distributed in stages: 1. Coupling of impedances; 2. Analog filter; 3. Signal amplifier. After the signal conditioning was carried out, the ultrasonic information was digitized using a digital microcontroller to carry out its respective processing. The digital processing of the signals was carried out in MATLAB software for the elaboration of A-Scan, B and D-Scan types of ultrasonic images. Then, advanced processing was performed using the SAFT technique to improve the resolution of the Scan-B-type images. Thus, the information from the ultrasonic images was displayed in a user interface developed in .Net with Visual Studio. For the validation of the system, ultrasonic signals were acquired, and in this way, the non-invasive inspection of the structures was carried out and thus able to identify the existing pathologies in them.Keywords: acquisition, signal processing, ultrasound, SAFT, HMI
Procedia PDF Downloads 107565 Effect of Inclusions in the Ultrasonic Fatigue Endurance of Maraging 300 Steel
Authors: G. M. Dominguez Almaraz, J. A. Ruiz Vilchez, M. A. Sanchez Miranda
Abstract:
Ultrasonic fatigue tests have been carried out in the maraging 300 steel. Experimental results show that fatigue endurance under this modality of testing is closely related to the nature and geometrical properties of inclusions present in this alloy. A model was proposed to correlate the ultrasonic fatigue endurance with the nature and geometrical properties of the crack initiation inclusion. Scanning Electron Microscopy analyses were obtained on the fracture surfaces, in order to assess the crack initiation inclusion and to introduce these parameters in the proposed model, with good agreement for the fatigue life prediction.Keywords: inclusions, ultrasonic fatigue, maraging 300 steel, crack initiation
Procedia PDF Downloads 214564 Ultrasonic Spectroscopy of Polymer Based PVDF-TrFE Composites with CNT Fillers
Authors: J. Belovickis, V. Samulionis, J. Banys, M. V. Silibin, A. V. Solnyshkin, A. V. Sysa
Abstract:
Ferroelectric polymers exhibit good flexibility, processability and low cost of production. Doping of ferroelectric polymers with nanofillers may modify its dielectric, elastic or piezoelectric properties. Carbon nanotubes are one of the ingredients that can improve the mechanical properties of polymer based composites. In this work, we report on both the ultrasonic and the dielectric properties of the copolymer polyvinylidene fluoride/tetrafluoroethylene (P(VDF-TrFE)) of the composition 70/30 mol% with various concentrations of carbon nanotubes (CNT). Experimental study of ultrasonic wave attenuation and velocity in these composites has been performed over wide temperature range (100 K – 410 K) using an ultrasonic automatic pulse-echo tecnique. The temperature dependences of ultrasonic velocity and attenuation showed anomalies attributed to the glass transition and paraelectric-ferroelectric phase transition. Our investigations showed mechanical losses to be dependent on the volume fraction of the CNTs within the composites. The existence of broad hysteresis of the ultrasonic wave attenuation and velocity within the nanocomposites is presented between cooling and heating cycles. By the means of dielectric spectroscopy, it is shown that the dielectric properties may be tuned by varying the volume fraction of the CNT fillers.Keywords: carbon nanotubes, polymer composites, PVDF-TrFE, ultrasonic spectroscopy
Procedia PDF Downloads 341563 Ultrasonic Techniques to Characterize and Monitor Water-in-Oil Emulsion
Authors: E. A. Alshaafi, A. Prakash
Abstract:
Oil-water emulsions are commonly encountered in various industrial operations and at different stages of crude oil production and processing. Emulsions are often difficult to track and treat and can cause a number of costly problems which need to be avoided. The characteristics of the emulsion phase can vary with crude composition and types of impurities present in oil. The objectives of this study are the development of ultrasonic techniques to track and characterize emulsion phase generated during production and cleaning of crude oil. The position of emulsion layer is monitored with the help of ultrasonic probes suitably placed in the vessel. The sensitivity of the technique and its potential has been demonstrated based on extensive testing with different oil samples. The technique is also being developed to monitor emulsion phase characteristics such as stability, composition, and droplet size distribution. The ultrasonic parameters recorded are changes in acoustic velocity, signal attenuation and its frequency spectrum. Emulsion has been prepared with light mineral oil sample and the effects of various factors including mixing speed, temperature, surfactant, and solid particles concentrations have been investigated. The applied frequency for ultrasonic waves has been varied from 1 to 5 MHz to carry out a sensitivity analysis. Emulsion droplet structure is observed with optical microscopy and stability is examined by tracking the changes in ultrasonic parameters with time. A model based on ultrasonic attenuation spectroscopy is being developed and tested to track changes in droplet size distribution with time.Keywords: ultrasonic techniques, emulsion, characterization, droplet size
Procedia PDF Downloads 175562 Study on Residual Stress Measurement of Inconel-718 under Different Lubricating Conditions
Authors: M. Sandeep Kumar, Vasu Velagapudi, A. Venugopal
Abstract:
When machining is carried out on a workpiece, residual stresses are induced in the workpiece due to nonuniform thermal and mechanical loads. These stresses play a vital role in the surface integrity of the final product or the output. Inconel 718 is commonly used in critical structural components of aircraft engines due to its properties at high temperatures. Therefore it is important to keep down the stresses induced due to machining. This can be achieved through proper lubricating conditions. In this work, experiments were carried out to check the influence of the developed nanofluid as cutting fluids on residual stresses developed during the course of machining. The results of MQL/Nanofluids were compared with MQL/Vegetable oil and dry machining lubricating condition. Results indicate the reduction in residual stress with the use of MQL/Nanofluid.Keywords: nanofluids, MQL, residual stress, Inconel-718
Procedia PDF Downloads 261561 Zinc Borate Synthesis Using Hydrozincite and Boric Acid with Ultrasonic Method
Authors: D. S. Vardar, A. S. Kipcak, F. T. Senberber, E. M. Derun, S. Piskin, N. Tugrul
Abstract:
Zinc borate is an important inorganic hydrate borate material, which can be use as a flame retardant agent and corrosion resistance material. This compound can loss its structural water content at higher than 290°C. Due to thermal stability; Zinc Borate can be used as flame reterdant at high temperature process of plastic and gum. In this study, the ultrasonic reaction of zinc borates were studied using hydrozincite (Zn5(CO3)2•(OH)6) and boric acid (H3BO3) raw materials. Before the synthesis raw materials were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Ultrasonic method is a new application on the zinc borate synthesis. The synthesis parameters were set to 90°C reaction temperature and 55 minutes of reaction time, with 1:1, 1:2, 1:3, 1:4 and 1:5 molar ratio of starting materials (Zn5(CO3)2•(OH)6 : H3BO3). After the zinc borate synthesis, the products analyzed by XRD and FT-IR. As a result, optimum molar ratio of 1:5 (Zn5(CO3)2•(OH)6:H3BO3) is determined for the synthesis of zinc borates with ultrasonic method.Keywords: borate, ultrasonic method, zinc borate, zinc borate synthesis
Procedia PDF Downloads 408560 Enhancing Wire Electric Discharge Machining Efficiency through ANOVA-Based Process Optimization
Authors: Rahul R. Gurpude, Pallvita Yadav, Amrut Mulay
Abstract:
In recent years, there has been a growing focus on advanced manufacturing processes, and one such emerging process is wire electric discharge machining (WEDM). WEDM is a precision machining process specifically designed for cutting electrically conductive materials with exceptional accuracy. It achieves material removal from the workpiece metal through spark erosion facilitated by electricity. Initially developed as a method for precision machining of hard materials, WEDM has witnessed significant advancements in recent times, with numerous studies and techniques based on electrical discharge phenomena being proposed. These research efforts and methods in the field of ED encompass a wide range of applications, including mirror-like finish machining, surface modification of mold dies, machining of insulating materials, and manufacturing of micro products. WEDM has particularly found extensive usage in the high-precision machining of complex workpieces that possess varying hardness and intricate shapes. During the cutting process, a wire with a diameter ranging from 0.18mm is employed. The evaluation of EDM performance typically revolves around two critical factors: material removal rate (MRR) and surface roughness (SR). To comprehensively assess the impact of machining parameters on the quality characteristics of EDM, an Analysis of Variance (ANOVA) was conducted. This statistical analysis aimed to determine the significance of various machining parameters and their relative contributions in controlling the response of the EDM process. By undertaking this analysis, optimal levels of machining parameters were identified to achieve desirable material removal rates and surface roughness.Keywords: WEDM, MRR, optimization, surface roughness
Procedia PDF Downloads 76559 The Design of Acoustic Horns for Ultrasonic Aided Tube Double Side Flange Making
Authors: Kuen-Ming Shu, Jyun-Wei Chen
Abstract:
Encapsulated O-rings are specifically designed to address the problem of sealing the most hostile chemicals and extreme temperature applications. Ultrasonic vibration hot embossing and ultrasonic welding techniques provide a fast and reliable method to fabricate encapsulated O-ring. This paper performs the design and analysis method of the acoustic horns with double extrusion to process tube double side flange simultaneously. The paper deals with study through Finite Element Method (FEM) of ultrasonic stepped horn used to process a capsulated O-ring, the theoretical dimensions of horns, and their natural frequencies and amplitudes are obtained through the simulations of COMOSOL software. Furthermore, real horns were fabricated, tested and verified to proof the practical utility of these horns.Keywords: encapsulated O-rings, ultrasonic vibration hot embossing, flange making, acoustic horn, finite element analysis
Procedia PDF Downloads 319558 Effects of Machining Parameters on the Surface Roughness and Vibration of the Milling Tool
Authors: Yung C. Lin, Kung D. Wu, Wei C. Shih, Jui P. Hung
Abstract:
High speed and high precision machining have become the most important technology in manufacturing industry. The surface roughness of high precision components is regarded as the important characteristics of the product quality. However, machining chatter could damage the machined surface and restricts the process efficiency. Therefore, selection of the appropriate cutting conditions is of importance to prevent the occurrence of chatter. In addition, vibration of the spindle tool also affects the surface quality, which implies the surface precision can be controlled by monitoring the vibration of the spindle tool. Based on this concept, this study was aimed to investigate the influence of the machining conditions on the surface roughness and the vibration of the spindle tool. To this end, a series of machining tests were conducted on aluminum alloy. In tests, the vibration of the spindle tool was measured by using the acceleration sensors. The surface roughness of the machined parts was examined using white light interferometer. The response surface methodology (RSM) was employed to establish the mathematical models for predicting surface finish and tool vibration, respectively. The correlation between the surface roughness and spindle tool vibration was also analyzed by ANOVA analysis. According to the machining tests, machined surface with or without chattering was marked on the lobes diagram as the verification of the machining conditions. Using multivariable regression analysis, the mathematical models for predicting the surface roughness and tool vibrations were developed based on the machining parameters, cutting depth (a), feed rate (f) and spindle speed (s). The predicted roughness is shown to agree well with the measured roughness, an average percentage of errors of 10%. The average percentage of errors of the tool vibrations between the measurements and the predictions of mathematical model is about 7.39%. In addition, the tool vibration under various machining conditions has been found to have a positive influence on the surface roughness (r=0.78). As a conclusion from current results, the mathematical models were successfully developed for the predictions of the surface roughness and vibration level of the spindle tool under different cutting condition, which can help to select appropriate cutting parameters and to monitor the machining conditions to achieve high surface quality in milling operation.Keywords: machining parameters, machining stability, regression analysis, surface roughness
Procedia PDF Downloads 231557 An Experimental Study on the Effect of Operating Parameters during the Micro-Electro-Discharge Machining of Ni Based Alloy
Authors: Asma Perveen, M. P. Jahan
Abstract:
Ni alloys have managed to cover wide range of applications such as automotive industries, oil gas industries, and aerospace industries. However, these alloys impose challenges while using conventional machining technologies. On the other hand, Micro-Electro-Discharge machining (micro-EDM) is a non-conventional machining method that uses controlled sparks energy to remove material irrespective of the materials hardness. There has been always a huge interest from the industries for developing optimum methodology and parameters in order to enhance the productivity of micro-EDM in terms of reducing machining time and tool wear for different alloys. Therefore, the aims of this study are to investigate the effects of the micro-EDM process parameters, in order to find their optimal values. The input process parameters include voltage, capacitance, and electrode rotational speed, whereas the output parameters considered are machining time, entrance diameter of hole, overcut, tool wear, and crater size. The surface morphology and element characterization are also investigated with the use of SEM and EDX analysis. The experimental result indicates the reduction of machining time with the increment of discharge energy. Discharge energy also contributes to the enlargement of entrance diameter as well as overcut. In addition, tool wears show reduction with the increase of discharge energy. Moreover, crater size is found to be increased in size along with the increment of discharge energy.Keywords: micro holes, micro EDM, Ni Alloy, discharge energy
Procedia PDF Downloads 275556 An Integrated Approach for Optimal Selection of Machining Parameters in Laser Micro-Machining Process
Authors: A. Gopala Krishna, M. Lakshmi Chaitanya, V. Kalyana Manohar
Abstract:
In the existent analysis, laser micro machining (LMM) of Silicon carbide (SiCp) reinforced Aluminum 7075 Metal Matrix Composite (Al7075/SiCp MMC) was studied. While machining, Because of the intense heat generated, A layer gets formed on the work piece surface which is called recast layer and this layer is detrimental to the surface quality of the component. The recast layer needs to be as small as possible for precise applications. Therefore, The height of recast layer and the depth of groove which are conflicting in nature were considered as the significant manufacturing criteria, Which determines the pursuit of a machining process obtained in LMM of Al7075/10%SiCp composite. The present work formulates the depth of groove and height of recast layer in relation to the machining parameters using the Response Surface Methodology (RSM) and correspondingly, The formulated mathematical models were put to use for optimization. Since the effect of machining parameters on the depth of groove and height of recast layer was contradictory, The problem was explicated as a multi objective optimization problem. Moreover, An evolutionary Non-dominated sorting genetic algorithm (NSGA-II) was employed to optimize the model established by RSM. Subsequently this algorithm was also adapted to achieve the Pareto optimal set of solutions that provide a detailed illustration for making the optimal solutions. Eventually experiments were conducted to affirm the results obtained from RSM and NSGA-II.Keywords: Laser Micro Machining (LMM), depth of groove, Height of recast layer, Response Surface Methodology (RSM), non-dominated sorting genetic algorithm
Procedia PDF Downloads 345555 Effect of Machining Induced Microstructure Changes on the Edge Formability of Titanium Alloys at Room Temperature
Authors: James S. Kwame, E. Yakushina, P. Blackwell
Abstract:
The challenges in forming titanium alloys at room temperature are well researched and are linked both to the limitations imposed by the basic crystal structure and their ability to form texture during plastic deformation. One major issue of concern for the sheet forming of titanium alloys is their high sensitivity to surface inhomogeneity. Various machining processes are utilised in preparing sheet hole edges for edge flanging applications. However, the response of edge forming tendencies of titanium to different edge surface finishes is not well investigated. The hole expansion test is used in this project to elucidate the impact of abrasive water jet (AWJ) and electro-discharge machining (EDM) cutting techniques on the edge formability of CP-Ti (Grade 2) and Ti-3Al-2.5V alloys at room temperature. The results show that the quality of the edge surface finish has a major effect on the edge formability of the materials. The work also found that the variations in the edge forming performance are mainly the result of the influence of machining induced edge surface defects.Keywords: titanium alloys, hole expansion test, edge formability, non-conventional machining
Procedia PDF Downloads 137554 2D-Modeling with Lego Mindstorms
Authors: Miroslav Popelka, Jakub Nozicka
Abstract:
The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.Keywords: LEGO Mindstorms, ultrasonic sensor, real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software
Procedia PDF Downloads 473553 Laser-Ultrasonic Method for Measuring the Local Elastic Moduli of Porosity Isotropic Composite Materials
Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya, Vladimir A. Makarov, Yulia G. Sokolovskaya
Abstract:
The laser-ultrasonic method is realized for quantifying the influence of porosity on the local Young’s modulus of isotropic composite materials. The method is based on a laser generation of ultrasound pulses combined with measurement of the phase velocity of longitudinal and shear acoustic waves in samples. The main advantage of this method compared with traditional ultrasonic research methods is the efficient generation of short and powerful probing acoustic pulses required for reliable testing of ultrasound absorbing and scattering heterogeneous materials. Using as an example samples of a metal matrix composite with reinforcing microparticles of silicon carbide in various concentrations, it is shown that to provide an effective increase in Young’s modulus with increasing concentration of microparticles, the porosity of the final sample should not exceed 2%.Keywords: laser ultrasonic, longitudinal and shear ultrasonic waves, porosity, composite, local elastic moduli
Procedia PDF Downloads 348552 Laser - Ultrasonic Method for the Measurement of Residual Stresses in Metals
Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya
Abstract:
The theoretical analysis is carried out to get the relation between the ultrasonic wave velocity and the value of residual stresses. The laser-ultrasonic method is developed to evaluate the residual stresses and subsurface defects in metals. The method is based on the laser thermooptical excitation of longitudinal ultrasonic wave sand their detection by a broadband piezoelectric detector. A laser pulse with the time duration of 8 ns of the full width at half of maximum and with the energy of 300 µJ is absorbed in a thin layer of the special generator that is inclined relative to the object under study. The non-uniform heating of the generator causes the formation of a broadband powerful pulse of longitudinal ultrasonic waves. It is shown that the temporal profile of this pulse is the convolution of the temporal envelope of the laser pulse and the profile of the in-depth distribution of the heat sources. The ultrasonic waves reach the surface of the object through the prism that serves as an acoustic duct. At the interface ‚laser-ultrasonic transducer-object‘ the conversion of the most part of the longitudinal wave energy takes place into the shear, subsurface longitudinal and Rayleigh waves. They spread within the subsurface layer of the studied object and are detected by the piezoelectric detector. The electrical signal that corresponds to the detected acoustic signal is acquired by an analog-to-digital converter and when is mathematically processed and visualized with a personal computer. The distance between the generator and the piezodetector as well as the spread times of acoustic waves in the acoustic ducts are the characteristic parameters of the laser-ultrasonic transducer and are determined using the calibration samples. There lative precision of the measurement of the velocity of longitudinal ultrasonic waves is 0.05% that corresponds to approximately ±3 m/s for the steels of conventional quality. This precision allows one to determine the mechanical stress in the steel samples with the minimal detection threshold of approximately 22.7 MPa. The results are presented for the measured dependencies of the velocity of longitudinal ultrasonic waves in the samples on the values of the applied compression stress in the range of 20-100 MPa.Keywords: laser-ultrasonic method, longitudinal ultrasonic waves, metals, residual stresses
Procedia PDF Downloads 326551 Comparative Assessment of MRR, TWR, and Surface Integrity in Rotary and Stationary Tool EDM for Machining AISI D3 Tool Steel
Authors: Anand Prakash Dwivedi, Sounak Kumar Choudhury
Abstract:
Electric Discharge Machining (EDM) is a well-established and one of the most primitive unconventional manufacturing processes, that is used world-wide for the machining of geometrically complex or hard and electrically conductive materials which are extremely difficult to cut by any other conventional machining process. One of the major flaws, over all its advantages, is its very slow Material Removal Rate (MRR). In order to eradicate this slow machining rate, various researchers have proposed various methods like; providing rotational motion to the tool or work-piece or to both, mixing of conducting additives (such as SiC, Cr, Al, graphite etc) powders in the dielectric, providing vibrations to the tool or work-piece or to both etc. Present work is a comparative study of Rotational and Stationary Tool EDM, which deals with providing rotational motion to the copper tool for the machining of AISI D3 Tool Steel and the results have been compared with stationary tool EDM. It has been found that the tool rotation substantially increases the MRR up to 28%. The average surface finish increases around 9-10% by using the rotational tool EDM. The average tool wear increment is observed to be around 19% due to the tool rotation. Apart from this, the present work also focusses on the recast layer analysis, which are being re-deposited on the work-piece surface during the operation. The recast layer thickness is less in case of Rotational EDM and more for Stationary Tool EDM. Moreover, the cracking on the re-casted surface is also more for stationary tool EDM as compared with the rotational EDM. Procedia PDF Downloads 321550 Characterization the Tin Sulfide Thin Films Prepared by Spray Ultrasonic
Authors: A. Attaf A., I. Bouhaf Kharkhachi
Abstract:
Spray ultrasonic deposition technique of tin disulfide (SnS2) thin films know wide application due to their adequate physicochemical properties for microelectronic applications and especially for solar cells. SnS2 film was deposited by spray ultrasonic technique, on pretreated glass substrates at well-determined conditions.The effect of SnS2 concentration on different optical properties of SnS2 Thin films, such us MEB, XRD, and UV spectroscopy visible spectrum was investigated. MEB characterization technique shows that the morphology of this films is uniform, compact and granular. x-ray diffraction study detects the best growth crystallinity in hexagonal structure with preferential plan (001). The results of UV spectroscopy visible spectrum show that films deposited at 0.1 mol/l is large transmittance greater than 25% in the visible region.The band gap energy is 2.54 Ev for molarity 0.1 mol/l.Keywords: MEB, thin disulfide, thin films, ultrasonic spray, X-Ray diffraction, UV spectroscopy visible
Procedia PDF Downloads 606