Search results for: susceptibility weighted
1031 Exploration for Magnetic Minerals Using Geophysical Logging Techniques in the Northwestern Part of Bangladesh
Authors: Md. Selim Reza, Mohammad Zohir Uddin
Abstract:
Geophysical logging technique was conducted in a borehole in the north-western part of Bangladesh. The main objectives of this study were to identify the subsurface lithology and the presence of magnetic minerals within the basement complex. In this survey, full waveform sonic, magnetic susceptibility and natural gamma logs were conducted up to the depth of 660 m. From sonic log, three distinct velocity zones were observed at depths ranging from 20 m to 81 m, 81m to 360 m and 420 m to 660 m having the average velocity of 1600 m/s indicating unconsolidated sediment, 2500 m/s indicating hard, compact and matured sediments and 6300 m/s indicating basement complex respectively. Some low-velocity zones within the basement were identified as fractures/fissures. Natural gamma log was carried out only in the basement complex. According to magnetic susceptibility log, broadly three important zones were identified which had good agreement with the natural gamma, sonic as well as geological logs. The zone at the depth from 460 m to 470 m had the average susceptibility value of 3445 cgs unit. The average natural gamma value and sonic velocity in this zone are 150 cps and 3000 m/s respectively. The zone at the depth from 571 m to 598 m had the average susceptibility value of 5158 cgs unit with the average natural gamma value and sonic velocity are 160 cps and 6000 m/s respectively. On the other hand, the zone at the depth from 598 m to 620 m had the average susceptibility value of 1998 cgs unit with the average natural gamma value and sonic velocity show 200 cps and 3000 m/s respectively. From the interpretation of geophysical logs the 1st and 3rd zones within the basement complex are considered to be less significant whereas the 2nd zone is described as the most significant for magnetic minerals. Therefore, more drill holes are recommended on the anomalous body to delineate the extent, thickness and reserve of the magnetic body and further research are needed to determine the quality of mineral resources.Keywords: basement complex, fractures/fissures, geophysical logging, lithology, magnetic susceptibility
Procedia PDF Downloads 2891030 Infrared Spectroscopy in Tandem with Machine Learning for Simultaneous Rapid Identification of Bacteria Isolated Directly from Patients' Urine Samples and Determination of Their Susceptibility to Antibiotics
Authors: Mahmoud Huleihel, George Abu-Aqil, Manal Suleiman, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman
Abstract:
Urinary tract infections (UTIs) are considered to be the most common bacterial infections worldwide, which are caused mainly by Escherichia (E.) coli (about 80%). Klebsiella pneumoniae (about 10%) and Pseudomonas aeruginosa (about 6%). Although antibiotics are considered as the most effective treatment for bacterial infectious diseases, unfortunately, most of the bacteria already have developed resistance to the majority of the commonly available antibiotics. Therefore, it is crucial to identify the infecting bacteria and to determine its susceptibility to antibiotics for prescribing effective treatment. Classical methods are time consuming, require ~48 hours for determining bacterial susceptibility. Thus, it is highly urgent to develop a new method that can significantly reduce the time required for determining both infecting bacterium at the species level and diagnose its susceptibility to antibiotics. Fourier-Transform Infrared (FTIR) spectroscopy is well known as a sensitive and rapid method, which can detect minor molecular changes in bacterial genome associated with the development of resistance to antibiotics. The main goal of this study is to examine the potential of FTIR spectroscopy, in tandem with machine learning algorithms, to identify the infected bacteria at the species level and to determine E. coli susceptibility to different antibiotics directly from patients' urine in about 30minutes. For this goal, 1600 different E. coli isolates were isolated for different patients' urine sample, measured by FTIR, and analyzed using different machine learning algorithm like Random Forest, XGBoost, and CNN. We achieved 98% success in isolate level identification and 89% accuracy in susceptibility determination.Keywords: urinary tract infections (UTIs), E. coli, Klebsiella pneumonia, Pseudomonas aeruginosa, bacterial, susceptibility to antibiotics, infrared microscopy, machine learning
Procedia PDF Downloads 1701029 Circuit Models for Conducted Susceptibility Analyses of Multiconductor Shielded Cables
Authors: Saih Mohamed, Rouijaa Hicham, Ghammaz Abdelilah
Abstract:
This paper presents circuit models to analyze the conducted susceptibility of multiconductor shielded cables in frequency domains using Branin’s method, which is referred to as the method of characteristics. These models, Which can be used directly in the time and frequency domains, take into account the presence of both the transfer impedance and admittance. The conducted susceptibility is studied by using an injection current on the cable shield as the source. Two examples are studied, a coaxial shielded cable and shielded cables with two parallel wires (i.e., twinax cables). This shield has an asymmetry (one slot on the side). Results obtained by these models are in good agreement with those obtained by other methods.Keywords: circuit models, multiconductor shielded cables, Branin’s method, coaxial shielded cable, twinax cables
Procedia PDF Downloads 5161028 Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods
Authors: Halil Ibrahim Demir, Caner Erden, Mumtaz Ipek, Ozer Uygun
Abstract:
Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied.Keywords: process planning, weighted scheduling, weighted due-date assignment, genetic search, simulated annealing, hybrid meta-heuristics
Procedia PDF Downloads 4691027 Weighted Rank Regression with Adaptive Penalty Function
Authors: Kang-Mo Jung
Abstract:
The use of regularization for statistical methods has become popular. The least absolute shrinkage and selection operator (LASSO) framework has become the standard tool for sparse regression. However, it is well known that the LASSO is sensitive to outliers or leverage points. We consider a new robust estimation which is composed of the weighted loss function of the pairwise difference of residuals and the adaptive penalty function regulating the tuning parameter for each variable. Rank regression is resistant to regression outliers, but not to leverage points. By adopting a weighted loss function, the proposed method is robust to leverage points of the predictor variable. Furthermore, the adaptive penalty function gives us good statistical properties in variable selection such as oracle property and consistency. We develop an efficient algorithm to compute the proposed estimator using basic functions in program R. We used an optimal tuning parameter based on the Bayesian information criterion (BIC). Numerical simulation shows that the proposed estimator is effective for analyzing real data set and contaminated data.Keywords: adaptive penalty function, robust penalized regression, variable selection, weighted rank regression
Procedia PDF Downloads 4741026 Insecticide Resistance Detection on Filarial Vector, Simulium (Simulium) nobile (Diptera: Simuliidae) in Malaysia
Authors: Chee Dhang Chen, Hiroyuki Takaoka, Koon Weng Lau, Poh Ruey Tan, Ai Chdon Chin, Van Lun Low, Abdul Aziz Azidah, Mohd Sofian-Azirun
Abstract:
Susceptibility status of Simulium (Simulium) nobile (Diptera: Simuliidae) adults obtained from Pahang, Malaysia was evaluated against 11 adulticides representing four major insecticide classes: organochlorines (DDT, dieldrin), organophosphates (malathion, fenitrothion), carbamates (bendiocarb, propoxur) and pyrethroids (etofenprox, deltamethrin, lambdacyhalothrin, permethrin, cyfluthrin). The adult bioassay was conducted according to WHO standard protocol to determine the insecticide susceptibility. Mortality at 24 h post treatment was used as indicator for susceptibility status. The results revealed that S. nobile obtained was susceptible to propoxur, cyfluthrin and bendiocarb with 100% mortality. S. nobile was resistant or exhibited some tolerant against lambdacyhalothrin and deltamethrin with mortality ranged ≥ 90% but < 98%. S. nobile populations in Pahang exhibited different level of resistant against 11 adulticides with mortality ranged from 60.00 ± 10.00 to 100.00 ± 0.00. In conclusion, S. nobile populations in Pahang were susceptible to propoxur, cyfluthrin and bendiocarb. The susceptibility status of S. nobile in descending order was propoxur, cyfluthrin > bendicarb > deltamethrin > lambdacyhalothrin > permethrin > etofenprox > DDT > malathion > fenitrothion > dieldrin. Regular surveys should be conducted to monitor the susceptibility status of this insect vector in order to prevent further development of resistance.Keywords: black fly, adult bioassay, insecticide resistance, Malaysia
Procedia PDF Downloads 2731025 Major Histocompatibility Complex (MHC) Polymorphism and Disease Resistance
Authors: Oya Bulut, Oguzhan Avci, Zafer Bulut, Atilla Simsek
Abstract:
Livestock breeders have focused on the improvement of production traits with little or no attention for improvement of disease resistance traits. In order to determine the association between the genetic structure of the individual gene loci with possibility of the occurrence and the development of diseases, MHC (major histocompatibility complex) are frequently used. Because of their importance in the immune system, MHC locus is considered as candidate genes for resistance/susceptibility against to different diseases. Major histocompatibility complex (MHC) molecules play a critical role in both innate and adaptive immunity and have been considered candidate molecular markers of an association between polymorphisms and resistance/susceptibility to diseases. The purpose of this study is to give some information about MHC genes become an important area of study in recent years in terms of animal husbandry and determine the relation between MHC genes and resistance/susceptibility to disease.Keywords: MHC, polymorphism, disease, resistance
Procedia PDF Downloads 6311024 Bag of Words Representation Based on Weighting Useful Visual Words
Authors: Fatma Abdedayem
Abstract:
The most effective and efficient methods in image categorization are almost based on bag-of-words (BOW) which presents image by a histogram of occurrence of visual words. In this paper, we propose a novel extension to this method. Firstly, we extract features in multi-scales by applying a color local descriptor named opponent-SIFT. Secondly, in order to represent image we use Spatial Pyramid Representation (SPR) and an extension to the BOW method which based on weighting visual words. Typically, the visual words are weighted during histogram assignment by computing the ratio of their occurrences in the image to the occurrences in the background. Finally, according to classical BOW retrieval framework, only a few words of the vocabulary is useful for image representation. Therefore, we select the useful weighted visual words that respect the threshold value. Experimentally, the algorithm is tested by using different image classes of PASCAL VOC 2007 and is compared against the classical bag-of-visual-words algorithm.Keywords: BOW, useful visual words, weighted visual words, bag of visual words
Procedia PDF Downloads 4361023 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint
Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar
Abstract:
Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine
Procedia PDF Downloads 821022 Comparing Stability Index MAPping (SINMAP) Landslide Susceptibility Models in the Río La Carbonera, Southeast Flank of Pico de Orizaba Volcano, Mexico
Authors: Gabriel Legorreta Paulin, Marcus I. Bursik, Lilia Arana Salinas, Fernando Aceves Quesada
Abstract:
In volcanic environments, landslides and debris flows occur continually along stream systems of large stratovolcanoes. This is the case on Pico de Orizaba volcano, the highest mountain in Mexico. The volcano has a great potential to impact and damage human settlements and economic activities by landslides. People living along the lower valleys of Pico de Orizaba volcano are in continuous hazard by the coalescence of upstream landslide sediments that increased the destructive power of debris flows. These debris flows not only produce floods, but also cause the loss of lives and property. Although the importance of assessing such process, there is few landslide inventory maps and landslide susceptibility assessment. As a result in México, no landslide susceptibility models assessment has been conducted to evaluate advantage and disadvantage of models. In this study, a comprehensive study of landslide susceptibility models assessment using GIS technology is carried out on the SE flank of Pico de Orizaba volcano. A detailed multi-temporal landslide inventory map in the watershed is used as framework for the quantitative comparison of two landslide susceptibility maps. The maps are created based on 1) the Stability Index MAPping (SINMAP) model by using default geotechnical parameters and 2) by using findings of volcanic soils geotechnical proprieties obtained in the field. SINMAP combines the factor of safety derived from the infinite slope stability model with the theory of a hydrologic model to produce the susceptibility map. It has been claimed that SINMAP analysis is reasonably successful in defining areas that intuitively appear to be susceptible to landsliding in regions with sparse information. The validations of the resulting susceptibility maps are performed by comparing them with the inventory map under LOGISNET system which provides tools to compare by using a histogram and a contingency table. Results of the experiment allow for establishing how the individual models predict the landslide location, advantages, and limitations. The results also show that although the model tends to improve with the use of calibrated field data, the landslide susceptibility map does not perfectly represent existing landslides.Keywords: GIS, landslide, modeling, LOGISNET, SINMAP
Procedia PDF Downloads 3131021 Forecasting Unusual Infection of Patient Used by Irregular Weighted Point Set
Authors: Seema Vaidya
Abstract:
Mining association rule is a key issue in data mining. In any case, the standard models ignore the distinction among the exchanges, and the weighted association rule mining does not transform on databases with just binary attributes. This paper proposes a novel continuous example and executes a tree (FP-tree) structure, which is an increased prefix-tree structure for securing compacted, discriminating data about examples, and makes a fit FP-tree-based mining system, FP enhanced capacity algorithm is used, for mining the complete game plan of examples by illustration incessant development. Here, this paper handles the motivation behind making remarkable and weighted item sets, i.e. rare weighted item set mining issue. The two novel brightness measures are proposed for figuring the infrequent weighted item set mining issue. Also, the algorithm are handled which perform IWI which is more insignificant IWI mining. Moreover we utilized the rare item set for choice based structure. The general issue of the start of reliable definite rules is troublesome for the grounds that hypothetically no inciting technique with no other person can promise the rightness of influenced theories. In this way, this framework expects the disorder with the uncommon signs. Usage study demonstrates that proposed algorithm upgrades the structure which is successful and versatile for mining both long and short diagnostics rules. Structure upgrades aftereffects of foreseeing rare diseases of patient.Keywords: association rule, data mining, IWI mining, infrequent item set, frequent pattern growth
Procedia PDF Downloads 3991020 Enhanced Weighted Centroid Localization Algorithm for Indoor Environments
Authors: I. Nižetić Kosović, T. Jagušt
Abstract:
Lately, with the increasing number of location-based applications, demand for highly accurate and reliable indoor localization became urgent. This is a challenging problem, due to the measurement variance which is the consequence of various factors like obstacles, equipment properties and environmental changes in complex nature of indoor environments. In this paper we propose low-cost custom-setup infrastructure solution and localization algorithm based on the Weighted Centroid Localization (WCL) method. Localization accuracy is increased by several enhancements: calibration of RSSI values gained from wireless nodes, repetitive measurements of RSSI to exclude deviating values from the position estimation, and by considering orientation of the device according to the wireless nodes. We conducted several experiments to evaluate the proposed algorithm. High accuracy of ~1m was achieved.Keywords: indoor environment, received signal strength indicator, weighted centroid localization, wireless localization
Procedia PDF Downloads 2321019 Liquefaction Susceptibility of Tailing Storage Facility-Comparison of National Centre for Earthquake Engineering Research and Finite Element Methods
Authors: Mehdi Ghatei, Masoomeh Lorestani
Abstract:
Upstream Tailings Storage Facilities (TSFs) may experience slope instabilities due to soil liquefaction, especially in regions known to be seismically active. In this study, liquefaction susceptibility of an upstream-raised TSF in Western Australia was assessed using two different approaches. The first approach assessed liquefaction susceptibility using Cone Penetration Tests with pore pressure measurement (CPTu) as described by the National Centre for Earthquake Engineering Research (NCEER). This assessment was based on the four CPTu tests that were conducted on the perimeter embankment of the TSF. The second approach used the Finite Element (FE) method with application of an equivalent linear model to predict the undrained cyclic behavior, the pore water pressure and the liquefaction of the materials. The tailings parameters were estimated from the CPTu profiles and from the laboratory tests. The cyclic parameters were estimated from the literature where test results of similar material were available. The results showed that there was a good agreement, in the liquefaction susceptibility of the tailings material, between the NCEER and FE methods with equivalent linear model.Keywords: liquefaction , CPTU, NCEER, finite element method, equivalent linear model
Procedia PDF Downloads 2721018 The Impact of P108L Genetic Variant on Calcium Release and Malignant Hyperthermia Susceptibility
Authors: Mohammed Althobiti, Patrick Booms, Dorota Fiszer, Philip Hopkins
Abstract:
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle. MH results from anaesthetics induced breakdown of calcium homeostasis. RYR1 and CACN1AS mutations represent the aetiology in ~70% of the MH population. Previous studies indicate that up to 25% of MH patients carry no variants in these genes. Therefore, the aim of this study is to investigate the relationships between MH susceptibility and genes encoding skeletal muscle Ca2+ channels as well as accessory proteins. The JSRP, encoding JP-45, was previously sequenced and novel genetic variants were identified. The variant p.P108L (c.323C > T) was identified in exon 4 and encodes a change from a proline at amino acid 108 to leucine residue. The variant P108L was detected in two patients out of 50 with 4% frequency in the sample population. The alignment of DNA sequences in different species indicates highly conserved proline sequences involved in the substitution of the P108L variant. In this study, the variant P108L co-segregates with the SNP p.V92A (c.275T > C) at the same exon, both variants being inherited in the same two patients only. This indicates that the two variants may represent a haplotype. Therefore, a set of single nucleotide polymorphisms and statistical analysis will be used to investigate the effects of haplotypes on MH susceptibility. Furthermore, investigating the effect of the P108L variant in combination with RYR1 mutations or other genetic variants in other genes as a combination of two or more genetic variants, haplotypes may then provide stronger genetic evidence indicating that JSRP1 is associated with MH susceptibility. In conclusion, these preliminary results lend a potential modifier role of the variant P108L in JSRP1 in MH susceptibility and further investigations are suggested to confirm these results.Keywords: JSRP1, malignant hyperthermia, RyR1, skeletal muscle
Procedia PDF Downloads 3351017 Statistical and Analytical Comparison of GIS Overlay Modelings: An Appraisal on Groundwater Prospecting in Precambrian Metamorphics
Authors: Tapas Acharya, Monalisa Mitra
Abstract:
Overlay modeling is the most widely used conventional analysis for spatial decision support system. Overlay modeling requires a set of themes with different weightage computed in varied manners, which gives a resultant input for further integrated analysis. In spite of the popularity and most widely used technique; it gives inconsistent and erroneous results for similar inputs while processed in various GIS overlay techniques. This study is an attempt to compare and analyse the differences in the outputs of different overlay methods using GIS platform with same set of themes of the Precambrian metamorphic to obtain groundwater prospecting in Precambrian metamorphic rocks. The objective of the study is to emphasize the most suitable overlay method for groundwater prospecting in older Precambrian metamorphics. Seven input thematic layers like slope, Digital Elevation Model (DEM), soil thickness, lineament intersection density, average groundwater table fluctuation, stream density and lithology have been used in the spatial overlay models of fuzzy overlay, weighted overlay and weighted sum overlay methods to yield the suitable groundwater prospective zones. Spatial concurrence analysis with high yielding wells of the study area and the statistical comparative studies among the outputs of various overlay models using RStudio reveal that the Weighted Overlay model is the most efficient GIS overlay model to delineate the groundwater prospecting zones in the Precambrian metamorphic rocks.Keywords: fuzzy overlay, GIS overlay model, groundwater prospecting, Precambrian metamorphics, weighted overlay, weighted sum overlay
Procedia PDF Downloads 1271016 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8
Authors: Aysun Sezer
Abstract:
Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.Keywords: YOLOv8, object detection, humerus, scapula, IRM
Procedia PDF Downloads 661015 Exercise Training for Management Hypertensive Patients: A Systematic Review and Meta-Analysis
Authors: Noor F. Ilias, Mazlifah Omar, Hashbullah Ismail
Abstract:
Exercise training has been shown to improve functional capacity and is recommended as a therapy for management of blood pressure. Our purpose was to establish whether different exercise capacity produces different effect size for Cardiorespiratory Fitness (CRF), systolic (SBP) and diastolic (DBP) blood pressure in patients with hypertension. Exercise characteristic is required in order to have optimal benefit from the training, but optimal exercise capacity is still unwarranted. A MEDLINE search (1985 to 2015) was conducted for exercise based rehabilitation trials in hypertensive patients. Thirty-seven studies met the selection criteria. Of these, 31 (83.7%) were aerobic exercise and 6 (16.3%) aerobic with additional resistance exercise, providing a total of 1318 exercise subjects and 819 control, the total of subjects was 2137. We calculated exercise volume and energy expenditure through the description of exercise characteristics. 4 studies (18.2%) were 451kcal - 900 kcal, 12 (54.5%) were 900 kcal – 1350 kcal and 6 (27.3%) >1351kcal per week. Peak oxygen consumption (peak VO2) increased by mean difference of 1.44 ml/kg/min (95% confidence interval [CI]: 1.08 to 1.79 ml/kg/min; p = 0.00001) with weighted mean 21.2% for aerobic exercise compare to aerobic with additional resistance exercise 4.50 ml/kg/min (95% confidence interval [CI]: 3.57 to 5.42 ml/kg/min; p = 0.00001) with weighted mean 14.5%. SBP was clinically reduce for both aerobic and aerobic with resistance training by mean difference of -4.66 mmHg (95% confidence interval [CI]: -5.68 to -3.63 mmHg; p = 0.00001) weighted mean 6% reduction and -5.06 mmHg (95% confidence interval [CI]: -7.32 to -2.8 mmHg; p = 0.0001) weighted mean 5% reduction respectively. Result for DBP was clinically reduce for aerobic by mean difference of -1.62 mmHg (95% confidence interval [CI]: -2.09 to -1.15 mmHg; p = 0.00001) weighted mean 4% reduction and aerobic with resistance training reduce by mean difference of -3.26 mmHg (95% confidence interval [CI]: -4.87 to -1.65 mmHg; p = 0.0001) weighted mean 6% reduction. Optimum exercise capacity for 451 kcal – 900 kcal showed greater improvement in peak VO2 and SBP by 2.76 ml/kg/min (95% confidence interval [CI]: 1.47 to 4.05 ml/kg/min; p = 0.0001) with weighted mean 40.6% and -16.66 mmHg (95% confidence interval [CI]: -21.72 to -11.60 mmHg; p = 0.00001) weighted mean 9.8% respectively. Our data demonstrated that aerobic exercise with total volume of 451 kcal – 900 kcal/ week energy expenditure may elicit greater changes in cardiorespiratory fitness and blood pressure in hypertensive patients. Higher exercise capacity weekly does not seem better result in management hypertensive patients.Keywords: blood Pressure, exercise, hypertension, peak VO2
Procedia PDF Downloads 2821014 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine
Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif
Abstract:
The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)
Procedia PDF Downloads 3701013 The Reconstruction of Paleoenvironment Aptian Sediments of the Massive Serdj, North Central Tunisia
Authors: H. Khaled, F. Chaabani, F. Boulvain
Abstract:
This paper focuses on the studied of Aptian series that crops out at the Jebel Serdj in the north central Tunisia. The study series is about 590 meters thick and it is consisting of limestones, marly limestones associated with some levels of siltstones and marls. Two sections are studied in detail regarding lithology, microfacies, magnetic susceptibility and mineralogical composition to provide new insights into the paleoenvironmental evolution and paleoclimatological implications during this period. The following facies associations representing different ramp palaeoenvironments have been identified: mudstone–wackestone outer ramp facies; skeletal grainstone- packstone mid-ramp facies, packstone-grainstone inner-ramp facies which include a variety of organisms such as rudists and ooids and mudstone–wackestone coastal facies rich with miliolidea and orbitolines. The magnetic susceptibility (Xᵢₙ) of all samples was compared with the lithological and microfacies variation. We show that high values of magnetic susceptibility are correlated with the distal facies.Keywords: Aptian, Serdj Formation, geochemical, mineralogy
Procedia PDF Downloads 1481012 Liquefaction Assessment of Marine Soil in Western Yemen Region Based on Laboratory and Field Tests
Authors: Monalisha Nayak, T. G. Sitharam
Abstract:
Liquefaction is a major threat for sites consists of or on sandy soil. But this present study concentrates on the behavior of fine soil under cyclic loading. This paper presents the study of liquefaction susceptibility of marine silty clay to clayey silt for an offshore site near western Yemen. The submerged and loose sediment condition of marine soil of an offshore site can favour liquefaction during earthquakes. In this regard, the liquefaction susceptibility of the site was carried out based on both field test results and laboratory test results. From field test results of seismic cone penetration test (SCPT), liquefaction susceptibility was assessed considering normalized cone tip resistance, and normalized friction ratio and results give an idea regarding both cyclic mobility and flow liquefaction. Laboratory cyclic triaxial tests were also conducted on saturated undisturbed and remoulded sample to study the effect of cyclic loading on strength and strain characteristics. Liquefaction susceptibility of the marine soft soil was also carried out based on index properties like grain size distribution, natural moisture content and liquid limit of soil.Keywords: index properties, liquefaction, marine soil, seismic cone penetration test (SCPT)
Procedia PDF Downloads 2321011 Reliability and Probability Weighted Moment Estimation for Three Parameter Mukherjee-Islam Failure Model
Authors: Ariful Islam, Showkat Ahmad Lone
Abstract:
The Mukherjee-Islam Model is commonly used as a simple life time distribution to assess system reliability. The model exhibits a better fit for failure information and provides more appropriate information about hazard rate and other reliability measures as shown by various authors. It is possible to introduce a location parameter at a time (i.e., a time before which failure cannot occur) which makes it a more useful failure distribution than the existing ones. Even after shifting the location of the distribution, it represents a decreasing, constant and increasing failure rate. It has been shown to represent the appropriate lower tail of the distribution of random variables having fixed lower bound. This study presents the reliability computations and probability weighted moment estimation of three parameter model. A comparative analysis is carried out between three parameters finite range model and some existing bathtub shaped curve fitting models. Since probability weighted moment method is used, the results obtained can also be applied on small sample cases. Maximum likelihood estimation method is also applied in this study.Keywords: comparative analysis, maximum likelihood estimation, Mukherjee-Islam failure model, probability weighted moment estimation, reliability
Procedia PDF Downloads 2731010 Different Data-Driven Bivariate Statistical Approaches to Landslide Susceptibility Mapping (Uzundere, Erzurum, Turkey)
Authors: Azimollah Aleshzadeh, Enver Vural Yavuz
Abstract:
The main goal of this study is to produce landslide susceptibility maps using different data-driven bivariate statistical approaches; namely, entropy weight method (EWM), evidence belief function (EBF), and information content model (ICM), at Uzundere county, Erzurum province, in the north-eastern part of Turkey. Past landslide occurrences were identified and mapped from an interpretation of high-resolution satellite images, and earlier reports as well as by carrying out field surveys. In total, 42 landslide incidence polygons were mapped using ArcGIS 10.4.1 software and randomly split into a construction dataset 70 % (30 landslide incidences) for building the EWM, EBF, and ICM models and the remaining 30 % (12 landslides incidences) were used for verification purposes. Twelve layers of landslide-predisposing parameters were prepared, including total surface radiation, maximum relief, soil groups, standard curvature, distance to stream/river sites, distance to the road network, surface roughness, land use pattern, engineering geological rock group, topographical elevation, the orientation of slope, and terrain slope gradient. The relationships between the landslide-predisposing parameters and the landslide inventory map were determined using different statistical models (EWM, EBF, and ICM). The model results were validated with landslide incidences, which were not used during the model construction. In addition, receiver operating characteristic curves were applied, and the area under the curve (AUC) was determined for the different susceptibility maps using the success (construction data) and prediction (verification data) rate curves. The results revealed that the AUC for success rates are 0.7055, 0.7221, and 0.7368, while the prediction rates are 0.6811, 0.6997, and 0.7105 for EWM, EBF, and ICM models, respectively. Consequently, landslide susceptibility maps were classified into five susceptibility classes, including very low, low, moderate, high, and very high. Additionally, the portion of construction and verification landslides incidences in high and very high landslide susceptibility classes in each map was determined. The results showed that the EWM, EBF, and ICM models produced satisfactory accuracy. The obtained landslide susceptibility maps may be useful for future natural hazard mitigation studies and planning purposes for environmental protection.Keywords: entropy weight method, evidence belief function, information content model, landslide susceptibility mapping
Procedia PDF Downloads 1321009 Evaluation of the Microscopic-Observation Drug-Susceptibility Assay Drugs Concentration for Detection of Multidrug-Resistant Tuberculosis
Authors: Anita, Sari Septiani Tangke, Rusdina Bte Ladju, Nasrum Massi
Abstract:
New diagnostic tools are urgently needed to interrupt the transmission of tuberculosis and multidrug-resistant tuberculosis. The microscopic-observation drug-susceptibility (MODS) assay is a rapid, accurate and simple liquid culture method to detect multidrug-resistant tuberculosis (MDR-TB). MODS were evaluated to determine a lower and same concentration of isoniazid and rifampin for detection of MDR-TB. Direct drug-susceptibility testing was performed with the use of the MODS assay. Drug-sensitive control strains were tested daily. The drug concentrations that used for both isoniazid and rifampin were at the same concentration: 0.16, 0.08 and 0.04μg per milliliter. We tested 56 M. tuberculosis clinical isolates and the control strains M. tuberculosis H37RV. All concentration showed same result. Of 53 M. tuberculosis clinical isolates, 14 were MDR-TB, 38 were susceptible with isoniazid and rifampin, 1 was resistant with isoniazid only. Drug-susceptibility testing was performed with the use of the proportion method using Mycobacteria Growth Indicator Tube (MGIT) system as reference. The result of MODS assay using lower concentration was significance (P<0.001) compare with the reference methods. A lower and same concentration of isoniazid and rifampin can be used to detect MDR-TB. Operational cost and application can be more efficient and easier in resource-limited environments. However, additional studies evaluating the MODS using lower and same concentration of isoniazid and rifampin must be conducted with a larger number of clinical isolates.Keywords: isoniazid, MODS assay, MDR-TB, rifampin
Procedia PDF Downloads 3201008 Groundwater Recharge Suitability Mapping Using Analytical Hierarchy Process Based-Approach
Authors: Aziza Barrek, Mohamed Haythem Msaddek, Ismail Chenini
Abstract:
Excessive groundwater pumping due to the increasing water demand, especially in the agricultural sector, causes groundwater scarcity. Groundwater recharge is the most important process that contributes to the water's durability. This paper is based on the Analytic Hierarchy Process multicriteria analysis to establish a groundwater recharge susceptibility map. To delineate aquifer suitability for groundwater recharge, eight parameters were used: soil type, land cover, drainage density, lithology, NDVI, slope, transmissivity, and rainfall. The impact of each factor was weighted. This method was applied to the El Fahs plain shallow aquifer. Results suggest that 37% of the aquifer area has very good and good recharge suitability. The results have been validated by the Receiver Operating Characteristics curve. The accuracy of the prediction obtained was 89.3%.Keywords: AHP, El Fahs aquifer, empirical formula, groundwater recharge zone, remote sensing, semi-arid region
Procedia PDF Downloads 1211007 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression
Authors: Wanatchapong Kongkaew
Abstract:
This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness
Procedia PDF Downloads 3091006 A Weighted Approach to Unconstrained Iris Recognition
Authors: Yao-Hong Tsai
Abstract:
This paper presents a weighted approach to unconstrained iris recognition. Nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.Keywords: authentication, iris recognition, adaboost, local binary pattern
Procedia PDF Downloads 2241005 X̄ and S Control Charts based on Weighted Standard Deviation Method
Authors: Derya Karagöz
Abstract:
A Shewhart chart based on normality assumption is not appropriate for skewed distributions since its Type-I error rate is inflated. This study presents X̄ and S control charts for monitoring the process variability for skewed distributions. We propose Weighted Standard Deviation (WSD) X̄ and S control charts. Standard deviation estimator is applied to monitor the process variability for estimating the process standard deviation, in the case of the W SD X̄ and S control charts as this estimator is simple and easy to compute. Unlike the Shewhart control chart, the proposed charts provide asymmetric limits in accordance with the direction and degree of skewness to construct the upper and lower limits. The performances of the proposed charts are compared with other heuristic charts for skewed distributions by using Simulation study. The Simulation studies show that the proposed control charts have good properties for skewed distributions and large sample sizes.Keywords: weighted standard deviation, MAD, skewed distributions, S control charts
Procedia PDF Downloads 3991004 Antibacterial Potentials of the Leaf Extracts of Siam Weed (Chromolaena odorata) on Wound Isolates
Authors: M. E. Abalaka, O. A. Falusi, M. Galadima, D. Damisa
Abstract:
The antimicrobial activity of aqueous, ethanolic and methanolic extracts of Chromolaena odorata (Siam weed) was evaluated against four wound isolates: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae at the concentrations of 200mg/ml, 100mg/ml, 50mg/ml and 25mg/ml respectively. S. aureus and E. coli showed high susceptibility to the various extracts than the other test isolates. The aqueous extract showed activity against Staphylococcus aureus with a mean diameter of zone of inhibition of 16 ± 3.00 at concentration of 200mg/ml and as low as 8 ± 0.00 at concentration of 25mg/ml; E. coli showed susceptibility with a mean diameter of zone of inhibition of 18 ± 2.00 and 10 ± 0.00 at a concentration of 200mg/ml and 25mg/ml respectively. Pseudomonas aeruginosa and Klebsiella pneumoniae were resistant to the aqueous extract. Methanol extract showed activity against Staphylococcus aureus with a mean diameter of zone of inhibition at 28 ± 4.00 and 12 ± 2.30 at a concentration of 200mg/ml and 25mg/ml respectively; while E. coli was susceptible with mean diameter of zone of inhibition of 18 ± 2.00 and as low as 12 ± 0.00 at a concentration of 200mg/ml and 50mg/ml respectively, Pseudomonas aeruginosa showed considerable susceptibility with mean diameter of zone of inhibition of 13 ± 1.00 and 12 ± 0.00 at a concentration of 200mg/ml and 100mg/ml respectively. The ethanol extract showed activity against S. aureus with a mean diameter zone of inhibition of 15 ± 2.00 and 9 ± 0.00 at a concentration of 200mg/ml and 25mg/ml respectively: E. coli showed susceptibility with a mean diameter zone of inhibition of 20 ± 4.00 and 13 ± 2.00 at a concentration of 200mg/ml and 25mg/ml respectively. Pseudomonas aeruginosa showed considerable susceptibility with a mean diameter zone of inhibition of 13 ± 1.00 and 9 ± 0.00 at a concentration of 200mg/ml and 100mg/ml respectively. The results above indicate the efficacy and potency of the crude extracts of Chromolaena odorata leaf on the tested wound isolates.Keywords: antibacterial, Chromolaena odorata, leaf extracts, test isolates
Procedia PDF Downloads 3601003 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients
Authors: Soha A. Bahanshal, Byung G. Kim
Abstract:
Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission
Procedia PDF Downloads 1861002 A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification
Authors: Doyin Afolabi, Phillip Adewole, Oladipupo Sennaike
Abstract:
Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets.Keywords: data mining, decision tree, classification, imbalance dataset
Procedia PDF Downloads 136