Search results for: modal testing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3286

Search results for: modal testing

3256 Analyzing the Effectiveness of Different Testing Techniques in Ensuring Software Quality

Authors: R. M. P. C. Bandara, M. L. L. Weerasinghe, K. T. C. R. Kumari, A. G. D. R. Hansika, D. I. De Silva, D. M. T. H. Dias

Abstract:

Software testing is an essential process in software development that aims to identify defects and ensure that software is functioning as intended. Various testing techniques are employed to achieve this goal, but the effectiveness of these techniques varies. This research paper analyzes the effectiveness of different testing techniques in ensuring software quality. The paper explores different testing techniques, including manual and automated testing, and evaluates their effectiveness in terms of identifying defects, reducing the number of defects in software, and ensuring that software meets its functional and non-functional requirements. Moreover, the paper will also investigate the impact of factors such as testing time, test coverage, and testing environment on the effectiveness of these techniques. This research aims to provide valuable insights into the effectiveness of different testing techniques, enabling software development teams to make informed decisions about the testing approach that is best suited to their needs. By improving testing techniques, the number of defects in software can be reduced, enhancing the quality of software and ultimately providing better software for users.

Keywords: software testing life cycle, software testing techniques, software testing strategies, effectiveness, software quality

Procedia PDF Downloads 76
3255 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition

Procedia PDF Downloads 150
3254 Damage Identification in Reinforced Concrete Beams Using Modal Parameters and Their Formulation

Authors: Ali Al-Ghalib, Fouad Mohammad

Abstract:

The identification of damage in reinforced concrete structures subjected to incremental cracking performance exploiting vibration data is recognized as a challenging topic in the published and heavily cited literature. Therefore, this paper attempts to shine light on the extent of dynamic methods when applied to reinforced concrete beams simulated with various scenarios of defects. For this purpose, three different reinforced concrete beams are tested through the course of the study. The three beams are loaded statically to failure in incremental successive load cycles and later rehabilitated. After each static load stage, the beams are tested under free-free support condition using experimental modal analysis. The beams were all of the same length and cross-sectional area (2.0x0.14x0.09)m, but they were different in concrete compressive strength and the type of damage presented. The experimental modal parameters as damage identification parameters were showed computationally expensive, time consuming and require substantial inputs and considerable expertise. Nonetheless, they were proved plausible for the condition monitoring of the current case study as well as structural changes in the course of progressive loads. It was accentuated that a satisfactory localization and quantification for structural changes (Level 2 and Level 3 of damage identification problem) can only be achieved reasonably through considering frequencies and mode shapes of a system in a proper analytical model. A convenient post analysis process for various datasets of vibration measurements for the three beams is conducted in order to extract, check and correlate the basic modal parameters; namely, natural frequency, modal damping and mode shapes. The results of the extracted modal parameters and their combination are utilized and discussed in this research as quantification parameters.

Keywords: experimental modal analysis, damage identification, structural health monitoring, reinforced concrete beam

Procedia PDF Downloads 259
3253 A Proposal of Multi-modal Teaching Model for College English

Authors: Huang Yajing

Abstract:

Multimodal discourse refers to the phenomenon of using various senses such as hearing, vision, and touch to communicate through various means and symbolic resources such as language, images, sounds, and movements. With the development of modern technology and multimedia, language and technology have become inseparable, and foreign language teaching is becoming more and more modal. Teacher-student communication resorts to multiple senses and uses multiple symbol systems to construct and interpret meaning. The classroom is a semiotic space where multimodal discourses are intertwined. College English multi-modal teaching is to rationally utilize traditional teaching methods while mobilizing and coordinating various modern teaching methods to form a joint force to promote teaching and learning. Multimodal teaching makes full and reasonable use of various meaning resources and can maximize the advantages of multimedia and network environments. Based upon the above theories about multimodal discourse and multimedia technology, the present paper will propose a multi-modal teaching model for college English in China.

Keywords: multimodal discourse, multimedia technology, English education, applied linguistics

Procedia PDF Downloads 55
3252 A Comparative Study of Three Major Performance Testing Tools

Authors: Abdulaziz Omar Alsadhan, Mohd Mudasir Shafi

Abstract:

Performance testing is done to prove the reliability of any software product. There are a number of tools available in the markets that are used to perform performance testing. In this paper we present a comparative study of the three most commonly used performance testing tools. These tools cover the major share of the performance testing market and are widely used. In this paper we compared the tools on five evaluation parameters which are; User friendliness, portability, tool support, compatibility and cost. The conclusion provided at the end of the paper is based on our study and does not support any tool or company.

Keywords: software development, software testing, quality assurance, performance testing, load runner, rational testing, silk performer

Procedia PDF Downloads 602
3251 Structural and Modal Analyses of an s1223 High-Lift Airfoil Wing for Drone Design

Authors: Johnson Okoduwa Imumbhon, Mohammad Didarul Alam, Yiding Cao

Abstract:

Structural analyses are commonly employed to test the integrity of aircraft component systems in the design stage to demonstrate the capability of the structural components to withstand what it was designed for, as well as to predict potential failure of the components. The analyses are also essential for weight minimization and selecting the most resilient materials that will provide optimal outcomes. This research focuses on testing the structural nature of a high-lift low Reynolds number airfoil profile design, the Selig S1223, under certain loading conditions for a drone model application. The wing (ribs, spars, and skin) of the drone model was made of carbon fiber-reinforced polymer and designed in SolidWorks, while the finite element analysis was carried out in ANSYS mechanical in conjunction with the lift and drag forces that were derived from the aerodynamic airfoil analysis. Additionally, modal analysis was performed to calculate the natural frequencies and the mode shapes of the wing structure. The structural strain and stress determined the minimal deformations under the wing loading conditions, and the modal analysis showed the prominent modes that were excited by the given forces. The research findings from the structural analysis of the S1223 high-lift airfoil indicated that it is applicable for use in an unmanned aerial vehicle as well as a novel reciprocating-airfoil-driven vertical take-off and landing (VTOL) drone model.

Keywords: CFRP, finite element analysis, high-lift, S1223, strain, stress, VTOL

Procedia PDF Downloads 219
3250 Deployed Confidence: The Testing in Production

Authors: Shreya Asthana

Abstract:

Testers know that the feature they tested on stage is working perfectly in production only after release went live. Sometimes something breaks in production and testers get to know through the end user’s bug raised. The panic mode starts when your staging test results do not reflect current production behavior. And you started doubting your testing skills when finally the user reported a bug to you. Testers can deploy their confidence on release day by testing on production. Once you start doing testing in production, you will see test result accuracy because it will be running on real time data and execution will be a little faster as compared to staging one due to elimination of bad data. Feature flagging, canary releases, and data cleanup can help to achieve this technique of testing. By this paper it will be easier to understand the steps to achieve production testing before making your feature live, and to modify IT company’s testing procedure, so testers can provide the bug free experience to the end users. This study is beneficial because too many people think that testing should be done in staging but not in production and now this is high time to pull out people from their old mindset of testing into a new testing world. At the end of the day, it all just matters if the features are working in production or not.

Keywords: bug free production, new testing mindset, testing strategy, testing approach

Procedia PDF Downloads 68
3249 Determining the Most Efficient Test Available in Software Testing

Authors: Qasim Zafar, Matthew Anderson, Esteban Garcia, Steven Drager

Abstract:

Software failures can present an enormous detriment to people's lives and cost millions of dollars to repair when they are unexpectedly encountered in the wild. Despite a significant portion of the software development lifecycle and resources are dedicated to testing, software failures are a relatively frequent occurrence. Nevertheless, the evaluation of testing effectiveness remains at the forefront of ensuring high-quality software and software metrics play a critical role in providing valuable insights into quantifiable objectives to assess the level of assurance and confidence in the system. As the selection of appropriate metrics can be an arduous process, the goal of this paper is to shed light on the significance of software metrics by examining a range of testing techniques and metrics as well as identifying key areas for improvement. Additionally, through this investigation, readers will gain a deeper understanding of how metrics can help to drive informed decision-making on delivering high-quality software and facilitate continuous improvement in testing practices.

Keywords: software testing, software metrics, testing effectiveness, black box testing, random testing, adaptive random testing, combinatorial testing, fuzz testing, equivalence partition, boundary value analysis, white box testing

Procedia PDF Downloads 83
3248 Investigating the Abolishment of Virginity Testing in South Africa

Authors: Nqobizwe Mvelo Ngema

Abstract:

This paper argues that the custom of virginity testing has been revived in order to combat against social ills such as unwanted pregnancies, immorality, promiscuity and the spread of HIV/AIDS. However, virginity testing is not free from challenges such as the belief that having sexual intercourse with a virgin can cure men from AIDS, virginity testing is not accurate because there is scientific evidence supporting the fact that there many ways of losing virginity other than sexual intercourse, for example, the usage of tampons and participation in physical activities may tear the hymen. South African parliament took some positive steps in combatting against harm associated with virginity testing by regulating it in the Children’s Act. It is argued, in this paper, that the abolition of virginity testing may lead to paper law and it would be premature to abolish virginity testing in South Africa.

Keywords: equality rights, virginity testing, human rights, interdisciplinary law and legal studies

Procedia PDF Downloads 520
3247 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil

Abstract:

The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability

Procedia PDF Downloads 511
3246 Excitation of Guided Waves in Finite Width Plates Using a Numerical Approach

Authors: Wenbo Duan, Hossein Habibi, Vassilios Kappatos, Cem Selcuk, Tat-Hean Gan

Abstract:

Ultrasonic guided waves are often used to remove ice or fouling in different structures, such as ship hulls, wind turbine blades and so on. To achieve maximum sound power output, it is important that multiple transducers are arranged in a particular way so that a desired mode can be excited. The objective of this paper is thus to provide a theoretical basis for generating a particular mode in a finite width rectangular plate which can be used for removing potential ice or fouling on the plate. The number of transducers and their locations with respect to a particular mode will be investigated, and the link between dispersion curves and practical applications will be explored. To achieve this, a semi-analytical finite element (SAFE) method is used to study the dispersion characteristics of all the modes in the ultrasonic frequency range. The detailed modal shapes will be revealed, and from the modal analysis, the particular mode with the strongest yet continuous transverse and axial displacements on the surfaces of the plate will be chosen for the purpose of removing potential ice or fouling on the plate. The modal analysis is followed by providing information on the number, location and amplitude of transducers needed to excite this particular mode. Modal excitation is then implemented in a standard finite element commercial package, namely COMSOL Multiphysics. Wave motion is visualized in COMSOL, and the mode shapes generated in SAFE is found to be consistent with the mode shapes generated in COMSOL.

Keywords: dispersion analysis, finite width plate, guided wave, modal excitation

Procedia PDF Downloads 467
3245 Variation of the Dynamic Characteristics of a Spindle with the Change of Bearing Preload

Authors: Shinji Oouchi, Hajime Nomura, Kung-Da Wu, Jui-Pin Hung

Abstract:

This paper presents the variation of the dynamic characteristics of a spindle with the change of bearing preload. The correlations between the variation of bearing preload and fundamental modal parameters were first examined by conducting vibration tests on physical spindle units. Experimental measurements show that the dynamic compliance and damping ratio associated with the dominating modes were affected to vary with variation of the bearing preload. When the bearing preload was slightly deviated from a standard value, the modal frequency and damping ability also vary to different extent, which further enable the spindle to perform with different compliance. For the spindle used in this study, a standard preload value set on bearings would enable the spindle to behave a higher stiffness as compared with others with a preload variation. This characteristic can be served as a reference to examine the variation of bearing preload of spindle in assemblage or operation.

Keywords: dynamic compliance, bearing preload, modal damping, standard preload

Procedia PDF Downloads 459
3244 Structural Health Monitoring of Buildings and Infrastructure

Authors: Mojtaba Valinejadshoubi, Ashutosh Bagchi, Osama Moselhi

Abstract:

Structures such as buildings, bridges, dams, wind turbines etc. need to be maintained against various factors such as deterioration, excessive loads, environment, temperature, etc. Choosing an appropriate monitoring system is important for determining any critical damage to a structure and address that to avoid any adverse consequence. Structural Health Monitoring (SHM) has emerged as an effective technique to monitor the health of the structures. SHM refers to an ongoing structural performance assessment using different kinds of sensors attached to or embedded in the structures to evaluate their integrity and safety to help engineers decide on rehabilitation measures. Ability of SHM in identifying the location and severity of structural damages by considering any changes in characteristics of the structures such as their frequency, stiffness and mode shapes helps engineers to monitor the structures and take the most effective corrective actions to maintain their safety and extend their service life. The main objective of this study is to review the overall SHM process specifically determining the natural frequency of an instrumented simply-supported concrete beam using modal testing and finite element model updating.

Keywords: structural health monitoring, natural frequency, modal analysis, finite element model updating

Procedia PDF Downloads 332
3243 An Integrated Mathematical Approach to Measure the Capacity of MMTS

Authors: Bayan Bevrani, Robert L. Burdett, Prasad K. D. V. Yarlagadda

Abstract:

This article focuses upon multi-modal transportation systems (MMTS) and the issues surrounding the determination of system capacity. For that purpose a multi-objective framework is advocated that integrates all the different modes and many different competing capacity objectives. This framework is analytical in nature and facilitates a variety of capacity querying and capacity expansion planning.

Keywords: analytical model, capacity analysis, capacity query, multi-modal transportation system (MMTS)

Procedia PDF Downloads 352
3242 The Value of Computerized Corpora in EFL Textbook Design: The Case of Modal Verbs

Authors: Lexi Li

Abstract:

This study aims to contribute to the field of how computer technology can be exploited to enhance EFL textbook design. Specifically, the study demonstrates how computerized native and learner corpora can be used to enhance modal verb treatment in EFL textbooks. The linguistic focus is will, would, can, could, may, might, shall, should, must. The native corpus is the spoken component of BNC2014 (hereafter BNCS2014). The spoken part is chosen because the pedagogical purpose of the textbooks is communication-oriented. Using the standard query option of CQPweb, 5% of each of the nine modals was sampled from BNCS2014. The learner corpus is the POS-tagged Ten-thousand English Compositions of Chinese Learners (TECCL). All the essays under the “secondary school” section were selected. A series of five secondary coursebooks comprise the textbook corpus. All the data in both the learner and the textbook corpora are retrieved through the concordance functions of WordSmith Tools (version, 5.0). Data analysis was divided into two parts. The first part compared the patterns of modal verbs in the textbook corpus and BNC2014 with respect to distributional features, semantic functions, and co-occurring constructions to examine whether the textbooks reflect the authentic use of English. Secondly, the learner corpus was compared with the textbook corpus in terms of the use (distributional features, semantic functions, and co-occurring constructions) in order to examine the degree of influence of the textbook on learners’ use of modal verbs. Moreover, the learner corpus was analyzed for the misuse (syntactic errors, e.g., she can sings*.) of the nine modal verbs to uncover potential difficulties that confront learners. The results indicate discrepancies between the textbook presentation of modal verbs and authentic modal use in natural discourse in terms of distributions of frequencies, semantic functions, and co-occurring structures. Furthermore, there are consistent patterns of use between the learner corpus and the textbook corpus with respect to the three above-mentioned aspects, except could, will and must, partially confirming the correlation between the frequency effects and L2 grammar acquisition. Further analysis reveals that the exceptions are caused by both positive and negative L1 transfer, indicating that the frequency effects can be intercepted by L1 interference. Besides, error analysis revealed that could, would, should and must are the most difficult for Chinese learners due to both inter-linguistic and intra-linguistic interference. The discrepancies between the textbook corpus and the native corpus point to a need to adjust the presentation of modal verbs in the textbooks in terms of frequencies, different meanings, and verb-phrase structures. Along with the adjustment of modal verb treatment based on authentic use, it is important for textbook writers to take into consideration the L1 interference as well as learners’ difficulties in their use of modal verbs. The present study is a methodological showcase of the combination both native and learner corpora in the enhancement of EFL textbook language authenticity and appropriateness for learners.

Keywords: EFL textbooks, learner corpus, modal verbs, native corpus

Procedia PDF Downloads 120
3241 Multi-Modal Feature Fusion Network for Speaker Recognition Task

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.

Keywords: feature fusion, memory network, multimodal input, speaker recognition

Procedia PDF Downloads 9
3240 Impact of Proposed Modal Shift from Private Users to Bus Rapid Transit System: An Indian City Case Study

Authors: Rakesh Kumar, Fatima Electricwala

Abstract:

One of the major thrusts of the Bus Rapid Transit System is to reduce the commuter’s dependency on private vehicles and increase the shares of public transport to make urban transportation system environmentally sustainable. In this study, commuter mode choice analysis is performed that examines behavioral responses to the proposed Bus Rapid Transit System (BRTS) in Surat, with estimation of the probable shift from private mode to public mode. Further, evaluation of the BRTS scenarios, using Surat’s transportation ecological footprint was done. A multi-modal simulation model was developed in Biogeme environment to explicitly consider private users behaviors and non-linear environmental impact. The data of the different factors (variables) and its impact that might cause modal shift of private mode users to proposed BRTS were collected through home-interview survey using revealed and stated preference approach. A multi modal logit model of mode-choice was then calibrated using the collected data and validated using proposed sample. From this study, a set of perception factors, with reliable and predictable data base, to explain the variation in modal shift behaviour and their impact on Surat’s ecological environment has been identified. A case study of the proposed BRTS connecting the Surat Industrial Hub to the coastal area is provided to illustrate the approach.

Keywords: BRTS, private modes, mode choice models, ecological footprint

Procedia PDF Downloads 513
3239 Ambient Vibration Testing of Existing Buildings in Madinah

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

The elastic period has a primary role in the seismic assessment of buildings. Reliable calculations and/or estimates of the fundamental frequency of a building and its site are essential during analysis and design process. Various code formulas based on empirical data are generally used to estimate the fundamental frequency of a structure. For existing structures, in addition to code formulas and available analytical tools such as modal analyses, various methods of testing including ambient and forced vibration testing procedures may be used to determine dynamic characteristics. In this study, the dynamic properties of the 32 buildings located in the Madinah of Saudi Arabia were identified using ambient motions recorded at several, spatially-distributed locations within each building. Ambient vibration measurements of buildings have been analyzed and the fundamental longitudinal and transverse periods for all tested buildings are presented. The fundamental mode of vibration has been compared in plots with codes formulae (Saudi Building Code, EC8, and UBC1997). The results indicate that measured periods of existing buildings are shorter than that given by most empirical code formulas. Recommendations are given based on the common design and construction practice in Madinah city.

Keywords: ambient vibration, fundamental period, RC buildings, infill walls

Procedia PDF Downloads 257
3238 On the Accuracy of Basic Modal Displacement Method Considering Various Earthquakes

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history seismic analysis is supposed to be the most accurate method to predict the seismic demand of structures. On the other hand, the required computational time of this method toward achieving the result is its main deficiency. While being applied in optimization process, in which the structure must be analyzed thousands of time, reducing the required computational time of seismic analysis of structures makes the optimization algorithms more practical. Apparently, the invented approximate methods produce some amount of errors in comparison with exact time history analysis but the recently proposed method namely, Complete Quadratic Combination (CQC) and Sum Root of the Sum of Squares (SRSS) drastically reduces the computational time by combination of peak responses in each mode. In the present research, the Basic Modal Displacement (BMD) method is introduced and applied towards estimation of seismic demand of main structure. Seismic demand of sampled structure is estimated by calculation of modal displacement of basic structure (in which the modal displacement has been calculated). Shear steel sampled structures are selected as case studies. The error applying the introduced method is calculated by comparison of the estimated seismic demands with exact time history dynamic analysis. The efficiency of the proposed method is demonstrated by application of three types of earthquakes (in view of time of peak ground acceleration).

Keywords: time history dynamic analysis, basic modal displacement, earthquake-induced demands, shear steel structures

Procedia PDF Downloads 351
3237 The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning

Authors: Kyle Saltmarsh

Abstract:

Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage.

Keywords: plates, deformation, acoustic features, machine learning

Procedia PDF Downloads 331
3236 Highly Sensitive Fiber-Optic Curvature Sensor Based on Four Mode Fiber

Authors: Qihang Zeng, Wei Xu, Ying Shen, Changyuan Yu

Abstract:

In this paper, a highly sensitive fiber-optic curvature sensor based on four mode fiber (FMF) is presented and investigated. The proposed sensing structure is constructed by fusing a section of FMF into two standard single mode fibers (SMFs) concatenated with two no core fiber (NCF), i.e., SMF-NCF-FMF-NCF-SMF structure is fabricated. The length of the NCF is very short about 1 millimeter acting as exciting/recoupling the light from/into the core of the SMF, while the FMF is with 3 centimeters long supporting four eigenmodes including LP₀₁, LP₁₁, LP₂₁ and LP₀₂. High core modes in FMF can be effectively stimulated owing to mismatched mode field distribution and the mainly sensing principle is based on modal interferometer spectrum analysis. Different curvatures induce different strains on the FMF such that affecting the modal excitation, resulting spectrum shifts. One can get the curvature value by tracking the wavelength shifting. Experiments have been done to address the sensing performance, which is about 7.8 nm/m⁻¹ within a range of 1.90 m⁻¹~3.18 m⁻¹.

Keywords: curvature, four mode fiber, highly sensitive, modal interferometer

Procedia PDF Downloads 187
3235 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection

Authors: Jiandong Lv, Xingang Wang, Cuiling Shao

Abstract:

The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.

Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer

Procedia PDF Downloads 230
3234 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force

Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh

Abstract:

This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.

Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection

Procedia PDF Downloads 381
3233 Mobile Application Testing Matrix and Challenges

Authors: Bakhtiar Amen, Sardasht Mahmood, Joan Lu

Abstract:

The adoption of smartphones and the usages of mobile applications are increasing rapidly. Consequently, within limited time-range, mobile Internet usages have managed to take over the desktop usages particularly since the first smartphone-touched application released by iPhone in 2007. This paper is proposed to provide solution and answer the most demandable questions related to mobile application automated and manual testing limitations. Moreover, Mobile application testing requires agility and physically testing. Agile testing is to detect bugs through automated tools, whereas the compatibility testing is more to ensure that the apps operates on mobile OS (Operation Systems) as well as on the different real devices. Moreover, we have managed to answer automated or manual questions through two mobile application case studies MES (Mobile Exam System) and MLM (Mobile Lab Mate) by creating test scripts for both case studies and our experiment results have been discussed and evaluated on whether to adopt test on real devices or on emulators? In addition to this, we have introduced new mobile application testing matrix for the testers and some enterprises to obtain knowledge from.

Keywords: mobile app testing, testing matrix, automated, manual testing

Procedia PDF Downloads 471
3232 A New Approach for Assertions Processing during Assertion-Based Software Testing

Authors: Ali M. Alakeel

Abstract:

Assertion-based software testing has been shown to be a promising tool for generating test cases that reveal program faults. Because the number of assertions may be very large for industry-size programs, one of the main concerns to the applicability of assertion-based testing is the amount of search time required to explore a large number of assertions. This paper presents a new approach for assertions exploration during the process of Assertion-Based software testing. Our initial exterminations with the proposed approach show that the performance of Assertion-Based testing may be improved, therefore, making this approach more efficient when applied on programs with large number of assertions.

Keywords: software testing, assertion-based testing, program assertions, generating test

Procedia PDF Downloads 451
3231 Influence of the 3D Printing Parameters on the Dynamic Characteristics of Composite Structures

Authors: Ali Raza, Rūta Rimašauskienė

Abstract:

In the current work, the fused deposition modelling (FDM) technique is used to manufacture PLA reinforced with carbon fibre composite structures with two unique layer patterns, 0°\0° and 0°\90°. The purpose of the study is to investigate the dynamic characteristics of each fabricated composite structure. The Macro Fiber Composite (MFC) is embedded with 0°/0° and 0°/90° structures to investigate the effect of an MFC (M8507-P2 type) patch on vibration amplitude suppression under dynamic loading circumstances. First, modal analysis testing was performed using a Polytec 3D laser vibrometer to identify bending mode shapes, natural frequencies, and vibration amplitudes at the corresponding natural frequencies. To determine the stiffness of each structure, several loads were applied at the free end of the structure, and the deformation was recorded using a laser displacement sensor. The findings confirm that a structure with 0°\0° layers pattern was found to have more stiffness compared to a 0°\90° structure. The maximum amplitude suppression in each structure was measured using a laser displacement sensor at the first resonant frequency when the control voltage signal with optimal phase was applied to the MFC. The results confirm that the 0°/0° pattern's structure exhibits a higher displacement reduction than the 0°/90° pattern. Moreover, stiffer structures have been found to perform amplitude suppression more effectively.

Keywords: carbon fibre composite, MFC, modal analysis stiffness, stiffness

Procedia PDF Downloads 59
3230 Syntactic, Semantic, and Pragmatic Rationalization of Modal Auxiliary Verbs in Akan

Authors: Joana Portia Sakyi

Abstract:

The uniqueness of auxiliary verbs and their contribution to grammar as constituents, which act as preverbs to supply additional grammatical or functional meanings to clauses, are well established. Functionally, they relate clauses to tense, aspect, mood, voice, emphasis, and modality, along with the main verbs conveying the appropriate lexical content. There has been an issue in Akan grammar vis-à-vis the status of auxiliary verbs, in terms of whether Akan has auxiliaries or not and even which forms are to be regarded as auxiliaries. We investigate the syntactic, semantic, and pragmatic components of expressions and claim that Akan has auxiliary verbs that contribute the functional or grammatical meaning of modality, tense/aspect, etc., to clauses they occur in. Essentially, we use a self-created corpus data to consider the affix bέ- ‘may’, ‘must’, ‘should’; the form tùmí ‘can’, ‘be able to’; mà ‘to let’, ‘to allow’, ‘to permit’, ‘to make’, or ‘to cause’ someone to do something; the multi-word forms ὲsὲ sέ ‘must’, ‘should’ or ‘have to’ and ètwà sέ ‘must’, ‘should’ or ‘have to’, and assert that they are legitimate modal auxiliaries conveying epistemic, deontic, and dynamic modalities, as well as other meanings in the language.

Keywords: Akan, modality, modal auxiliaries, semantics

Procedia PDF Downloads 72
3229 Numerical Verification of a Backfill-Rectangular Tank-Fluid System

Authors: Ramazan Livaoğlu, Tufan Çakır

Abstract:

The performance of rectangular tanks during earthquakes has been observed to depend significantly on the existence of water in the container and the presence of the backfill acting on tank wall. Therefore, in design of rectangular tanks, the topics of fluid-structure-backfill interactions and determination of modal characteristics of the interaction system have traditionally been one of the great theoretical and practical controversy. Although finite element method has been and will continue to be used to a significant extent in treating the response of the system, experimental verification of numerical models remains prerequisite for their adoption and reliable application in practice. Thus, in this study, the numerical and experimental investigations were performed on the backfill-exterior wall-fluid interaction system. Firstly, three dimensional finite element model (3D-FEM) was developed to acquire modal frequencies and mode shapes of the system by means of ANSYS. Secondly, a series of in-situ tests were fulfilled to define modal characteristics of same system to determine the applicability of the FEM to a real physical situation under field conditions. Finally, comparing the theoretical predictions from the model to results from experimental measurement, a close agreement was found between theory and experiment. Thus, it can be easily stated that experimental verification provides strong support for the use of proposed model in further investigations.

Keywords: fluid-structure interaction, modal analysis, rectangular tank, soil structure interaction

Procedia PDF Downloads 388
3228 Validating the Contract between Microservices

Authors: Parveen Banu Ansari, Venkatraman Chinnappan, Paramasivam Shankar

Abstract:

Contract testing plays a pivotal role in the current landscape of microservices architecture. Testing microservices at the initial stages of development helps to identify and rectify issues before they escalate to higher levels, such as UI testing. By validating microservices through contract testing, you ensure the integration quality of APIs, enhancing the overall reliability and performance of the application. Contract testing, being a collaborative effort between testers and developers, ensures that the microservices adhere to the specified contracts or agreements. This proactive approach significantly reduces defects, streamlines the development process, and contributes to the overall efficiency and robustness of the application. In the dynamic and fast-paced world of digital applications, where microservices are the building blocks, embracing contract testing is indeed a strategic move for ensuring the quality and reliability of the entire system.

Keywords: validation, testing, contract, agreement, microservices

Procedia PDF Downloads 53
3227 Methodology for Various Sand Cone Testing

Authors: Abel S. Huaynacho, Yoni D. Huaynacho

Abstract:

The improvement of procedure test ASTM D1556, plays an important role in the developing of testing in field to obtain a higher quality of data QA/QC. The traditional process takes a considerable amount of time for only one test. Even making various testing are tasks repeating and it takes a long time to obtain better results. Moreover, if the adequate tools the help these testing are not properly managed, the improvement in the development for various testing could be stooped. This paper presents an optimized process for various testing ASTM D1556 which uses an initial standard process to another one the uses a simpler and improved management tools.

Keywords: cone sand test, density bulk, ASTM D1556, QA/QC

Procedia PDF Downloads 129