Search results for: coconut shells
239 Buckling Analysis of Composite Shells under Compression and Torsional Loads: Numerical and Analytical Study
Authors: Güneş Aydın, Razi Kalantari Osgouei, Murat Emre Öztürk, Ahmad Partovi Meran, Ekrem Tüfekçi
Abstract:
Advanced lightweight laminated composite shells are increasingly being used in all types of modern structures, for enhancing their structural efficiency and performance. Such thin-walled structures are susceptible to buckling when subjected to various loading. This paper focuses on the buckling of cylindrical shells under axial compression and torsional loads. Effects of fiber orientation on the maximum buckling load of carbon fiber reinforced polymer (CFRP) shells are optimized. Optimum fiber angles have been calculated analytically by using MATLAB program. Numerical models have been carried out by using Finite Element Method program ABAQUS. Results from analytical and numerical analyses are also compared.Keywords: buckling, composite, cylindrical shell, finite element, compression, torsion, MATLAB, optimization
Procedia PDF Downloads 589238 Active Control of Multiferroic Composite Shells Using 1-3 Piezoelectric Composites
Authors: S. C. Kattimani
Abstract:
This article deals with the analysis of active constrained layer damping (ACLD) of smart multiferroic or magneto-electro-elastic doubly curved shells. The kinematics of deformations of the multiferroic doubly curved shell is described by a layer-wise shear deformation theory. A three-dimensional finite element model of multiferroic shells has been developed taking into account the electro-elastic and magneto-elastic couplings. A simple velocity feedback control law is employed to incorporate the active damping. Influence of layer stacking sequence and boundary conditions on the response of the multiferroic doubly curved shell has been studied. In addition, for the different orientation of the fibers of the constraining layer, the performance of the ACLD treatment has been studied.Keywords: active constrained layer damping (ACLD), doubly curved shells, magneto-electro-elastic, multiferroic composite, smart structures
Procedia PDF Downloads 312237 Hydrogen Storage in Carbonized Coconut Meat (Kernel)
Authors: Viney Dixit, Rohit R. Shahi, Ashish Bhatnagar, P. Jain, T. P. Yadav, O. N. Srivastava
Abstract:
Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen absorption kinetics and low cost. However, these materials suffer from low hydrogen storage capacity at room temperature. The aim of the present study is to synthesize carbon based material which shows moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of natural precursor coconut kernel is studied in this work. The hydrogen storage measurement reveals that the as-synthesized materials have good hydrogen adsorption and desorption capacity with fast kinetics. The synthesized material absorbs 8 wt.% of hydrogen at liquid nitrogen temperature and 2.3 wt.% at room temperature. This could be due to the presence of certain elements (KCl, Mg, Ca) which are confirmed by TEM.Keywords: coconut kernel, carbonization, hydrogenation, KCl, Mg, Ca
Procedia PDF Downloads 422236 Nonlinear Free Vibrations of Functionally Graded Cylindrical Shells
Authors: Alexandra Andrade Brandão Soares, Paulo Batista Gonçalves
Abstract:
Using a modal expansion that satisfies the boundary and continuity conditions and expresses the modal couplings characteristic of cylindrical shells in the nonlinear regime, the equations of motion are discretized using the Galerkin method. The resulting algebraic equations are solved by the Newton-Raphson method, thus obtaining the nonlinear frequency-amplitude relation. Finally, a parametric analysis is conducted to study the influence of the geometry of the shell, the gradient of the functional material and vibration modes on the degree and type of nonlinearity of the cylindrical shell, which is the main contribution of this research work.Keywords: cylindrical shells, dynamics, functionally graded material, nonlinear vibrations
Procedia PDF Downloads 66235 Utilizing Quicklime (Calcium Oxide) for Self-Healing Properties in Innovation of Coconut Husk Fiber Bricks
Authors: Christian Gabriel Mariveles, Darelle Jay Gallardo, Leslie Dayaoen, Laurenz Paul Diaz
Abstract:
True experimental research with descriptive analysis was conducted. Utilizing Quicklime (Calcium Oxide) for self-healing properties of coconut husk fibre concrete brick. There are 2 setups established: the first one has the 1:1:2 ratio of calcium oxide, cement and sand, and the second one has a 2:1:2 ratio of the same variables. The bricks are made from the residences along Barangay Greater Lagro. The mixture of sand and cement is mixed with coconut husk fibers and then molded with different ratios in the molder. After the drying of cement, the researchers tested the bricks in the laboratory for compressive strength. The brick with the highest PSI is picked by the researchers to drop into freefall testing, and it makes remarkable remarks as it is deformed after dropping to different heights with a maximum of 20 feet. Unfortunately, the self-healing capabilities were not observed during the 12 weeks of monitoring. However, the brick was weighed after 12 weeks of monitoring, and it increased in weight by 0.030 kg. from 1.833 kg. to 1.863 kg. meaning that this ratio 2 has the potential to self-heal, but 12 weeks of monitoring by the researchers is not enough to conclude that it has a significant difference.Keywords: self healing, coconut husk bricks, research, calcium oxide, utilizing quicklime
Procedia PDF Downloads 43234 Ferric Sulphate Catalyzed Esterification of High Free Fatty Acids Content Used Coconut Oil for Biodiesel Synthesis
Authors: G. N. Maheshika, J. A. R. H. Wijerathna, S. H. P. Gunawardena
Abstract:
Feedstock with high free fatty acids (FFAs) content can be successfully employed for biodiesel synthesis once the high FFA content is reduced to the desired levels. In the present study, the applicability of ferric sulphate as the solid acid catalyst for esterification of FFA in used coconut oil was evaluated at varying catalyst concentration and methanol:oil molar ratios. 1.25, 2.5, 3.75 and 5.0% w/w Fe2(SO4)3 on oil basis was used at methanol:oil ratios of 3:1, 4.5:1, and 6:1 and at the reaction temperature of 60 0C. The FFA reduction increased with the increase in catalyst and methanol:oil molar ratios while the time requirement to reach the esterification equilibrium reduced. Satisfactory results for esterification could be obtained within a small reaction period in the presence of only a small amount of Fe2(SO4)3 catalyst concentration and at low reaction temperature, which then can be subjected for trans-esterification process. At the end of the considering reaction period the solid Fe2(SO4)3 catalyst could be separated from the reaction system. The economics of the Fe2(SO4)3 catalyzed esterification of high FFA content used coconut oil for biodiesel is at favorable conditions.Keywords: biodiesel, esterification, ferric sulphate, Free fatty acids, used coconut oil
Procedia PDF Downloads 548233 Bioremediation of Sea Food Waste in Solid State Fermentation along with Production of Bioactive Agents
Authors: Rahul Warmoota, Aditya Bhardwaj, Steffy Angural, Monika Rana, Sunena Jassal, Neena Puri, Naveen Gupta
Abstract:
Seafood processing generates large volumes of waste products such as skin, heads, tails, shells, scales, backbones, etc. Pollution due to conventional methods of seafood waste disposal causes negative implications on the environment, aquatic life, and human health. Moreover, these waste products can be used for the production of high-value products which are still untapped due to inappropriate management. Paenibacillus sp. AD is known to act on chitinolytic and proteinaceous waste and was explored for its potential to degrade various types of seafood waste in solid-state fermentation. Effective degradation of seafood waste generated from a variety of sources such as fish scales, crab shells, prawn shells, and a mixture of such wastes was observed. 30 to 40 percent degradation in terms of decrease in the mass was achieved. Along with the degradation, chitinolytic and proteolytic enzymes were produced, which can have various biotechnological applications. Apart from this, value-added products such as chitin oligosaccharides and peptides of various degrees of polymerization were also produced, which can be used for various therapeutic purposes. Results indicated that Paenibacillus sp. AD can be used for the development of a process for the infield degradation of seafood waste.Keywords: chitin, chitin-oligosaccharides, chitinase, protease, biodegradation, crab shells, prawn shells, fish scales
Procedia PDF Downloads 98232 Electrochemical Study of Al-Doped K₂CO₃ Activated Coconut Husk Carbon-Based Composite Anode Material for Battery Applications
Authors: Alpha Matthew
Abstract:
The Composites of Al-Doped K₂CO₃ activated coconut husk carbon, Al₀.₁:(K₂CO₃C)₀.₉ and AI₀.₃:(K₂CO₃C)₀.₇, were prepared using the hydrothermal method and drop casting deposition technique. The electrochemical performance of the Al-doped K₂CO₃ activated coconut husk carbon composite as a promising anode material for lithium-ion batteries was characterised by cyclic voltammetry analysis, electrochemical impedance spectroscopy, and galvanostatic charge discharge analysis. The charges that are retained in the anode material during charging showed a linear decline in charge capacity as the charging current intensity increased. Ionic polarisation was the reason for the observed drop in the charge and discharge capabilities at the current density of 5 A/g. Having greater specific capacitance and energy density, the composite Al₀.₁:(K₂CO₃C)₀.₉ is a better anode material for electrochemical applications compared to AI₀.₃:(K₂CO₃C)₀.₇, also its comparatively higher power density at a scan rate of 5 mV/s is mostly explained by its lower equivalent series resistance.Keywords: coconut carbon husk, power density, energy density, battery, anode electrode
Procedia PDF Downloads 26231 The Design and Development of Foot Massage Plate from Coconut Shell
Authors: Chananchida Yuktirat, Nichanant Sermsri
Abstract:
The objectives of this research were to design and develop foot massage plate from coconut shell. The research investigated on the satisfaction of the users on the developed foot massage plate on 4 aspects; usage, practical in use, safety, and materials & production process. The sample group included 64 people joining the service at Wat Paitan Health Center, Bangkok. The samples were randomly tried on the massage plate and evaluated according to the 4 aspects. The data were analyzed to find mean, percentage, and standard deviation. The result showed that the overall satisfaction was at good level (mean = 3.80). When considering in details, it was found that the subjects reported their highest satisfaction on the practical usage (mean = 4.16), followed by safety (mean = 3.82); then, materials and production process (mean = 3.78). The least satisfaction aspect was on function and usage (mean = 3.45) or moderate level.Keywords: coconut shell, design, foot massage, foot massage plate
Procedia PDF Downloads 240230 Partial Replacement for Cement and Coarse Aggregate in Concrete by Using Egg Shell Powder and Coconut Shell
Authors: A. K. Jain, M. C. Paliwal
Abstract:
The production of cement leads to the emission of large amounts of carbon-dioxide gas into the atmosphere which is a major contributor for the greenhouse effect and the global warming; hence it is mandatory either to quest for another material or partly replace it with some other material. According to the practical demonstrations and reports, Egg Shell Powder (ESP) can be used as a binding material for different field applications as it contains some of the properties of lime. It can partially replace the cement and further; it can be used in different proportion for enhancing the performance of cement. It can be used as a first-class alternative, for material reuse and waste recycling practices. Eggshell is calcium rich and analogous to limestone in chemical composition. Therefore, use of eggshell waste for partial replacement of cement in concrete is feasible. Different studies reveal that plasticity index of the soil can be improved by adding eggshell wastes in all the clay soil and it has wider application in construction projects including earth canals and earthen dams. The scarcity of aggregates is also increasing nowadays. Utilization of industrial waste or secondary materials is increasing in different construction applications. Coconut shell was successfully used in the construction industry for partial or full replacement for coarse aggregates. The use of coconut shell gives advantage of using waste material to partially replace the coarse aggregate. Studies carried on coconut shell indicate that it can partially replace the aggregate. It has good strength and modulus properties along with the advantage of high lignin content. It absorbs relatively low moisture due to its low cellulose content. In the paper, study carried out on eggshell powder and coconut shell will be discussed. Optimum proportions of these materials to be used for partial replacement of cement and aggregate will also be discussed.Keywords: greenhouse, egg shell powder, binding material, aggregates, coconut shell, coarse aggregates
Procedia PDF Downloads 257229 Theoretical-Experimental Investigations on Free Vibration of Glass Fiber/Polyester Composite Conical Shells Containing Fluid
Authors: Tran Ich Thinh, Nguyen Manh Cuong
Abstract:
Free vibrations of partial fluid-filled composite truncated conical shells are investigated using the Dynamic Stiffness Method (DSM) or Continuous Element Method (CEM) based on the First Order Shear Deformation Theory (FSDT) and non-viscous incompressible fluid equations. Numerical examples are given for analyzing natural frequencies and harmonic responses of clamped-free conical shells partially and completely filled with fluid. To compare with the theoretical results, detailed experimental results have been obtained on the free vibration of a clamped-free conical shells partially filled with water by using a multi-vibration measuring machine (DEWEBOOK-DASYLab 5.61.10). Three glass fiber/polyester composite truncated cones with the radius of the larger end 285 mm, thickness 2 mm, and the cone lengths along the generators are 285 mm, 427.5 mm and 570 mm with the semi-vertex angles 27, 14 and 9 degrees respectively were used, and the filling ratio of the contained water was 0, 0.25, 0.50, 0.75 and 1.0. The results calculated by proposed computational model for studied composite conical shells are in good agreement with experiments. Obtained results indicate that the fluid filling can reduce significantly the natural frequencies of composite conical shells. Parametric studies including circumferential wave number, fluid depth and cone angles are carried out.Keywords: dynamic stiffness method, experimental study, free vibration, fluid-shell interaction, glass fiber/polyester composite conical shell
Procedia PDF Downloads 499228 Nanomechanical Properties of Coconut Shell Ash Blended Cement Mortar
Authors: Kumator Taku, Bilkisu Amartey
Abstract:
This research used Grid indentation technique to investigate the effect of the addition of Coconut Shell Ash (CSA) on the nanomechanical properties of the main phases of the hydrated cement paste. Portland cement was partially replaced with 15% CSA at a water-binder ratio of 0.5 and cubes casted and cured for 28 days after which they were polished to reduce surface roughness to the barest minimum. The result of nanoindentation shows that addition of 15% CSA to cement paste transforms portlandite to C-S-H by the pozzolanic reaction. More so, there is reduced porosity and a reduction in the volume of CH by the addition of the CSA. Even though the addition of 15% CSA does not drastically change the average values of the hardness and elastic modulus of the two phases of the C-S-H, it greatly modifies their relative proportions, leading to the production of more HD C-S-H. Overall, incorporating 15%CSA to cement mortar improves the Nanomechanical properties of the four main phases of the hydrated cement paste.Keywords: Coconut Shell Ash, Elastic Modulus, Hardness, Nanoindentation, Porosity
Procedia PDF Downloads 130227 Brand Creation for Community Product: A Case Study at Samut Songkram, Thailand
Authors: Cholpassorn Sitthiwarongchai
Abstract:
The purposes of this paper were to search for the uniqueness of community products from Bang Khonthi District, Samut Songkram Province, Thailand and to create a proper brand for the community products. Four important questions were asked to identify the uniqueness of the community products. The first question: What is the brand of coconut sugar that community wants to imply? The answer was 100 percent authentic coconut sugar. The second question: What is the nature of this product? The answer was that it is a natural product without any harmful chemical. The third question is: Who are the target customers? The answer was that homemakers and tourists are target customers. The fourth question: What is the brand guarantee to customers? The answer was that the brand guarantees that the product is 100 percent natural process with a high quality and it is a community production. The findings revealed that in terms of product, customers rated quality and package as the two most important factors. In terms of price, customers rated lower price and a visible label as the two most important factors. In terms of place, customer rated layout and the cleanliness of the place as the two most important factors. In terms of promotion, customer rated public relations and brochure at the store as the most important factors. From the group discussion, the local community agreed that the brand for the community coconut sugar of Salapi community should be a picture of a green coconut tree and yellow color background. This brand implies the strength of community and authentic of the high quality natural product.Keywords: coconut sugar, community brand, Samut Songkram, natural product
Procedia PDF Downloads 397226 Coconut Based Sustainable Agri-Silvicultural System: Success Story from Sri Lanka
Authors: Thavananthan Sivananthawerl
Abstract:
Coconut palm is existing for more than 2000 years in Sri Lanka. However, cultivation on a large scale (plantation) began only in the 19th century. Due to different light perceptions during the growth stages of palm, there is a huge potential to grow crops in-between rows of coconut plants which are grown with wider, fixed spacing. Intercropping under coconut will have multiple benefits such as increasing soil fertility, increasing sunlight utilization, increasing total crop productivity, increasing income & profit, maximum use of resources, reducing the risk, and increasing food security. Growing potential annual, agricultural intercrops could be classified as ‘agri-silvicultural’ system. This is the best agri-silvicultural system that can be named under any perennial crop system in Sri Lanka. In the late 1970’s cassava, pepper and cacao are the major intercrops under the coconut plantations. At the early ages of the palm (<5 years) light-loving crops such as pineapple, passion, papaya, and cassava are recommended and preferred by the cultivators. In between 5-20 years of age, the availability of light is very low, and therefore shade tolerant/loving crops (pasture, yam, ginger) could be used as the intercrops. However, after 20 years of age (>20 years) canopy is getting small, and the light availability on the ground increases. So, light demanding crops such as pepper, banana, pineapple, betel, cassava, and seasonal crops could be grown successfully. Even though this is a sustainable system in several aspects, there are potential challenges ahead to the system. The major ones are land fragmentation and infrastructure development. The other factors are drought, lack of financial support, price instability of the intercrops, availability of improved planting materials, and development of dwarf varieties which reduces the light.Keywords: coconut cultivation, agri-silviculture, intercrop, sunlight, annuals, sustainability
Procedia PDF Downloads 123225 Decarboxylation of Waste Coconut Oil and Comparison of Acid Values
Authors: Pabasara H. Gamage, Sisira K. Weliwegamage, Sameera R. Gunatilake, Hondamuni I. C De Silva, Parakrama Karunaratne
Abstract:
Green diesel is an upcoming category of biofuels, which has more practical advantages than biodiesel. Production of green diesel involves production of hydrocarbons from various fatty acid sources. Though green diesel is chemically similar to fossil fuel hydrocarbons, it is more environmentally friendly. Decarboxylation of fatty acid sources is one of green diesel production methods and is less expensive and more energy efficient compared to hydrodeoxygenation. Free fatty acids (FFA), undergo decarboxylation readily than triglycerides. Waste coconut oil, which is a rich source of FFA, can be easily decarboxylated than other oils which have lower FFA contents. These free fatty acids can be converted to hydrocarbons by decarboxylation. Experiments were conducted to carry out decarboxylation of waste coconut oil in a high pressure hastealloy reactor (Toption Goup LTD), in the presence of soda lime and mixtures of soda lime and alumina. Acid value (AV) correlates to the amount of FFA available in a sample of oil. It can be shown that with the decreasing of AV, FFAs have converted to hydrocarbons. First, waste coconut oil was reacted with soda lime alone, at 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure for 2 hours. AVs of products at different temperatures were compared. AV of products decreased with increasing temperature. Thereafter, different mixtures of soda lime and alumina (100% Soda lime, 1:1 soda lime and alumina and 100% alumina) were employed at temperatures 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure. The lowest AV of 2.99±0.03 was obtained when 1:1 soda lime and alumina were employed at 250 °C. It can be concluded with respect to the AV that the amount of FFA decreased when decarboxylation temperature was increased. Soda lime:alumina 1:1 mixture showed the lowest AV among the compositions studied. These findings lead to formulate a method to successfully synthesize hydrocarbons by decarboxylating waste coconut oil in the presence of soda lime and alumina (1:1) at elevated tempertaures such as 250 °C.Keywords: acid value, free fatty acids, green diesel, high pressure reactor, waste coconut oil
Procedia PDF Downloads 301224 Effect of Particle Size and Concentration of Pomegranate (Punica granatum l.) Peel Powder on Suppression of Oxidation of Edible Plant Oils
Authors: D. G. D. C. L. Munasinghe, M. S. Gunawardana, P. H. P. Prasanna, C. S. Ranadheera, T. Madhujith
Abstract:
Lipid oxidation is an important process that affects the shelf life of edible oils. Oxidation produces off flavors, off odors and chemical compounds that lead to adverse health effects. Chemical mechanisms such as autoxidation, photo-oxidation and thermal oxidation are responsible for lipid oxidation. Refined, Bleached and Deodorized (RBD) coconut oil, Virgin Coconut Oil (VCO) and corn oil are widely used plant oils. Pomegranate fruit is known to possess high antioxidative efficacy. Peel of pomegranate contains high antioxidant activity than aril and pulp membrane. The study attempted to study the effect of particle size and concentration of pomegranate peel powder on suppression of oxidation of RBD coconut oil, VCO and corn oil. Pomegranate peel powder was incorporated into each oil sample as micro (< 250 µm) and nano particles (280 - 300 nm) at 100 ppm and 200 ppm concentrations. The control sample of each oil was prepared, devoid of pomegranate peel powder. The stability of oils against autoxidation was evaluated by storing oil samples at 60 °C for 28 days. The level of oxidation was assessed by peroxide value and thiobarbituric acid reactive substances on 0,1,3,5,7,14 and 28 day, respectively. VCO containing pomegranate particles of 280 - 300 nm at 200 ppm showed the highest oxidative stability followed by RBD coconut oil and corn oil. Results revealed that pomegranate peel powder with 280 - 300 nm particle size at 200 ppm concentration was the best in mitigating oxidation of RBD coconut oil, VCO and corn oil. There is a huge potential of utilizing pomegranate peel powder as an antioxidant agent in reducing oxidation of edible plant oils.Keywords: antioxidant, autoxidation, micro particles, nano particles, pomegranate peel powder
Procedia PDF Downloads 453223 Use of Coconut Shell as a Replacement of Normal Aggregates in Rigid Pavements
Authors: Prakash Parasivamurthy, Vivek Rama Das, Ravikant Talluri, Veena Jawali
Abstract:
India ranks among third in the production of coconut besides Philippines and Indonesia. About 92% of the total production in the country is contributed from four southern states especially, Kerala (45.22%), Tamil Nadu (26.56%), Karnataka (10.85%), and Andhra Pradesh (8.93%). Other states, such as Goa, Maharashtra, Odisha, West Bengal, and those in the northeast (Tripura and Assam) account for the remaining 8.44%. The use of coconut shell as coarse aggregate in concrete has never been a usual practice in the industry, particularly in areas where light weight concrete is required for non-load bearing walls, non-structural floors, and strip footings. The high cost of conventional building materials is a major factor affecting construction delivery in India. In India, where abundant agricultural and industrial wastes are discharged, these wastes can be used as potential material or replacement material in the construction industry. This will have double the advantages viz., reduction in the cost of construction material and also as a means of disposal of wastes. Therefore, an attempt has been made in this study to utilize the coconut shell (CS) as coarse aggregate in rigid pavement. The present study was initiated with the characterization of materials by the basic material testing. The casted moulds are cured and tests are conducted for hardened concrete. The procedure is continued with determination of fck (Characteristic strength), E (Modulus of Elasticity) and µ (Poisson Value) by the test results obtained. For the analytical studies, rigid pavement was modeled by the KEN PAVE software, finite element software developed specially for road pavements and simultaneously design of rigid pavement was carried out with Indian standards. Results show that physical properties of CSAC (Coconut Shell Aggregate Concrete) with 10% replacement gives better results. The flexural strength of CSAC is found to increase by 4.25% as compared to control concrete. About 13 % reduction in pavement thickness is observed using optimum coconut shell.Keywords: coconut shell, rigid pavement, modulus of elasticity, poison ratio
Procedia PDF Downloads 237222 Repeated Batch Production of Biosurfactant from Pseudomonas mendocina NK41 Using Agricultural and Agro-Industrial Wastes as Substate
Authors: Natcha Ruamyat, Nichakorn Khondee
Abstract:
The potential of an alkaliphilic bacteria isolated from soil in Thailand to utilized agro-industrial and agricultural wastes for the production of biosurfactants was evaluated in this study. Among five isolates, Pseudomonas mendocina NK41 used soapstock as substrate showing a high biosurfactant concentration of 7.10 g/L, oil displacement of 97.8 %, and surface tension reduction to 29.45 mN/m. Various agricultural residues were applied as mixed substrates with soapstock to enhance the synthesis of biosurfactants. The production of biosurfactant and bacterial growth was found to be the highest with coconut oil cake as compared to Sacha inchi shell, coconut kernel cake, and durian shell. The biodegradability of agro-industrial wastes was better than agricultural wastes, which allowed higher bacterial growth. The pretreatment of coconut oil cake by combined alkaline and hydrothermal method increased the production of biosurfactant from 12.69 g/L to 13.82 g/L. The higher microbial accessibility was improved by the swelling of the alkali-hydrothermal pretreated coconut oil cake, which enhanced its porosity and surface area. The pretreated coconut oil cake was reused twice in the repeated batch production, showing higher biosurfactant concentration up to 16.94 g/L from the second cycle. These results demonstrated the capability of using lignocellulosic wastes from agricultural and agro-industrial activities to produce a highly valuable biosurfactant. High biosurfactant yield with low-cost substrate reveals its potential towards further commercialization of biosurfactant on large-scale production.Keywords: alkaliphilic bacteria, agricultural/agro-industrial wastes, biosurfactant, combined alkaline-hydrothermal pretreatment
Procedia PDF Downloads 258221 Preparation of Activated Carbon From Waste Feedstock: Activation Variables Optimization and Influence
Authors: Oluwagbemi Victor Aladeokin
Abstract:
In the last decade, the global peanut cultivation has seen increased demand, which is attributed to their health benefits, rising to ~ 41.4 MMT in 2019/2020. Peanut and other nutshells are considered as waste in various parts of the world and are usually used for their fuel value. However, this agricultural by-product can be converted to a higher value product such as activated carbon. For many years, due to the highly porous structure of activated carbon, it has been widely and effectively used as an adsorbent in the purification and separation of gases and liquids. Those used for commercial purposes are primarily made from a range of precursors such as wood, coconut shell, coal, bones, etc. However, due to difficulty in regeneration and high cost, various agricultural residues such as rice husk, corn stalks, apricot stones, almond shells, coffee beans, etc, have been explored to produce activated carbons. In the present study, the potential of peanut shells as precursors in the production of activated carbon and their adsorption capacity is investigated. Usually, precursors used to produce activated carbon have carbon content above 45 %. A typical raw peanut shell has 42 wt.% carbon content. To increase the yield, this study has employed chemical activation method using zinc chloride. Zinc chloride is well known for its effectiveness in increasing porosity of porous carbonaceous materials. In chemical activation, activation temperature and impregnation ratio are parameters commonly reported to be the most significant, however, this study has also studied the influence of activation time on the development of activated carbon from peanut shells. Activated carbons are applied for different purposes, however, as the application of activated carbon becomes more specific, an understanding of the influence of activation variables to have a better control of the quality of the final product becomes paramount. A traditional approach to experimentally investigate the influence of the activation parameters, involves varying each parameter at a time. However, a more efficient way to reduce the number of experimental runs is to apply design of experiment. One of the objectives of this study is to optimize the activation variables. Thus, this work has employed response surface methodology of design of experiment to study the interactions between the activation parameters and consequently optimize the activation parameters (temperature, impregnation ratio, and activation time). The optimum activation conditions found were 485 °C, 15 min and 1.7, temperature, activation time, and impregnation ratio respectively. The optimum conditions resulted in an activated carbon with relatively high surface area ca. 1700 m2/g, 47 % yield, relatively high density, low ash, and high fixed carbon content. Impregnation ratio and temperature were found to mostly influence the final characteristics of the produced activated carbon from peanut shells. The results of this study, using response surface methodology technique, have revealed the potential and the most significant parameters that influence the chemical activation process, of peanut shells to produce activated carbon which can find its use in both liquid and gas phase adsorption applications.Keywords: chemical activation, fixed carbon, impregnation ratio, optimum, surface area
Procedia PDF Downloads 146220 Effect of Chemical Modifier on the Properties of Polypropylene (PP) / Coconut Fiber (CF) in Automotive Application
Authors: K. Shahril, A. Nizam, M. Sabri, A. Siti Rohana, H. Salmah
Abstract:
Chemical modifier (Acrylic Acid) is used as filler treatment to improve mechanical properties and swelling behavior of polypropylene/coconut fiber (PP/CF) composites by creating more adherent bonding between CF filler and PP Matrix. Treated (with chemical modifier) and untreated (without chemical modifier) composites were prepared in the formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical testing indicates that composite with 10 wt% of untreated composite has the optimum value of tensile strength, and the composite with chemical modifier shows the tensile strength was increased. By increasing of filler loading, elastic modulus was increased while the elongation at brake was decreased. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of chemical modifier reduced the equilibrium water absorption percentage.Keywords: coconut fiber, polypropylene, acid acrylic, ethanol, chemical modifier, composites
Procedia PDF Downloads 461219 Renewable Energy from Local Waste for Producing of Processed Agricultural Products
Authors: Ruedee Niyomrath, Somboon Sarasit, Chaisri Tharaswatpipat
Abstract:
This research aims to study the potential of local waste material in quantity and quality. The potential for such local forms of waste material used as renewable energy for the production of processed agricultural products. The results of this study are useful to producers of agricultural products to use fuel that in local, reduce production costs, and conservation. The results showed that Samut Songkhram is a small province located in the central Thailand, sea area, and subdivided into 3 districts. This province has a population of 80 percent of farmers and agriculture with 50 percent of the area planted to coconut growing. Productivity of coconut help create value for the primacy of the province. Waste materials from coconut have quantity and quality potentials for processing biomass into charcoal as the renewable energy for the production of processed agricultural products.Keywords: waste, renewable energy, producing of product, processed agricultural products
Procedia PDF Downloads 441218 Finite Element Model to Investigate the Dynamic Behavior of Ring-Stiffened Conical Shell Fully and Partially Filled with Fluid
Authors: Mohammadamin Esmaeilzadehazimi, Morteza Shayan Arani, Mohammad Toorani, Aouni Lakis
Abstract:
This study uses a hybrid finite element method to predict the dynamic behavior of both fully and partially-filled truncated conical shells stiffened with ring stiffeners. The method combines classical shell theory and the finite element method, and employs displacement functions derived from exact solutions of Sanders' shell equilibrium equations for conical shells. The shell-fluid interface is analyzed by utilizing the velocity potential, Bernoulli's equation, and impermeability conditions to determine an explicit expression for fluid pressure. The equations of motion presented in this study apply to both conical and cylindrical shells. This study presents the first comparison of the method applied to ring-stiffened shells with other numerical and experimental findings. Vibration frequencies for conical shells with various boundary conditions and geometries in a vacuum and filled with water are compared with experimental and numerical investigations, achieving good agreement. The study thoroughly investigates the influence of geometric parameters, stiffener quantity, semi-vertex cone angle, level of water filled in the cone, and applied boundary conditions on the natural frequency of fluid-loaded ring-stiffened conical shells, and draws some useful conclusions. The primary advantage of the current method is its use of a minimal number of finite elements while achieving highly accurate results.Keywords: finite element method, fluid–structure interaction, conical shell, natural frequency, ring-stiffener
Procedia PDF Downloads 79217 Chemical and Mechanical Characterization of Composites Reinforced with Coconut Fiber in the Polymeric Matrix of Recycled PVC
Authors: Luiz C. G. Pennafort Jr., Alexandre de S. Rios, Enio P. de Deus
Abstract:
In the search for materials that replace conventional polymers in order to preserve natural resources, combined with the need to minimize the problems arising from environmental pollution generated by plastic waste, comes the recycled materials biodegradable, especially the composites reinforced with natural fibers. However, such materials exhibit properties little known, requiring studies of manufacturing methods and characterization of these composites. This article shows informations about preparation and characterization of a composite produced by extrusion, which consists of recycled PVC derived from the recycling of materials discarded, added of the micronized coconut fiber. The recycled PVC with 5% of micronized fiber were characterized by X-ray diffraction, thermogravimetric, differential scanning calorimetry, mechanical analysis and optical microscopy. The use of fiber in the composite caused a decrease in its specific weight, due to the lower specific weight of fibers and the appearance of porosity, in addition to the decrease of mechanical properties.Keywords: recycled PVC, coconut fiber, characterization, composites
Procedia PDF Downloads 468216 Adsorption and Kinetic Studies on Removal of NH3-N from Wastewater onto 2 Different Nanoparticles Loaded Coconut Coir
Authors: Khushboo Bhavsar, Nisha K. Shah, Neha Parekh
Abstract:
The status of wastewater treatment needs a novel and quick method for treating the wastewater containing ammoniacal nitrogen. Adsorption behavior of ammoniacal nitrogen from wastewater using the nanoparticles loaded coconut coir was investigated in the present work. Manganese Oxide (MnO2) and Zinc Oxide (ZnO) nanoparticles were prepared and used for the further adsorption study. Manganese nanoparticles loaded coconut coir (MNLCC) and Zinc nanoparticles loaded coconut coir (ZNLCC) were prepared via a simple method and was fully characterized. The properties of both MNLCC and ZNLCC were characterized by Scanning electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. Adsorption characteristics were studied using batch technique considering various parameters like pH, adsorbent dosage, time, temperature and agitation time. The NH3-N adsorption process for MNLCC and ZNLCC was thoroughly studied from both kinetic and equilibrium isotherm view-points. The results indicated that the adsorption efficiency of ZNLCC was better when compared to MNLCC. The adsorption kinetics at different experimental conditions showed that second order kinetic model best fits ensuring the monovalent binding sites existing in the present experimental system. The outcome of the entire study suggests that the ZNLCC can be a smart option for the treatment of the ammoniacal nitrogen containing wastewater.Keywords: ammoniacal nitrogen, MnO2, Nanoparticles, ZnO
Procedia PDF Downloads 356215 Vibrational Behavior of Cylindrical Shells in Axial Magnetic Field
Authors: Sedrak Vardanyan
Abstract:
The investigation of the vibrational character of magnetic cylindrical shells placed in an axial magnetic field has important practical applications. In this work, we study the vibrational behaviour of such a cylindrical shell by making use of the so-called exact space treatment, which does not assume any hypothesis. We discuss the effects of several practically important boundary conditions on the vibrations of the described setup. We find that, for some cases of boundary conditions, e.g. clamped, simply supported or peripherally earthed, as well as for some values of the wave numbers, the vibrational frequencies of the shell are approximately zero. The theoretical and numerical exploration of this fact confirms that the vibrations are absent or attenuate very rapidly. For all the considered cases, the imaginary part of the frequencies is negative, which implies stability for the vibrational process.Keywords: bending vibrational frequencies, exact space treatment, free vibrations, magnetic cylindrical shells
Procedia PDF Downloads 279214 The Effect of Feedstock Type and Slow Pyrolysis Temperature on Biochar Yield from Coconut Wastes
Authors: Adilah Shariff, Nur Syairah Mohamad Aziz, Norsyahidah Md Saleh, Nur Syuhada Izzati Ruzali
Abstract:
The first objective of this study is to investigate the suitability of coconut frond (CF) and coconut husk (CH) as feedstocks using a laboratory-scale slow pyrolysis experimental setup. The second objective is to investigate the effect of pyrolysis temperature on the biochar yield. The properties of CF and CH feedstocks were compared. The properties of the CF and CH feedstocks were investigated using proximate and elemental analysis, lignocellulosic determination, and also thermogravimetric analysis (TGA). The CF and CH feedstocks were pyrolysed at 300, 400, 500, 600 and 700 °C for 2 hours at 10 °C/min heating rate. The proximate analysis showed that CF feedstock has 89.96 mf wt% volatile matter, 4.67 mf wt% ash content and 5.37 mf wt% fixed carbon. The lignocelluloses analysis showed that CF feedstock contained 21.46% lignin, 39.05% cellulose and 22.49% hemicelluloses. The CH feedstock contained 84.13 mf wt% volatile matter, 0.33 mf wt% ash content, 15.54 mf wt% fixed carbon, 28.22% lignin, 33.61% cellulose and 22.03% hemicelluloses. Carbon and oxygen are the major component of the CF and CH feedstock compositions. Both of CF and CH feedstocks contained very low percentage of sulfur, 0.77% and 0.33%, respectively. TGA analysis indicated that coconut wastes are easily degraded. It may be due to their high volatile content. Between the temperature ranges of 300 and 800 °C, the TGA curves showed that the weight percentage of CF feedstock is lower than CH feedstock by 0.62%-5.88%. From the D TGA curves, most of the weight loss occurred between 210 and 400 °C for both feedstocks. The maximum weight loss for both CF and CH are 0.0074 wt%/min and 0.0061 wt%/min, respectively, which occurred at 324.5 °C. The yield percentage of both CF and CH biochars decreased significantly as the pyrolysis temperature was increased. For CF biochar, the yield decreased from 49.40 wt% to 28.12 wt% as the temperature increased from 300 to 700 °C. The yield for CH biochars also decreased from 52.18 wt% to 28.72 wt%. The findings of this study indicated that both CF and CH are suitable feedstock for slow pyrolysis of biochar.Keywords: biochar, biomass, coconut wastes, slow pyrolysis
Procedia PDF Downloads 214213 Analytical Solution for Multi-Segmented Toroidal Shells under Uniform Pressure
Authors: Nosakhare Enoma, Alphose Zingoni
Abstract:
The requirements for various toroidal shell forms are increasing due to new applications, available storage space and the consideration of appearance. Because of the complexity of some of these structural forms, the finite element method is nowadays mainly used for their analysis, even for simple static studies. This paper presents an easy-to-use analytical algorithm for pressurized multi-segmented toroidal shells of revolution. The membrane solution, which acts as a particular solution of the bending-theory equations, is developed based on membrane theory of shells, and a general approach is formulated for quantifying discontinuity effects at the shell junctions using the well-known Geckeler’s approximation. On superimposing these effects, and applying the ensuing solution to the problem of the pressurized toroid with four segments, closed-form stress results are obtained for the entire toroid. A numerical example is carried out using the developed method. The analytical results obtained show excellent agreement with those from the finite element method, indicating that the proposed method can be also used for complementing and verifying FEM results, and providing insights on other related problems.Keywords: bending theory of shells, membrane hypothesis, pressurized toroid, segmented toroidal vessel, shell analysis
Procedia PDF Downloads 321212 Gimbal Structure for the Design of 3D Flywheel System
Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu
Abstract:
New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball
Procedia PDF Downloads 629211 Effects of Beeswax Coating on the Properties of Cocoa Bean Shell Based Papers
Authors: Sri Rejeki, Tamrin Tamrin, RH. F. Faradilla, Muhammad N. Ibrahim, Mariana M., Irnawati Irnawati
Abstract:
Cocoa bean shells, despite their antioxidant and antimicrobial properties, are still considered as an underutilized agricultural waste. The functional properties and their lignocelluloses content make cocoa bean shells a potential material for paper-based food packaging. In our previous research, we have successfully produced papers from cocoa bean shells that had antioxidant and antibacterial activities. However, the hydrophilic nature of the lignocelluloses of cocoa bean shells hinders the application of the paper to be used as a food packaging. In this research, we aimed to study the effects of beeswax coating on the wettability and mechanical properties of the paper. The coating was done by dipping the papers in beeswax solution several times and in three different beeswax concentrations. The number of dipping and beeswax concentration significantly (p<0.05) affected the water contact angle of the papers. Results show that the water contact angle increases dramatically due to the coating treatment. The control paper or uncoated paper had a contact angle of 40.50o, while the contact angle of the best-coated paper (D3B3: 3x dipping, 3g/10mL beeswax) reached 96.93o. Both tensile strength and percent elongation were not significantly (p>0.05) affected by the coating treatment. This showed that beeswax was a potential organic material to improve the hydrophobicity of paper from cocoa bean shells without any undesirable effects on the mechanical properties of the paper.Keywords: cocoa bean shell, paper, beeswax, coating, contact angle
Procedia PDF Downloads 148210 Numerical Modelling of Laminated Shells Made of Functionally Graded Elastic and Piezoelectric Materials
Authors: Gennady M. Kulikov, Svetlana V. Plotnikova
Abstract:
This paper focuses on implementation of the sampling surfaces (SaS) method for the three-dimensional (3D) stress analysis of functionally graded (FG) laminated elastic and piezoelectric shells. The SaS formulation is based on choosing inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell in order to introduce the electric potentials and displacements of these surfaces as basic shell variables. Such choice of unknowns permits the presentation of the proposed FG piezoelectric shell formulation in a very compact form. The SaS are located inside each layer at Chebyshev polynomial nodes that improves the convergence of the SaS method significantly. As a result, the SaS formulation can be applied efficiently to 3D solutions for FG piezoelectric laminated shells, which asymptotically approach the exact solutions of piezoelectricity as the number of SaS In goes to infinity.Keywords: electroelasticity, functionally graded material, laminated piezoelectric shell, sampling surfaces method
Procedia PDF Downloads 691