Search results for: Pranav Saxena
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 67

Search results for: Pranav Saxena

37 Impact of Heavy Metal Toxicity on Metabolic Changes in the Diazotrophic Cyanobacterium Anabaena PCC 7120

Authors: Rishi Saxena

Abstract:

Cyanobacteria is a photosynthetic prokaryote, and these obtain their energy through photosynthesis. In this paper, we studied the effect of iron on metabolic changes in the diazotrophic cyanobacterium Anabaena PCC 7120. Nowadays, metal contamination due to natural and anthropogenic sources is a global environment concern. Iron induced changes in growth, N2-fixation, CO2 fixation and photosynthetic activity were studied in a diazotrophic cyanobacterium Anabaena PCC 7120. Iron at 50 uM concentration supported the maximum growth, heterocyst frequency, CO2 fixation, photosystem I (PS I), photosystem II (PS II) and nitrogenase activities in the organism. Higher concentration of iron inhibited these processes. Chl a and PS II activities were more sensitive to iron than the protein and PS I activity. Here, it is also mentioned that heavy metal induced altered macromolecules metabolism and changes in the central dogma of life (DNA→ mRNA → Protein). And also recent advances have been made in understanding heavy metal-cyanobacteria interaction and their application for metal detoxification.

Keywords: cyanobacterium anabaena 7120, nitrogen fixation, photosystem I (PS I), photosystem II (PS II)

Procedia PDF Downloads 137
36 Stochastic Programming and C-Somga: Animal Ration Formulation

Authors: Pratiksha Saxena, Dipti Singh, Neha Khanna

Abstract:

A self-organizing migrating genetic algorithm(C-SOMGA) is developed for animal diet formulation. This paper presents animal diet formulation using stochastic and genetic algorithm. Tri-objective models for cost minimization and shelf life maximization are developed. These objectives are achieved by combination of stochastic programming and C-SOMGA. Stochastic programming is used to introduce nutrient variability for animal diet. Self-organizing migrating genetic algorithm provides exact and quick solution and presents an innovative approach towards successful application of soft computing technique in the area of animal diet formulation.

Keywords: animal feed ration, feed formulation, linear programming, stochastic programming, self-migrating genetic algorithm, C-SOMGA technique, shelf life maximization, cost minimization, nutrient maximization

Procedia PDF Downloads 443
35 An Investigation of the Strength Deterioration of Forged Aluminum 6082 (T6) Alloy

Authors: Rajveer, Abhinav Saxena, Sanjeev Das

Abstract:

The study is focused on the strength of forged aluminum alloy (AA) 6082 (T6). Aluminum alloy 6082 belongs to Al-Mg-Si family which has a wide range of automotive applications. A decrease in the strength of AA 6082 alloy was observed after T6 treatment. The as-received (extruded), forged, and forged + heat treated samples were examined to understand the reason. These examinations were accomplished by optical (OM) and scanning electron microscope (SEM) and X-ray diffraction (XRD) studies. It was observed that the defects had an insignificant effect on the alloy strength. The alloy samples were subjected to age hardening treatment and the time to achieve peak hardening was acquired. Standard tensile specimens were prepared from as-received (extruded), forged, forged + solutionized and forged + solutionized + age hardened. Tensile tests were conducted by Instron universal testing machine. It was observed that there was a significant drop in tensile strength in the case of solutionized sample. The detailed study of the fracture samples showed that the solutionizing after forging was not the best way to increase the strength of Al 6082 alloy.

Keywords: aluminum alloy 6082, strength, forging, age hardening

Procedia PDF Downloads 433
34 Investigating Differential Psychological Impact of Translated Movies: An Experimental Design

Authors: Sonakshi Saxena, Moosath Harishankar Vasudevan

Abstract:

The current study seeks to investigate the differences in the psychological impact of movies in their original and translated versions. International cinema is exemplar of the success of globalization. The multitude of languages in the global village does not seem to impede the common cinematic goal of filmmakers across linguistic boundaries. To understand, hence, whether the psychological impact of movies, intentional or otherwise, is preserved when the original is translated into a different language, an experimental design was adopted. Multilingual participants in the age group 18-25 years were recruited for the same. A control group and an experimental group were randomly assigned and the psychological impacts of movies were studied under two conditions- a) watching the movie in its original language, and b) watching the movie in its original language as well as translated version. For the second condition, the experimental group was further divided into two groups randomly to balance order effects. The major aspects of psychological impact assessed were emotional impact and attitude towards the movie. The scores were compared for the two groups. It is further discussed whether the experience is salient across language or do languages inherently possess the ability to alter experiences of the audience.

Keywords: experimental design, movies, psychological impact, translation

Procedia PDF Downloads 397
33 Eco-Friendly Natural Dyes from Butea monosperma and Their Application on Cotton Fabric

Authors: Archna Mall, Neelam Agrawal, Hari O. Saxena, Bhavana Sharma

Abstract:

Butea monosperma occurs widely throughout central Indian states. Eco-friendly natural dyes were isolated in aqueous medium from leaves, bark and flowers of this plant. These dyes were used for dyeing on cotton fabric using various chemical (potassium aluminium sulphate, potassium dichromate, ferrous sulphate, stannous chloride & tannic acid) and natural mordants (rinds of Terminallia bellerica & Terminalia chebula fruits and shells of Prunus dulcis & Juglans regia nuts). Dyeing was carried out using the pre-mordanting technique. Large range of beautiful shades in terms of hue and darkness were recorded because of varying mordant concentrations and combinations. More importantly dyed fabrics registered varying the degree of colour fastness properties to washing (1-3, colour change and 4-5, colour staining), light (2-4), rubbing (4-5, dry and 3-5, wet) and perspiration (1-4, colour change and 4-5, colour staining). Thus, along with flowers which are traditionally known for natural dyes, the leaves and bark may also find their place in textile industries.

Keywords: Butea monosperma, cotton, mordants, natural dyes

Procedia PDF Downloads 341
32 An Analysis of Non-Elliptic Curve Based Primality Tests

Authors: William Wong, Zakaria Alomari, Hon Ching Lai, Zhida Li

Abstract:

Modern-day information security depends on implementing Diffie-Hellman, which requires the generation of prime numbers. Because the number of primes is infinite, it is impractical to store prime numbers for use, and therefore, primality tests are indispensable in modern-day information security. A primality test is a test to determine whether a number is prime or composite. There are two types of primality tests, which are deterministic tests and probabilistic tests. Deterministic tests are adopting algorithms that provide a definite answer whether a given number is prime or composite. While in probabilistic tests, a probabilistic result would be provided, there is a degree of uncertainty. In this paper, we review three probabilistic tests: the Fermat Primality Test, the Miller-Rabin Test, and the Baillie-PSW Test, as well as one deterministic test, the Agrawal-Kayal-Saxena (AKS) Test. Furthermore, we do an analysis of these tests. All of the reviews discussed are not based on the Elliptic Curve. The analysis demonstrates that, in the majority of real-world scenarios, the Baillie- PSW test’s favorability stems from its typical operational complexity of O(log 3n) and its capacity to deliver accurate results for numbers below 2^64.

Keywords: primality tests, Fermat’s primality test, Miller-Rabin primality test, Baillie-PSW primality test, AKS primality test

Procedia PDF Downloads 90
31 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs

Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare

Abstract:

The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.

Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio

Procedia PDF Downloads 98
30 Fe-BTC Based Electrochemical Sensor for Anti-Psychotic and Anti-Migraine Drugs: Aripiprazole and Rizatriptan

Authors: Sachin Saxena, Manju Srivastava

Abstract:

The present study describes a stable, highly sensitive and selective analytical sensor. Fe-BTC was synthesized at room temperature using the noble Iron-trimesate system. The high surface area of as synthesized Fe-BTC proved MOFs as ideal modifiers for glassy carbon electrode. The characterization techniques such as TGA, XRD, FT-IR, BET (BET surface area= 1125 m2/gm) analysis explained the electrocatalytic behaviour of Fe-BTC towards these two drugs. The material formed is cost effective and exhibit higher catalytic behaviour towards analyte systems. The synergism between synthesized Fe-BTC and electroanalytical techniques helped in developing a highly sensitive analytical method for studying the redox fate of ARP and RZ, respectively. Cyclic voltammetry of ferricyanide system proved Fe-BTC/GCE with an increase in 132% enhancement in peak current value as compared to that of GCE. The response characteristics of cyclic voltammetry (CV) and square wave voltammetry (SWV) revealed that the ARP and RZ could be effectively accumulated at Fe-BTC/GCE. On the basis of the electrochemical measurements, electrode dynamics parameters have been evaluated. Present study opens up new field of applications of MOFs modified GCE for drug sensing.

Keywords: MOFs, anti-psychotic, electrochemical sensor, anti-migraine drugs

Procedia PDF Downloads 166
29 Effect of Extrusion Parameters on the Rheological Properties of Ready-To-Eat Extrudates Developed from De-Oiled Rice Bran

Authors: Renu Sharma, D. C. Saxena, Tanuja Srivastava

Abstract:

Mechanical properties of ready-to-eat extrudates are perceived by the consumers as one of the quality criteria. Texture quality of any product has a strong influence on the sensory evaluation as well as on the acceptability of the product. The main texture characteristics influencing the product acceptability are crispness, elasticity, hardness and softness. In the present work, the authors investigated one of the most important textural characteristics of extrudates i.e. hardness. A five-level, four-factor central composite rotatable design was employed to investigate the effect of temperature, screw speed, feed moisture content and feed composition mainly rice bran content and their interactions, on the mechanical hardness of extrudates. Among these, feed moisture was found to be a prominent factor affecting the product hardness. It was found that with the increase of feed moisture content, the rice bran proportion leads to increase in hardness of extrudates whereas the increase of temperature leads to decrease of hardness of product. A good agreement between the predicted (26.49 N) and actual value (28.73N) of the response confirms the validation of response surface methodology (RSM)-model.

Keywords: deoiled rice bran, extrusion, rheological properties, RSM

Procedia PDF Downloads 376
28 Leakage Current Analysis of FinFET Based 7T SRAM at 32nm Technology

Authors: Chhavi Saxena

Abstract:

FinFETs can be a replacement for bulk-CMOS transistors in many different designs. Its low leakage/standby power property makes FinFETs a desirable option for memory sub-systems. Memory modules are widely used in most digital and computer systems. Leakage power is very important in memory cells since most memory applications access only one or very few memory rows at a given time. As technology scales down, the importance of leakage current and power analysis for memory design is increasing. In this paper, we discover an option for low power interconnect synthesis at the 32nm node and beyond, using Fin-type Field-Effect Transistors (FinFETs) which are a promising substitute for bulk CMOS at the considered gate lengths. We consider a mechanism for improving FinFETs efficiency, called variable supply voltage schemes. In this paper, we’ve illustrated the design and implementation of FinFET based 4x4 SRAM cell array by means of one bit 7T SRAM. FinFET based 7T SRAM has been designed and analysis have been carried out for leakage current, dynamic power and delay. For the validation of our design approach, the output of FinFET SRAM array have been compared with standard CMOS SRAM and significant improvements are obtained in proposed model.

Keywords: FinFET, 7T SRAM cell, leakage current, delay

Procedia PDF Downloads 455
27 Effect of Natural Molecular Crowding on the Structure and Stability of DNA Duplex

Authors: Chaudhari S. G., Saxena, S.

Abstract:

We systematically and quantitatively investigated the effect of glucose as a model of natural molecular crowding agent on the structure and thermodynamics of Watson-Crick base paired three duplexes (named as D1, D2 and D3) of different base compositions and lengths. Structural analyses demonstrated that duplexes (D1 and D2) folded into B-form with different cations in the absence and presence of glucose while duplex (D3) folded into mixed A and B-form. Moreover, we demonstrated that the duplex was more stable in the absence of glucose, and marginally destabilized in its presence because glucose act as a weak structure breaker on the tetrahedral network of water. In the absence of glucose, the values of ΔG°25 for duplex (D1) were -13.56, -13.76, -12.46, and -12.36 kcal/mol, for duplex (D2) were -13.64, -12.93, -12.86, and -12.30 kcal/mol, for duplex (D3) were -10.05, -11.76, -9.91, -9.70 kcal/mol in the presence of Na+, K+, Na+ + Mg++ and K+ + Mg++ respectively. At high concentration of glucose (1:10000), there was increase in ΔG°25 for duplex (D1) -12.47, -12.37, -11.96, -11.55 kcal/mol, for duplex (D2) -12.37, -11.47, -11.98, -11.01 kcal/mol and for duplex (D3) -8.47, -9.17, -9.16, -8.66 kcal/mol. Our results provide the information that structure and stability of DNA duplex depends on the structure of molecular crowding agent present in its close vicinity. In this study, I have taken the hydration of simple sugar as an essential model for understanding interactions between hydrophilic groups and interfacial water molecules and its effect on hydrogen bonded DNA duplexes. On the basis of these relatively simple building blocks I hope to gain some insights for understanding more generally the properties of sugar–water–salt systems with DNA duplexes.

Keywords: natural molecular crowding, DNA Duplex, structure of DNA, bioengineering and life sciences

Procedia PDF Downloads 466
26 Hot Corrosion Susceptibility of Uncoated Boiler Tubes during High Vanadium Containing Fuel Oil Operation in Boiler Applications

Authors: Nicole Laws, William L. Roberts, Saumitra Saxena, Krishnamurthy Anand, Sreenivasa Gubba, Ziad Dawood, Aiping Chen

Abstract:

Boiler-fired power plants that operate steam turbines in Saudi Arabia use vanadium-containing fuel oil. In a super- or sub-critical steam cycle, the skin temperature of boiler tube metal can reach close to 600-1000°C depending on the location of the tubes. At high temperatures, corrosion by the sodium-vanadium-oxygen-sulfur eutectic can become a significant risk. The experimental work utilized a state-of-the-art high-temperature, high-pressure burner rig at KAUST, King Abdullah University of Science and Technology. To establish corrosion rates of different boiler tubes and materials, SA 213 T12, SA 213 T22, SA 213 T91, and Inconel 600, were used under various corrosive media, including vanadium to sulfur levels and vanadium to sodium ratios. The results obtained from the experiments establish a corrosion rate map for the materials involved and layout an empirical framework to rank the life of boiler tube materials under different operating conditions. Safe windows of operation are proposed for burning liquid fuels under varying vanadium, sodium, and sulfur levels before corrosion rates become a matter of significance under high-temperature conditions

Keywords: boiler tube life, hot corrosion, steam boilers, vanadium in fuel oil

Procedia PDF Downloads 233
25 Students’ Notions About Bioethical Issues - A Comparative Study in Indian Subcontinent

Authors: Astha Saxena

Abstract:

The present study is based in Indian subcontinent and aims at exploring students’ conceptions about ethical issues related to Biotechnology at both high school and undergraduate level. The data collection methods involved taking classroom notes, recording students’ observations and arguments, and focussed group discussions with students. The data was analysed using classroom discourse analysis and interpretive approaches. The findings depicted different aspects of students’ thinking, meaning making and ethical understanding with respect to complex bioethical issues such as genetically modified crops, in-vitro fertilization (IVF), human genomic project, cloning, etc., at high school as well as undergraduate level. The paper offers a comparative account of students’ arguments with respect to ethical issues in biotechnology at the high school & undergraduate level, where it shows a clear gradation in their ethical understanding from high school to undergraduate level, which can be attributed to their enhanced subject-matter knowledge. The nature of students’ arguments reveal that there is more reliance on the utilitarian aspect of these biotechnologies as against a holistic understanding about a particular bioethical issue. This study has implications for science teachers to delve into students’ thinking and notions about ethical issues in biotechnology and accordingly design appropriate pedagogical approaches.

Keywords: ethical issues, biotechnology, ethical understanding, argument, ethical reasoning, pedagogy

Procedia PDF Downloads 81
24 Data Driven Infrastructure Planning for Offshore Wind farms

Authors: Isha Saxena, Behzad Kazemtabrizi, Matthias C. M. Troffaes, Christopher Crabtree

Abstract:

The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine.

Keywords: reliability, bayesian parameter inference, maximum likelihood estimation, weibull function, SCADA data

Procedia PDF Downloads 86
23 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis

Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan

Abstract:

Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.

Keywords: carbon dioxide, emission modeling, light rail, microscopic model, traffic flow

Procedia PDF Downloads 143
22 A Study on Functional Performance and Physical Self-esteem Levels of Differently-Abled Basket Ballplayers: A Case Series

Authors: Prerna Mohan Saxena, Avni Joshi, Raju K Parasher

Abstract:

Disability is a state of decreased functioning associated with disease, disorder, injury, or other health condition, which in the context of one’s environment is experienced as an impairment, activity limitation, or participation restriction. With the concept of disability evolving over the years, the current ICF model of disability has integrated this concept into a comprehensive whole of multiple dimensions of human functioning, including biological, psychological, social, and environmental aspects. Wheelchair basketball is one of the greatest examples of adapted sports for the disabled. Through this study, we aim to evaluate the functional performance and self-esteem levels in differently-abled pediatric wheelchair basketball players, providing an insight on their abilities and deficits and how they can be worked on at a larger level to improve overall performance. The study was conducted on 9 pediatric wheelchair basketball players at Amar Jyoti school for inclusive education Delhi their physical performance was assessed using a battery of tests, and physical self esteem was assessed using the Physical self-description instrument (PSDQ-S). Results showed that 9 participants age ranged between 10-21 years, mostly males with BMI ranging between 16.7 to 28.9 kg/m2 most of them had the experience of 5 to 6 years of playing the sport. The data showed physical performance in accordance to years of experience of playing, physical self esteem showed a different perspective, with experience players scoring less on it. This study supports a multidimensional construct of physical performance and physical self-esteem, suggesting that both may be applied on the wheelchair basketball players at competitive levels.

Keywords: ase series, physical performance, physical self-esteem, wheelchair basketball

Procedia PDF Downloads 135
21 Role of Mismatch Repair Protein Expression in Colorectal Cancer: A Study from North India

Authors: Alka Yadav, Mayank Jain, Rajan Saxena, Niraj Kumari, Narendra Krishnani, Ashok Kumar

Abstract:

Purpose: To study the mismatch repair (MMR) protein expression and its clinicopathological correlation in colorectal cancer patients in North India. Methods: A prospective study was conducted on histologically proven 52 (38 males and 14 females) patients with adenocarcinoma of colorectum. MMR protein loss was determined by using immunohistochemistry for MLH1, MSH2, PMS2 and MSH6. Results: 52 patients (38 males and 14 females) underwent resection for colorectal cancer with the median age of 52 years (16-81 years). 35% of the patients (n=18) were younger than 50 years of the age. 3 patients had associated history of malignancy in the family. 29 (56%) patients had right colon cancer, 9 (17%) left colon cancer and 14 (27%) rectal cancer. 2 patients each had synchronous and metachronous cancer. Histology revealed well-differentiated tumour in 16, moderately differentiated in 10 and poorly differentiated tumour in 26 patients. MMR protein loss was seen in 15 (29%) patients. Seven (46%) of these patients were less than 50 years of age. Combined loss of MSH2 and MSH6 was seen most commonly and it was found in 6 patients. 12 (80%) patients with MMR protein loss had tumour located proximal to the splenic flexure compared to 3 (20%) located distal to the splenic flexure. There was no difference in MMR protein loss based on patients' age, gender, degree of tumour differentiation, stage of the disease and tumour histological characteristics. Conclusions: This study revealed that there was less than 30% MMR protein loss in colorectal cancer patients. The loss was most commonly seen in right sided colon cancer than left. A larger study is further required to validate these findings.

Keywords: colorectal cancer, mismatch repair protein, immunohitochemistry, clinicopathological correlation

Procedia PDF Downloads 233
20 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor

Authors: Pranav Gulati, Isha Sharma

Abstract:

Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.

Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring

Procedia PDF Downloads 279
19 Improvement of Artemisinin Production by P. indica in Hairy Root Cultures of A. annua L.

Authors: Seema Ahlawat, Parul Saxena, Malik Zainul Abdin

Abstract:

Malaria is a major health problem in many developing countries. The parasite responsible for the vast majority of fatal malaria infections is Plasmodium falciparum. Unfortunately, most Plasmodium strains including P. falciparum have become resistant to most of the antimalarials including chloroquine, mefloquine, etc. To combat this problem, WHO has recommended the use of artemisinin and its derivatives in artemisinin based combination therapy (ACT). Due to its current use in artemisinin based-combination therapy (ACT), its global demand is increasing continuously. But, the relatively low yield of artemisinin in A. annua L. plants and unavailability of economically viable synthetic protocols are the major bottlenecks for its commercial production and clinical use. Chemical synthesis of artemisinin is also very complex and uneconomical. The hairy root system, using the Agrobacterium rhizogenes LBA 9402 strain to enhance the production of artemisinin in A. annua L., is developed in our laboratory. The transgenic nature of hairy root lines and the copy number of trans gene (rol B) were confirmed using PCR and Southern Blot analyses, respectively. The effect of different concentrations of Piriformospora indica on artemisinin production in hairy root cultures were evaluated. 3% P. indica has resulted 1.97 times increase in artemisinin production in comparison to control cultures. The effects of P. indica on artemisinin production was positively correlated with regulatory genes of MVA, MEP and artemisinin biosynthetic pathways, viz. hmgr, ads, cyp71av1, aldh1, dxs, dxr and dbr2 in hairy root cultures of A. annua L. Mass scale cultivation of A. annua L. hairy roots by plant tissue culture technology may be an alternative route for production of artemisinin. A comprehensive investigation of the hairy root system of A. annua L. would help in developing a viable process for the production of artemisinin. The efficiency of the scaling up systems still needs optimization before industrial exploitation becomes viable.

Keywords: A. annua L., artemisinin, hairy root cultures, malaria

Procedia PDF Downloads 415
18 Evaluating the Implementation of a Quality Management System in the COVID-19 Diagnostic Laboratory of a Tertiary Care Hospital in Delhi

Authors: Sukriti Sabharwal, Sonali Bhattar, Shikhar Saxena

Abstract:

Introduction: COVID-19 molecular diagnostic laboratory is the cornerstone of the COVID-19 disease diagnosis as the patient’s treatment and management protocol depend on the molecular results. For this purpose, it is extremely important that the laboratory conducting these results adheres to the quality management processes to increase the accuracy and validity of the reports generated. We started our own molecular diagnostic setup at the onset of the pandemic. Therefore, we conducted this study to generate our quality management data to help us in improving on our weak points. Materials and Methods: A total of 14561 samples were evaluated by the retrospective observational method. The quality variables analysed were classified into pre-analytical, analytical, and post-analytical variables, and the results were presented in percentages. Results: Among the pre-analytical variables, sample leaking was the most common cause of the rejection of samples (134/14561, 0.92%), followed by non-generation of SRF ID (76/14561, 0.52%) and non-compliance to triple packaging (44/14561, 0.3%). The other pre-analytical aspects assessed were incomplete patient identification (17/14561, 0.11%), insufficient quantity of samples (12/14561, 0.08%), missing forms/samples (7/14561, 0.04%), samples in the wrong vials/empty VTM tubes (5/14561, 0.03%) and LIMS entry not done (2/14561, 0.01%). We are unable to obtain internal quality control in 0.37% of samples (55/14561). We also experienced two incidences of cross-contamination among the samples resulting in false-positive results. Among the post-analytical factors, a total of 0.07% of samples (11/14561) could not be dispatched within the stipulated time frame. Conclusion: Adherence to quality control processes is foremost for the smooth running of any diagnostic laboratory, especially the ones involved in critical reporting. Not only do the indicators help in keeping in check the laboratory parameters but they also allow comparison with other laboratories.

Keywords: laboratory quality management, COVID-19, molecular diagnostics, healthcare

Procedia PDF Downloads 164
17 AI Predictive Modeling of Excited State Dynamics in OPV Materials

Authors: Pranav Gunhal., Krish Jhurani

Abstract:

This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.

Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling

Procedia PDF Downloads 118
16 Clinical Relevance of TMPRSS2-ERG Fusion Marker for Prostate Cancer

Authors: Shalu Jain, Anju Bansal, Anup Kumar, Sunita Saxena

Abstract:

Objectives: The novel TMPRSS2:ERG gene fusion is a common somatic event in prostate cancer that in some studies is linked with a more aggressive disease phenotype. Thus, this study aims to determine whether clinical variables are associated with the presence of TMPRSS2:ERG-fusion gene transcript in Indian patients of prostate cancer. Methods: We evaluated the clinical variables with presence and absence of TMPRSS2:ERG gene fusion in prostate cancer and BPH association of clinical patients. Patients referred for prostate biopsy because of abnormal DRE or/and elevated sPSA were enrolled for this prospective clinical study. TMPRSS2:ERG mRNA copies in samples were quantified using a Taqman chemistry by real time PCR assay in prostate biopsy samples (N=42). The T2:ERG assay detects the gene fusion mRNA isoform TMPRSS2 exon1 to ERG exon4. Results: Histopathology report has confirmed 25 cases as prostate cancer adenocarcinoma (PCa) and 17 patients as benign prostate hyperplasia (BPH). Out of 25 PCa cases, 16 (64%) were T2: ERG fusion positive. All 17 BPH controls were fusion negative. The T2:ERG fusion transcript was exclusively specific for prostate cancer as no case of BPH was detected having T2:ERG fusion, showing 100% specificity. The positive predictive value of fusion marker for prostate cancer is thus 100% and the negative predictive value is 65.3%. The T2:ERG fusion marker is significantly associated with clinical variables like no. of positive cores in prostate biopsy, Gleason score, serum PSA, perineural invasion, perivascular invasion and periprostatic fat involvement. Conclusions: Prostate cancer is a heterogeneous disease that may be defined by molecular subtypes such as the TMPRSS2:ERG fusion. In the present prospective study, the T2:ERG quantitative assay demonstrated high specificity for predicting biopsy outcome; sensitivity was similar to the prevalence of T2:ERG gene fusions in prostate tumors. These data suggest that further improvement in diagnostic accuracy could be achieved using a nomogram that combines T2:ERG with other markers and risk factors for prostate cancer.

Keywords: prostate cancer, genetic rearrangement, TMPRSS2:ERG fusion, clinical variables

Procedia PDF Downloads 444
15 Analysis of Secondary Peak in Hα Emission Profile during Gas Puffing in Aditya Tokamak

Authors: Harshita Raj, Joydeep Ghosh, Rakesh L. Tanna, Prabal K. Chattopadhyay, K. A. Jadeja, Sharvil Patel, Kaushal M. Patel, Narendra C. Patel, S. B. Bhatt, V. K. Panchal, Chhaya Chavda, C. N. Gupta, D. Raju, S. K. Jha, J. Raval, S. Joisa, S. Purohit, C. V. S. Rao, P. K. Atrey, Umesh Nagora, R. Manchanda, M. B. Chowdhuri, Nilam Ramaiya, S. Banerjee, Y. C. Saxena

Abstract:

Efficient gas fueling is a critical aspect that needs to be mastered in order to maintain plasma density, to carry out fusion. This requires a fair understanding of fuel recycling in order to optimize the gas fueling. In Aditya tokamak, multiple gas puffs are used in a precise and controlled manner, for hydrogen fueling during the flat top of plasma discharge which has been instrumental in achieving discharges with enhanced density as well as energy confinement time. Following each gas puff, we observe peaks in temporal profile of Hα emission, Soft X-ray (SXR) and chord averaged electron density in a number of discharges, indicating efficient gas fueling. Interestingly, Hα temporal profile exhibited an additional peak following the peak corresponding to each gas puff. These additional peak Hα appeared in between the two gas puffs, indicating the presence of a secondary hydrogen source apart from the gas puffs. A thorough investigation revealed that these secondary Hα peaks coincide with Hard X- ray bursts which come from the interaction of runaway electrons with vessel limiters. This leads to consider that the runaway electrons (REs), which hit the wall, in turn, bring out the absorbed hydrogen and oxygen from the wall and makes the interaction of REs with limiter a secondary hydrogen source. These observations suggest that runaway electron induced recycling should also be included in recycling particle source in the particle balance calculations in tokamaks. Observation of two Hα peaks associated with one gas puff and their roles in enhancing and maintaining plasma density in Aditya tokamak will be discussed in this paper.

Keywords: fusion, gas fueling, recycling, Tokamak, Aditya

Procedia PDF Downloads 402
14 Cross-Sectional Analysis of Sustainability Activities in the Pharmaceutical Companies

Authors: Kanika Saxena, Sunita Balani

Abstract:

Purpose - The aim of the study is to compare the reported sustainability activities in areas of emission, water management and gender equality, currently undertaken by the seven major pharmaceutical companies. Methodology: The published corporate sustainability activity reports for the year 2017 for seven pharmaceutical companies have been studied. The two main criteria for the inclusion of pharmaceutical companies in this study are that they are globally recognized and active in the field of sustainability reporting. Company’s actions and initiatives have been grouped under three categories: (i) Emissions (ii) Water management (iii) Gender Equality in terms of employee workforce. Findings: Based on the sustainability reports, quantification and grading of the companies showed interesting results. Johnson & Johnson and Bayer are leading their activities under emissions and water management categories. The number of activities under emission and water management in case of Eli Lily, Roche, Sanofi, Pfizer and GlaxoSmithKline were 19, 16, 16, 11 and 6 respectively. Johnson & Johnson and Eli Lily are leading in taking the initiatives to curb the problem of emissions as compared with other 5 companies. Under the category of gender equality in terms of employee workforce, Eli Lily is leading the group of sampled companies with 47% of women employee workforce globally followed by Sanofi with 46.2% (42.2% of managers) female employees. It has also been observed that in some of the reports, gender diversification in the workforce has not been mentioned though the total number of employees were mentioned. Conclusion: This study could serve as the informative material for future in-depth industry-specific studies in order to find out the participation of the pharmaceutical companies in the reporting of the sustainability activities especially in reference to emission, water management and gender equality in the workforce. In addition to it, this can be helpful as a reference point for other companies in the pharmaceutical sector who are yet to explore the field of sustainability initiatives and reporting. Due to the limited scope of this study, only seven major players of the pharmaceutical sector who are active in the field of sustainability have been considered.

Keywords: emission, gender equality workforce, pharmaceutical, sustainability, water management

Procedia PDF Downloads 161
13 Shark Detection and Classification with Deep Learning

Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti

Abstract:

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.

Keywords: classification, data mining, Instagram, remote monitoring, sharks

Procedia PDF Downloads 121
12 Assessment of Urban Environmental Noise in Urban Habitat: A Spatial Temporal Study

Authors: Neha Pranav Kolhe, Harithapriya Vijaye, Arushi Kamle

Abstract:

The economic growth engines are urban regions. As the economy expands, so does the need for peace and quiet, and noise pollution is one of the important social and environmental issue. Health and wellbeing are at risk from environmental noise pollution. Because of urbanisation, population growth, and the consequent rise in the usage of increasingly potent, diverse, and highly mobile sources of noise, it is now more severe and pervasive than ever before, and it will only become worse. Additionally, it will expand as long as there is an increase in air, train, and highway traffic, which continue to be the main contributors of noise pollution. The current study will be conducted in two zones of class I city of central India (population range: 1 million–4 million). Total 56 measuring points were chosen to assess noise pollution. The first objective evaluates the noise pollution in various urban habitats determined as formal and informal settlement. It identifies the comparison of noise pollution within the settlements using T- Test analysis. The second objective assess the noise pollution in silent zones (as stated in Central Pollution Control Board) in a hierarchical way. It also assesses the noise pollution in the settlements and compares with prescribed permissible limits using class I sound level equipment. As appropriate indices, equivalent noise level on the (A) frequency weighting network, minimum sound pressure level and maximum sound pressure level were computed. The survey is conducted for a period of 1 week. Arc GIS is used to plot and map the temporal and spatial variability in urban settings. It is discovered that noise levels at most stations, particularly at heavily trafficked crossroads and subway stations, were significantly different and higher than acceptable limits and squares. The study highlights the vulnerable areas that should be considered while city planning. The study demands area level planning while preparing a development plan. It also demands attention to noise pollution from the perspective of residential and silent zones. The city planning in urban areas neglects the noise pollution assessment at city level. This contributes to that, irrespective of noise pollution guidelines, the ground reality is far away from its applicability. The result produces incompatible land use on a neighbourhood scale with respect to noise pollution. The study's final results will be useful to policymakers, architects and administrators in developing countries. This will be useful for noise pollution in urban habitat governance by efficient decision making and policy formulation to increase the profitability of these systems.

Keywords: noise pollution, formal settlements, informal settlements, built environment, silent zone, residential area

Procedia PDF Downloads 118
11 Data Monetisation by E-commerce Companies: A Need for a Regulatory Framework in India

Authors: Anushtha Saxena

Abstract:

This paper examines the process of data monetisation bye-commerce companies operating in India. Data monetisation is collecting, storing, and analysing consumers’ data to use further the data that is generated for profits, revenue, etc. Data monetisation enables e-commerce companies to get better businesses opportunities, innovative products and services, a competitive edge over others to the consumers, and generate millions of revenues. This paper analyses the issues and challenges that are faced due to the process of data monetisation. Some of the issues highlighted in the paper pertain to the right to privacy, protection of data of e-commerce consumers. At the same time, data monetisation cannot be prohibited, but it can be regulated and monitored by stringent laws and regulations. The right to privacy isa fundamental right guaranteed to the citizens of India through Article 21 of The Constitution of India. The Supreme Court of India recognized the Right to Privacy as a fundamental right in the landmark judgment of Justice K.S. Puttaswamy (Retd) and Another v. Union of India . This paper highlights the legal issue of how e-commerce businesses violate individuals’ right to privacy by using the data collected, stored by them for economic gains and monetisation and protection of data. The researcher has mainly focused on e-commerce companies like online shopping websitesto analyse the legal issue of data monetisation. In the Internet of Things and the digital age, people have shifted to online shopping as it is convenient, easy, flexible, comfortable, time-consuming, etc. But at the same time, the e-commerce companies store the data of their consumers and use it by selling to the third party or generating more data from the data stored with them. This violatesindividuals’ right to privacy because the consumers do not know anything while giving their data online. Many times, data is collected without the consent of individuals also. Data can be structured, unstructured, etc., that is used by analytics to monetise. The Indian legislation like The Information Technology Act, 2000, etc., does not effectively protect the e-consumers concerning their data and how it is used by e-commerce businesses to monetise and generate revenues from that data. The paper also examines the draft Data Protection Bill, 2021, pending in the Parliament of India, and how this Bill can make a huge impact on data monetisation. This paper also aims to study the European Union General Data Protection Regulation and how this legislation can be helpful in the Indian scenarioconcerning e-commerce businesses with respect to data monetisation.

Keywords: data monetization, e-commerce companies, regulatory framework, GDPR

Procedia PDF Downloads 120
10 Ammonia Sensing Properties of Nanostructured Hybrid Halide Perovskite Thin Film

Authors: Nidhi Gupta, Omita Nanda, Rakhi Grover, Kanchan Saxena

Abstract:

Hybrid perovskite is new class of material which has gained much attention due to their different crystal structure and interesting optical and electrical properties. Easy fabrication, high absorption coefficient, and photoluminescence properties make them a strong candidate for various applications such as sensors, photovoltaics, photodetectors, etc. In perovskites, ions arrange themselves in a special type of crystal structure with chemical formula ABX3, where A is organic species like CH3NH3+, B is metal ion (e.g., Pb, Sn, etc.) and X is halide (Cl-, Br-, I-). In crystal structure, A is present at corner position, B at center of the crystal lattice and halide ions at the face centers. High stability and sensitivity of nanostructured perovskite make them suitable for chemical sensors. Researchers have studied sensing properties of perovskites for number of analytes such as 2,4,6-trinitrophenol, ethanol and other hazardous chemical compounds. Ammonia being highly toxic agent makes it a reason of concern for the environment. Thus the detection of ammonia is extremely important. Our present investigation deals with organic inorganic hybrid perovskite based ammonia sensor. Various methods like sol-gel, solid state synthesis, thermal vapor deposition etc can be used to synthesize Different hybrid perovskites. In the present work, a novel hybrid perovskite has been synthesized by a single step method. Ethylenediammnedihalide and lead halide were used as precursor. Formation of hybrid perovskite was confirmed by FT-IR and XRD. Morphological characterization of the synthesized material was performed using scanning electron microscopy (SEM). SEM analysis revealed the formation of one dimensional nanowire perovskite with mean diameter of 200 nm. Measurements for sensing properties of halide perovskite for ammonia vapor were carried out. Perovskite thin films showed a color change from yellow to orange on exposure of ammonia vapor. Electro-optical measurements show that sensor based on lead halide perovskite has high sensitivity towards ammonia with effective selectivity and reversibility. Sensor exhibited rapid response time of less than 20 seconds.

Keywords: hybrid perovskite, ammonia, sensor, nanostructure, thin film

Procedia PDF Downloads 276
9 HIV-1 Nef Mediates Host Invasion by Differential Expression of Alpha-Enolase

Authors: Reshu Saxena, R. K. Tripathi

Abstract:

HIV-1 transmission and spread involves significant host-virus interaction. Potential targets for prevention of HIV-1 lies at the site of mucosal barriers. Thus a better understanding of how HIV-1 infects target cells at such sites and lead their invasion is required, with prime focus on the host determinants regulating HIV-1 spread. HIV-1 Nef is important for viral infectivity and pathogenicity. It promotes HIV-1 replication, facilitating immune evasion by interacting with various host factors and altering cellular pathways via multiple protein-protein interactions. In this study nef was sequenced from HIV-1 patients, and showed specific mutations revealing sequence variability in nef. To explore the difference in Nef functionality based on sequence variability we have studied the effects of HIV-1 Nef in human SupT1 T cell line and (THP-1) monocyte-macrophage cell lines through proteomics approach. 2D-Gel Electrophoresis in control and Nef-transfected SupT1 cells demonstrated several differentially expressed proteins with significant modulation of alpha-enolase. Through further studies, effects of Nef on alpha-enolase regulation were found to be cell lineage-specific, being stimulatory in macrophages/monocytes, inhibitory in T cells and without effect in HEK-293 cells. Cell migration and invasion studies were employed to determine biological function affected by Nef mediated regulation of alpha-enolase. Cell invasion was enhanced in THP-1 cells but was inhibited in SupT1 cells by wildtype nef. In addition, the modulation of enolase and cell invasion remained unaffected by a unique nef variant. These results indicated that regulation of alpha-enolase expression and invasive property of host cells by Nef is sequence specific, suggesting involvement of a particular motif of Nef. To precisely determine this site, we designed a heptapeptide including the suggested alpha-enolase regulating sequence of nef and a nef mutant with deletion of this site. Macrophages/monocytes being the major cells affected by HIV-1 at mucosal barriers, were particularly investigated by the nef mutant and peptide. Both the nef mutant and heptapeptide led to inhibition of enhanced enolase expression and increased invasiveness in THP-1 cells. Together, these findings suggest a possible mechanism of host invasion by HIV-1 through Nef mediated regulation of alpha-enolase and identifies a potential therapeutic target for HIV-1 entry at mucosal barriers.

Keywords: HIV-1 Nef, nef variants, host-virus interaction, tissue invasion

Procedia PDF Downloads 412
8 Object Oriented Classification Based on Feature Extraction Approach for Change Detection in Coastal Ecosystem across Kochi Region

Authors: Mohit Modi, Rajiv Kumar, Manojraj Saxena, G. Ravi Shankar

Abstract:

Change detection of coastal ecosystem plays a vital role in monitoring and managing natural resources along the coastal regions. The present study mainly focuses on the decadal change in Kochi islands connecting the urban flatland areas and the coastal regions where sand deposits have taken place. With this, in view, the change detection has been monitored in the Kochi area to apprehend the urban growth and industrialization leading to decrease in the wetland ecosystem. The region lies between 76°11'19.134"E to 76°25'42.193"E and 9°52'35.719"N to 10°5'51.575"N in the south-western coast of India. The IRS LISS-IV satellite image has been processed using a rule-based algorithm to classify the LULC and to interpret the changes between 2005 & 2015. The approach takes two steps, i.e. extracting features as a single GIS vector layer using different parametric values and to dissolve them. The multi-resolution segmentation has been carried out on the scale ranging from 10-30. The different classes like aquaculture, agricultural land, built-up, wetlands etc. were extracted using parameters like NDVI, mean layer values, the texture-based feature with corresponding threshold values using a rule set algorithm. The objects obtained in the segmentation process were visualized to be overlaying the satellite image at a scale of 15. This layer was further segmented using the spectral difference segmentation rule between the objects. These individual class layers were dissolved in the basic segmented layer of the image and were interpreted in vector-based GIS programme to achieve higher accuracy. The result shows a rapid increase in an industrial area of 40% based on industrial area statistics of 2005. There is a decrease in wetlands area which has been converted into built-up. New roads have been constructed which are connecting the islands to urban areas as well as highways. The increase in coastal region has been visualized due to sand depositions. The outcome is well supported by quantitative assessments which will empower rich understanding of land use land cover change for appropriate policy intervention and further monitoring.

Keywords: land use land cover, multiresolution segmentation, NDVI, object based classification

Procedia PDF Downloads 183