Search results for: Gourish M. Naik
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33

Search results for: Gourish M. Naik

3 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 72
2 Investigating Role of Autophagy in Cispaltin Induced Stemness and Chemoresistance in Oral Squamous Cell Carcinoma

Authors: Prajna Paramita Naik, Sujit Kumar Bhutia

Abstract:

Background: Regardless of the development multimodal treatment strategies, oral squamous cell carcinoma (OSCC) is often associated with a high rate of recurrence, metastasis and chemo- and radio- resistance. The present study inspected the relevance of CD44, ABCB1 and ADAM17 expression as a putative stem cell compartment in oral squamous cell carcinoma (OSCC) and deciphered the role of autophagy in regulating the expression of aforementioned proteins, stemness and chemoresistance. Methods: A retrospective analysis of CD44, ABCB1 and ADAM17 expression with respect to the various clinicopathological factors of sixty OSCC patients were determined via immunohistochemistry. The correlation among CD44, ABCB1 and ADAM17 expression was established. Sphere formation assay, flow cytometry and fluorescence microscopy were conducted to elucidate the stemness and chemoresistance nature of established cisplatin-resistant oral cancer cells (FaDu). The pattern of expression of CD44, ABCB1 and ADAM17 in parental (FaDu-P) and resistant FaDu cells (FaDu-CDDP-R) were investigated through fluorescence microscopy. Western blot analysis of autophagy marker proteins was performed to compare the status of autophagy in parental and resistant FaDu cell. To investigate the role of autophagy in chemoresistance and stemness, sphere formation assay, immunofluorescence and Western blot analysis was performed post transfection with siATG14 and the level of expression of autophagic proteins, mitochondrial protein and stemness-associated proteins were analyzed. The statistical analysis was performed by GraphPad Prism 4.0 software. p-value was defined as follows: not significant (n.s.): p > 0.05;*: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001 were considered statistically significant. Results: In OSCC, high CD44, ABCB1 and ADAM17 expression were significantly correlated with higher tumor grades and poor differentiation. However, the expression of these proteins was not related to the age and sex of OSCC patients. Moreover, the expression of CD44, ABCB1 and ADAM17 were positively correlated with each other. In vitro and OSCC tissue double labeling experiment data showed that CD44+ cells were highly associated with ABCB1 and ADAM17 expression. Further, FaDu-CDDP-R cells showed higher sphere forming capacity along with increased fraction of the CD44+ population and β-catenin expression FaDu-CDDP-R cells also showed accelerated expression of CD44, ABCB1 and ADAM17. A comparatively higher autophagic flux was observed in FaDu-CDDP-R against FaDu-P cells. The expression of mitochondrial proteins was noticeably reduced in resistant cells as compared to parental cells indicating the occurrence of autophagy-mediated mitochondrial degradation in oral cancer. Moreover, inhibition of autophagy was coupled with the decreased formation of orospheres suggesting autophagy-mediated stemness in oral cancer. Blockade of autophagy was also found to induce the restoration of mitochondrial proteins in FaDu-CDDP-R cells indicating the involvement of mitophagy in chemoresistance. Furthermore, a reduced expression of CD44, ABCB1 and ADAM17 was also observed in ATG14 deficient cells FaDu-P and FaDu-CDDP-R cells. Conclusion: The CD44+ ⁄ABCB1+ ⁄ADAM17+ expression in OSCC might be associated with chemoresistance and a putative CSC compartment. Further, the present study highlights the contribution of mitophagy in chemoresistance and confirms the potential involvement of autophagic regulation in acquisition of stem-like characteristics in OSCC.

Keywords: ABCB1, ADAM17, autophagy, CD44, chemoresistance, mitophagy, OSCC, stemness

Procedia PDF Downloads 194
1 A Comprehensive Study of Spread Models of Wildland Fires

Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.

Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling

Procedia PDF Downloads 81