Search results for: immunoenzyme techniques
943 Wastewater Treatment in the Abrasives Industry via Fenton and Photo-Fenton Oxidation Processes: A Case Study from Peru
Authors: Hernan Arturo Blas López, Gustavo Henndel Lopes, Antonio Carlos Silva Costa Teixeira, Carmen Elena Flores Barreda, Patricia Araujo Pantoja
Abstract:
Phenols are toxic for life and the environment and may come from many sources. Uncured phenolic monomers present in phenolic resins used as binders in grinding wheels and emery paper can contaminate industrial wastewaters in abrasives manufacture plants. Furthermore, vestiges of resol and novolacs resins generated by wear and tear of abrasives are also possible sources of water contamination by phenolics in these facilities. Fortunately, advanced oxidation by dark Fenton and photo-Fenton techniques are capable of oxidizing phenols and their degradation products up to their mineralization into H₂O and CO₂. The maximal allowable concentrations for phenols in Peruvian waterbodies is very low, such that insufficiently treated effluents from the abrasives industry are a potential environmental noncompliance. The current case study highlights findings obtained during the lab-scale application of Fenton’s and photo-assisted Fenton’s chemistries to real industrial wastewater samples from an abrasives manufacture plant in Peru. The goal was to reduce the phenolic content and sample toxicity. For this purpose, two independent variables-reaction time and effect of ultraviolet radiation–were studied as for their impacts on the concentration of total phenols, total organic carbon (TOC), biological oxygen demand (BOD) and chemical oxygen demand (COD). In this study, diluted samples (1 L) of the industrial effluent were treated with Fenton’s reagent (H₂O₂ and Fe²⁺ from FeSO₄.H₂O) during 10 min in a photochemical batch reactor (Alphatec RFS-500, Brazil) at pH 2.92. In the case of photo-Fenton tests with ultraviolet lamps of 9 W, UV-A, UV-B and UV-C lamps were evaluated. All process conditions achieved 100% of phenols degraded within 5 minutes. TOC, BOD and COD decreased by 49%, 52% and 86% respectively (all processes together). However, Fenton treatment was not capable of reducing BOD, COD and TOC below a certain value even after 10 minutes, contrarily to photo-Fenton. It was also possible to conclude that the processes here studied degrade other compounds in addition to phenols, what is an advantage. In all cases, elevated effluent dilution factors and high amounts of oxidant agent impact negatively the overall economy of the processes here investigated.Keywords: fenton oxidation, wastewater treatment, phenols, abrasives industry
Procedia PDF Downloads 314942 Linguistic Analysis of Argumentation Structures in Georgian Political Speeches
Authors: Mariam Matiashvili
Abstract:
Argumentation is an integral part of our daily communications - formal or informal. Argumentative reasoning, techniques, and language tools are used both in personal conversations and in the business environment. Verbalization of the opinions requires the use of extraordinary syntactic-pragmatic structural quantities - arguments that add credibility to the statement. The study of argumentative structures allows us to identify the linguistic features that make the text argumentative. Knowing what elements make up an argumentative text in a particular language helps the users of that language improve their skills. Also, natural language processing (NLP) has become especially relevant recently. In this context, one of the main emphases is on the computational processing of argumentative texts, which will enable the automatic recognition and analysis of large volumes of textual data. The research deals with the linguistic analysis of the argumentative structures of Georgian political speeches - particularly the linguistic structure, characteristics, and functions of the parts of the argumentative text - claims, support, and attack statements. The research aims to describe the linguistic cues that give the sentence a judgmental/controversial character and helps to identify reasoning parts of the argumentative text. The empirical data comes from the Georgian Political Corpus, particularly TV debates. Consequently, the texts are of a dialogical nature, representing a discussion between two or more people (most often between a journalist and a politician). The research uses the following approaches to identify and analyze the argumentative structures Lexical Classification & Analysis - Identify lexical items that are relevant in argumentative texts creating process - Creating the lexicon of argumentation (presents groups of words gathered from a semantic point of view); Grammatical Analysis and Classification - means grammatical analysis of the words and phrases identified based on the arguing lexicon. Argumentation Schemas - Describe and identify the Argumentation Schemes that are most likely used in Georgian Political Speeches. As a final step, we analyzed the relations between the above mentioned components. For example, If an identified argument scheme is “Argument from Analogy”, identified lexical items semantically express analogy too, and they are most likely adverbs in Georgian. As a result, we created the lexicon with the words that play a significant role in creating Georgian argumentative structures. Linguistic analysis has shown that verbs play a crucial role in creating argumentative structures.Keywords: georgian, argumentation schemas, argumentation structures, argumentation lexicon
Procedia PDF Downloads 74941 Experimental Research of High Pressure Jet Interaction with Supersonic Crossflow
Authors: Bartosz Olszanski, Zbigniew Nosal, Jacek Rokicki
Abstract:
An experimental study of cold-jet (nitrogen) reaction control jet system has been carried out to investigate the flow control efficiency for low to moderate jet pressure ratios (total jet pressure p0jet over free stream static pressure in the wind tunnel p∞) and different angles of attack for infinite Mach number equal to 2. An investigation of jet influence was conducted on a flat plate geometry placed in the test section of intermittent supersonic wind tunnel of Department of Aerodynamics, WUT. Various convergent jet nozzle geometries to obtain different jet momentum ratios were tested on the same test model geometry. Surface static pressure measurements, Schlieren flow visualizations (using continuous and photoflash light source), load cell measurements gave insight into the supersonic crossflow interaction for different jet pressure and jet momentum ratios and their influence on the efficiency of side jet control as described by the amplification factor (actual to theoretical net force generated by the control nozzle). Moreover, the quasi-steady numerical simulations of flow through the same wind tunnel geometry (convergent-divergent nozzle plus test section) were performed using ANSYS Fluent basing on Reynolds-Averaged Navier-Stokes (RANS) solver incorporated with k-ω Shear Stress Transport (SST) turbulence model to assess the possible spurious influence of test section walls over the jet exit near field area of interest. The strong bow shock, barrel shock, and Mach disk as well as lambda separation region in front of nozzle were observed as images taken by high-speed camera examine the interaction of the jet and the free stream. In addition, the development of large-scale vortex structures (counter-rotating vortex pair) was detected. The history of complex static pressure pattern on the plate was recorded and compared to the force measurement data as well as numerical simulation data. The analysis of the obtained results, especially in the wake of the jet showed important features of the interaction mechanisms between the lateral jet and the flow field.Keywords: flow visualization techniques, pressure measurements, reaction control jet, supersonic cross flow
Procedia PDF Downloads 299940 Unlocking Health Insights: Studying Data for Better Care
Authors: Valentina Marutyan
Abstract:
Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.Keywords: data mining, healthcare, big data, large amounts of data
Procedia PDF Downloads 76939 A Modified QuEChERS Method Using Activated Carbon Fibers as r-DSPE Sorbent for Sample Cleanup: Application to Pesticides Residues Analysis in Food Commodities Using GC-MS/MS
Authors: Anshuman Srivastava, Shiv Singh, Sheelendra Pratap Singh
Abstract:
A simple, sensitive and effective gas chromatography tandem mass spectrometry (GC-MS/MS) method was developed for simultaneous analysis of multi pesticide residues (organophosphate, organochlorines, synthetic pyrethroids and herbicides) in food commodities using phenolic resin based activated carbon fibers (ACFs) as reversed-dispersive solid phase extraction (r-DSPE) sorbent in modified QuEChERS (Quick Easy Cheap Effective Rugged Safe) method. The acetonitrile-based QuEChERS technique was used for the extraction of the analytes from food matrices followed by sample cleanup with ACFs instead of traditionally used primary secondary amine (PSA). Different physico-chemical characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and Brunauer-Emmet-Teller surface area analysis were employed to investigate the engineering and structural properties of ACFs. The recovery of pesticides and herbicides was tested at concentration levels of 0.02 and 0.2 mg/kg in different commodities such as cauliflower, cucumber, banana, apple, wheat and black gram. The recoveries of all twenty-six pesticides and herbicides were found in acceptable limit (70-120%) according to SANCO guideline with relative standard deviation value < 15%. The limit of detection and limit of quantification of the method was in the range of 0.38-3.69 ng/mL and 1.26 -12.19 ng/mL, respectively. In traditional QuEChERS method, PSA used as r-DSPE sorbent plays a vital role in sample clean-up process and demonstrates good recoveries for multiclass pesticides. This study reports that ACFs are better in terms of removal of co-extractives in comparison of PSA without compromising the recoveries of multi pesticides from food matrices. Further, ACF replaces the need of charcoal in addition to the PSA from traditional QuEChERS method which is used to remove pigments. The developed method will be cost effective because the ACFs are significantly cheaper than the PSA. So the proposed modified QuEChERS method is more robust, effective and has better sample cleanup efficiency for multiclass multi pesticide residues analysis in different food matrices such as vegetables, grains and fruits.Keywords: QuEChERS, activated carbon fibers, primary secondary amine, pesticides, sample preparation, carbon nanomaterials
Procedia PDF Downloads 271938 Micro-Milling Process Development of Advanced Materials
Authors: M. A. Hafiz, P. T. Matevenga
Abstract:
Micro-level machining of metals is a developing field which has shown to be a prospective approach to produce features on the parts in the range of a few to a few hundred microns with acceptable machining quality. It is known that the mechanics (i.e. the material removal mechanism) of micro-machining and conventional machining have significant differences due to the scaling effects associated with tool-geometry, tool material and work piece material characteristics. Shape memory alloys (SMAs) are those metal alloys which display two exceptional properties, pseudoelasticity and the shape memory effect (SME). Nickel-titanium (NiTi) alloys are one of those unique metal alloys. NiTi alloys are known to be difficult-to-cut materials specifically by using conventional machining techniques due to their explicit properties. Their high ductility, high amount of strain hardening, and unusual stress–strain behaviour are the main properties accountable for their poor machinability in terms of tool wear and work piece quality. The motivation of this research work was to address the challenges and issues of micro-machining combining with those of machining of NiTi alloy which can affect the desired performance level of machining outputs. To explore the significance of range of cutting conditions on surface roughness and tool wear, machining tests were conducted on NiTi. Influence of different cutting conditions and cutting tools on surface and sub-surface deformation in work piece was investigated. Design of experiments strategy (L9 Array) was applied to determine the key process variables. The dominant cutting parameters were determined by analysis of variance. These findings showed that feed rate was the dominant factor on surface roughness whereas depth of cut found to be dominant factor as far as tool wear was concerned. The lowest surface roughness was achieved at the feed rate of equal to the cutting edge radius where as the lowest flank wear was observed at lowest depth of cut. Repeated machining trials have yet to be carried out in order to observe the tool life, sub-surface deformation and strain induced hardening which are also expecting to be amongst the critical issues in micro machining of NiTi. The machining performance using different cutting fluids and strategies have yet to be studied.Keywords: nickel titanium, micro-machining, surface roughness, machinability
Procedia PDF Downloads 340937 Cultural Competence and Healthcare Challenges of Migrants in South Wales United Kingdom
Authors: Qirat Naz, Abasiokpon Udoakah
Abstract:
In developed countries, global migration is diversifying. The minority ethnic population, including refugees and asylum seekers who, fled their home countries due to war, terrorism, oppression, or natural disasters, and returning home is dangerous for them. They need sanctuary and peaceful environment in host countries. They begin the process of acculturation, in which a person adopts the social mores and behavioral patterns of the dominant culture, yet they still have unique multicultural needs that the dominant society fails to address. The aim of this research is to provide a holistic understanding of the living experiences of a minority population, particularly migrants, including asylum seekers and refugees, in the health and social care system of South Wales. The purpose of this study is to investigate three research objectives: the multicultural health care needs of minorities, as well as the barriers to seeking health and social care facilities. There are Welsh policies for promoting cultural competence in the health and social care sectors; this research will explore the implications and impact of these policies on the target population. This research study will be conducted using qualitative research methods, tools, and techniques. This research is an inductive approach to coming up with a grounded theory. The sample will be divided into two groups: migrants and professionals providing any kind of services to migrants; each group will contain 30 participants. Interpretive phenomenological analysis would be utilized during the process of coding and developing the main themes of this research. The positionality of the researcher would be minimized by unloaded and open-ended questions, researcher’s work experience in research, continuous evaluation of her positionality, daily base reflection of fieldwork and seeking the help of male and female gatekeepers. The research findings would be based on emic perspective, and by documenting the emic perspective of minorities, this research will contribute to the knowledge of appropriate channels, including organizations, academics, and policymakers, to discover possible solutions and coping mechanisms to deal with the challenges and meet the multicultural demands of minorities. This research will provide a more in-depth understanding of minorities and will help to promote the diversity of health and social care in South Wales.Keywords: migration, migrants, cultural competence, cultural barriers, healthcare challenges
Procedia PDF Downloads 60936 Validation of an Impedance-Based Flow Cytometry Technique for High-Throughput Nanotoxicity Screening
Authors: Melanie Ostermann, Eivind Birkeland, Ying Xue, Alexander Sauter, Mihaela R. Cimpan
Abstract:
Background: New reliable and robust techniques to assess biological effects of nanomaterials (NMs) in vitro are needed to speed up safety analysis and to identify key physicochemical parameters of NMs, which are responsible for their acute cytotoxicity. The central aim of this study was to validate and evaluate the applicability and reliability of an impedance-based flow cytometry (IFC) technique for the high-throughput screening of NMs. Methods: Eight inorganic NMs from the European Commission Joint Research Centre Repository were used: NM-302 and NM-300k (Ag: 200 nm rods and 16.7 nm spheres, respectively), NM-200 and NM- 203 (SiO₂: 18.3 nm and 24.7 nm amorphous, respectively), NM-100 and NM-101 (TiO₂: 100 nm and 6 nm anatase, respectively), and NM-110 and NM-111 (ZnO: 147 nm and 141 nm, respectively). The aim was to assess the biological effects of these materials on human monoblastoid (U937) cells. Dispersions of NMs were prepared as described in the NANOGENOTOX dispersion protocol and cells were exposed to NMs at relevant concentrations (2, 10, 20, 50, and 100 µg/mL) for 24 hrs. The change in electrical impedance was measured at 0.5, 2, 6, and 12 MHz using the IFC AmphaZ30 (Amphasys AG, Switzerland). A traditional toxicity assay, Trypan Blue Dye Exclusion assay, and dark-field microscopy were used to validate the IFC method. Results: Spherical Ag particles (NM-300K) showed the highest toxic effect on U937 cells followed by ZnO (NM-111 ≥ NM-110) particles. Silica particles were moderate to non-toxic at all used concentrations under these conditions. A higher toxic effect was seen with smaller sized TiO2 particles (NM-101) compared to their larger analogues (NM-100). No interferences between the IFC and the used NMs were seen. Uptake and internalization of NMs were observed after 24 hours exposure, confirming actual NM-cell interactions. Conclusion: Results collected with the IFC demonstrate the applicability of this method for rapid nanotoxicity assessment, which proved to be less prone to nano-related interference issues compared to some traditional toxicity assays. Furthermore, this label-free and novel technique shows good potential for up-scaling in directions of an automated high-throughput screening and for future NM toxicity assessment. This work was supported by the EC FP7 NANoREG (Grant Agreement NMP4-LA-2013-310584), the Research Council of Norway, project NorNANoREG (239199/O70), the EuroNanoMed II 'GEMN' project (246672), and the UH-Nett Vest project.Keywords: cytotoxicity, high-throughput, impedance, nanomaterials
Procedia PDF Downloads 362935 Prediction of Fluid Induced Deformation using Cavity Expansion Theory
Authors: Jithin S. Kumar, Ramesh Kannan Kandasami
Abstract:
Geomaterials are generally porous in nature due to the presence of discrete particles and interconnected voids. The porosity present in these geomaterials play a critical role in many engineering applications such as CO2 sequestration, well bore strengthening, enhanced oil and hydrocarbon recovery, hydraulic fracturing, and subsurface waste storage. These applications involves solid-fluid interactions, which govern the changes in the porosity which in turn affect the permeability and stiffness of the medium. Injecting fluid into the geomaterials results in permeation which exhibits small or negligible deformation of the soil skeleton followed by cavity expansion/ fingering/ fracturing (different forms of instabilities) due to the large deformation especially when the flow rate is greater than the ability of the medium to permeate the fluid. The complexity of this problem increases as the geomaterial behaves like a solid and fluid under certain conditions. Thus it is important to understand this multiphysics problem where in addition to the permeation, the elastic-plastic deformation of the soil skeleton plays a vital role during fluid injection. The phenomenon of permeation and cavity expansion in porous medium has been studied independently through extensive experimental and analytical/ numerical models. The analytical models generally use Darcy's/ diffusion equations to capture the fluid flow during permeation while elastic-plastic (Mohr-Coulomb and Modified Cam-Clay) models were used to predict the solid deformations. Hitherto, the research generally focused on modelling cavity expansion without considering the effect of injected fluid coming into the medium. Very few studies have considered the effect of injected fluid on the deformation of soil skeleton. However, the porosity changes during the fluid injection and coupled elastic-plastic deformation are not clearly understood. In this study, the phenomenon of permeation and instabilities such as cavity and finger/ fracture formation will be quantified extensively by performing experiments using a novel experimental setup in addition to utilizing image processing techniques. This experimental study will describe the fluid flow and soil deformation characteristics under different boundary conditions. Further, a well refined coupled semi-analytical model will be developed to capture the physics involved in quantifying the deformation behaviour of geomaterial during fluid injection.Keywords: solid-fluid interaction, permeation, poroelasticity, plasticity, continuum model
Procedia PDF Downloads 74934 Self-Esteem on University Students by Gender and Branch of Study
Authors: Antonio Casero Martínez, María de Lluch Rayo Llinas
Abstract:
This work is part of an investigation into the relationship between romantic love and self-esteem in college students, performed by the students of matter "methods and techniques of social research", of the Master Gender at the University of Balearic Islands, during 2014-2015. In particular, we have investigated the relationships that may exist between self-esteem, gender and field of study. They are known as gender differences in self-esteem, and the relationship between gender and branch of study observed annually by the distribution of enrolment in universities. Therefore, in this part of the study, we focused the spotlight on the differences in self-esteem between the sexes through the various branches of study. The study sample consists of 726 individuals (304 men and 422 women) from 30 undergraduate degrees that the University of the Balearic Islands offers on its campus in 2014-2015, academic year. The average age of men was 21.9 years and 21.7 years for women. The sampling procedure used was random sampling stratified by degree, simple affixation, giving a sampling error of 3.6% for the whole sample, with a confidence level of 95% under the most unfavorable situation (p = q). The Spanish translation of the Rosenberg Self-Esteen Scale (RSE), by Atienza, Moreno and Balaguer was applied. The psychometric properties of translation reach a test-retest reliability of 0.80 and an internal consistency between 0.76 and 0.87. In this paper we have obtained an internal consistency of 0.82. The results confirm the expected differences in self-esteem by gender, although not in all branches of study. Mean levels of self-esteem in women are lower in all branches of study, reaching statistical significance in the field of Science, Social Sciences and Law, and Engineering and Architecture. However, analysed the variability of self-esteem by the branch of study within each gender, the results show independence in the case of men, whereas in the case of women find statistically significant differences, arising from lower self-esteem of Arts and Humanities students vs. the Social and legal Sciences students. These findings confirm the results of numerous investigations in which the levels of female self-esteem appears always below the male, suggesting that perhaps we should consider separately the two populations rather than continually emphasize the difference. The branch of study, for its part has not appeared as an explanatory factor of relevance, beyond detected the largest absolute difference between gender in the technical branch, one in which women are historically a minority, ergo, are no disciplinary or academic characteristics which would explain the differences, but the differentiated social context that occurs within it.Keywords: study branch, gender, self-esteem, applied psychology
Procedia PDF Downloads 465933 Tagging a corpus of Media Interviews with Diplomats: Challenges and Solutions
Authors: Roberta Facchinetti, Sara Corrizzato, Silvia Cavalieri
Abstract:
Increasing interconnection between data digitalization and linguistic investigation has given rise to unprecedented potentialities and challenges for corpus linguists, who need to master IT tools for data analysis and text processing, as well as to develop techniques for efficient and reliable annotation in specific mark-up languages that encode documents in a format that is both human and machine-readable. In the present paper, the challenges emerging from the compilation of a linguistic corpus will be taken into consideration, focusing on the English language in particular. To do so, the case study of the InterDiplo corpus will be illustrated. The corpus, currently under development at the University of Verona (Italy), represents a novelty in terms both of the data included and of the tag set used for its annotation. The corpus covers media interviews and debates with diplomats and international operators conversing in English with journalists who do not share the same lingua-cultural background as their interviewees. To date, this appears to be the first tagged corpus of international institutional spoken discourse and will be an important database not only for linguists interested in corpus analysis but also for experts operating in international relations. In the present paper, special attention will be dedicated to the structural mark-up, parts of speech annotation, and tagging of discursive traits, that are the innovational parts of the project being the result of a thorough study to find the best solution to suit the analytical needs of the data. Several aspects will be addressed, with special attention to the tagging of the speakers’ identity, the communicative events, and anthropophagic. Prominence will be given to the annotation of question/answer exchanges to investigate the interlocutors’ choices and how such choices impact communication. Indeed, the automated identification of questions, in relation to the expected answers, is functional to understand how interviewers elicit information as well as how interviewees provide their answers to fulfill their respective communicative aims. A detailed description of the aforementioned elements will be given using the InterDiplo-Covid19 pilot corpus. The data yielded by our preliminary analysis of the data will highlight the viable solutions found in the construction of the corpus in terms of XML conversion, metadata definition, tagging system, and discursive-pragmatic annotation to be included via Oxygen.Keywords: spoken corpus, diplomats’ interviews, tagging system, discursive-pragmatic annotation, english linguistics
Procedia PDF Downloads 185932 CuIn₃Se₅ Colloidal Nanocrystals and Its Ink-Coated Films for Photovoltaics
Authors: M. Ghali, M. Elnimr, G. F. Ali, A. M. Eissa, H. Talaat
Abstract:
CuIn₃Se₅ material is indexed as ordered vacancy compounds having excellent matching properties with CuInGaSe (CIGS) solar absorber layer. For example, the valence band offset of CuIn₃Se₅ with CIGS is nearly 0.3 eV, and the lattice mismatch is less than 1%, besides the absence of discontinuity in their conduction bands. Thus, CuIn₃Se₅ can work as a passivation layer for repelling holes from CIGS/CdS interface and hence to reduce the interface carriers recombination and consequently enhancing the efficiency of CIGS/CdS solar cells. Theoretically, it was reported earlier that an improvement in the efficiency of p-CIGS-based solar cell with a thin ~100 nm of n-CuIn₃Se₅ layer is expected. Recently, a reported experiment demonstrated significant improvement in the efficiency of Molecular Beam Epitaxy (MBE) grown CIGS solar cells from 13.4 to 14.5% via inserting a thin layer of MBE-grown Cu(In,Ga)₃Se₅ layer at the CdS/CIGS interface. It should be mentioned that CuIn₃Se₅ material in either bulk or thin film form, are usually fabricated by high vacuum physical vapor deposition techniques (e.g., three-source co-evaporation, RF sputtering, flash evaporation, and molecular beam epitaxy). In addition, achieving photosensitive films of n-CuIn₃Se₅ material is important for new hybrid organic/inorganic structures, where inorganic photo-absorber layer, with n-type conductivity, can form n–p junction with organic p-type material (e.g., conductive polymers). A detailed study of the physical properties of CuIn₃Se₅ is still necessary for better understanding of device operation and further improvement of solar cells performance. Here, we report on the low-cost synthesis of CuIn₃Se₅ material in nano-scale size, with an average diameter ~10nm, using simple solution-based colloidal chemistry. In contrast to traditionally grown bulk tetragonal CuIn₃Se₅ crystals using high Vacuum-based technology, our colloidal CuIn₃Se₅ nanocrystals show cubic crystal structure with a shape of nanoparticles and band gap ~1.33 eV. Ink-coated thin films prepared from these nanocrystals colloids; display n-type character, 1.26 eV band gap and strong photo-responsive behavior with incident white light. This suggests the potential use of colloidal CuIn₃Se₅ as an active layer in all-solution-processed thin film solar cells.Keywords: nanocrystals, CuInSe, thin film, optical properties
Procedia PDF Downloads 155931 Molecular Epidemiology of Egyptian Biomphalaria Snail: The Identification of Species, Diagnostic of the Parasite in Snails and Host Parasite Relationship
Authors: Hanaa M. Abu El Einin, Ahmed T. Sharaf El- Din
Abstract:
Biomphalaria snails play an integral role in the transmission of Schistosoma mansoni, the causative agent for human schistosomiasis. Two species of Biomphalaria were reported from Egypt, Biomphalaria alexandrina and Biomphalaria glabrata, and later on a hybrid of B. alexandrina and B. glabrata was reported in streams at Nile Delta. All were known to be excellent hosts of S. mansoni. Host-parasite relationship can be viewed in terms of snail susceptibility and parasite infectivity. The objective of this study will highlight the progress that has been made in using molecular approaches to describe the correct identification of snail species that participating in transmission of schistosomiasis, rapid diagnose of infection in addition to susceptibility and resistance type. Snails were identified using of molecular methods involving Randomly Amplified Polymorphic DNA (RAPD), Polymerase Chain Reaction, Restriction Fragment Length Polymorphisms (PCR-RFLP) and Species - specific- PCR. Molecular approaches to diagnose parasite in snails from Egypt: Nested PCR assay and small subunit (SSU) rRNA gene. Also RAPD PCR for study susceptible and resistance phenotype. The results showed that RAPD- PCR, PCR-RFLP and species-specific-PCR techniques were confirmed that: no evidence for the presence of B. glabrata in Egypt, All Biomphalaria snails collected identified as B. alexandrina snail i-e B alexandrinia is a common and no evidence for hybridization with B. glabrata. The adopted specific nested PCR assay revealed much higher sensitivity which enables the detection of S. mansoni infected snails down to 3 days post infection. Nested PCR method for detection of infected snails using S. mansoni fructose -1,6- bisphosphate aldolase (SMALDO) primer, these primers are specific only for S. mansoni and not cross reactive with other schistosomes or molluscan aldolases Nested PCR for such gene is sensitive enough to detect one cercariae. Genetic variations between B. alexandrina strains that are susceptible and resistant to Schistosoma infec¬tion using a RAPD-PCR showed that 39.8% of the examined snails collected from the field were resistant, while 60.2% of these snails showed high infection rates. In conclusion the genetics of the intermediate host plays a more important role in the epidemiological control of schistosomiasis.Keywords: biomphalaria, molecular differentiation, parasite detection, schistosomiasis
Procedia PDF Downloads 198930 A Randomised Controlled Study to Compare Efficacy and Safety of Bupivacaine plus Dexamethasone Versus Bupivacaine plus Fentanyl for Caudal Block in Children
Authors: Ashwini Patil
Abstract:
Caudal block is one of the most commonly used regional anesthetic techniques in children. Currently, fentanyl is used as an adjuvant to bupivacaine to prolong analgesia but fentanyl is a narcotic. Dexamethasone, a glucocorticoid with strong anti-inflammatory effects provides improvement in post-operative analgesia and post-operative side effects. However, its analgesic efficacy and safety in comparison with fentanyl has not been extensively studied. So the objective of this randomized controlled study is to compare dexamethasone with fentanyl as an adjuvant to bupivacaine for caudal block in children in relation to the duration of caudal analgesia, post-operative analgesic requirement and incidence of post-operative nausea and vomiting. This study included 100 children, aged 1–6 years, undergoing lower abdominal surgeries. Patients were randomized into two groups, 50 each to receive a combination of dexamethasone 0.2 mg/kg along with 1 ml/kg bupivacaine 0.25% (group A) or combination of fentanyl (1 ug/kg) along with 1ml/kg bupivacaine 0.25% (group B). In the post-operative period, pain was assessed using a Modified Objective Pain Scale (MOPS) until 12 hr after surgery and rescue analgesia is administered when MOPS score 4 or more is recorded. Residual motor block, number of analgesic doses required within 24 hr after surgery, sedation scores, intra-operative and post-operative hemodynamic variables, post-operative nausea and vomiting (PONV), and other adverse effects were recorded. Data is analysed using unpaired t test and Significance level of P< 0.05 is considered statistically significant. Group A showed a significantly longer time to first analgesic requirement than group B (p<0.05). The number of rescue analgesic doses required in the first 24 h was significantly less in group A (p<0.05). Group A showed significantly lower MOPS scores than group B(p<0.05). Intra-operative and post-operative hemodynamic variables, Modified Bromage Scale scores, and sedation scores were comparable in both the groups. Group A showed significantly fewer incidences of PONV compared with group B(p<0.05). This study reveals that adding dexamethasone to bupivacaine prolongs the duration of postoperative analgesia and decreases the incidence of PONV as compared to combination of fentanyl to bupivacaine after a caudal block in pediatric patients.Keywords: bupivacaine, caudal analgesia, dexamethasone, pediatric
Procedia PDF Downloads 208929 Bioinformatics High Performance Computation and Big Data
Authors: Javed Mohammed
Abstract:
Right now, bio-medical infrastructure lags well behind the curve. Our healthcare system is dispersed and disjointed; medical records are a bit of a mess; and we do not yet have the capacity to store and process the crazy amounts of data coming our way from widespread whole-genome sequencing. And then there are privacy issues. Despite these infrastructure challenges, some researchers are plunging into bio medical Big Data now, in hopes of extracting new and actionable knowledge. They are doing delving into molecular-level data to discover bio markers that help classify patients based on their response to existing treatments; and pushing their results out to physicians in novel and creative ways. Computer scientists and bio medical researchers are able to transform data into models and simulations that will enable scientists for the first time to gain a profound under-standing of the deepest biological functions. Solving biological problems may require High-Performance Computing HPC due either to the massive parallel computation required to solve a particular problem or to algorithmic complexity that may range from difficult to intractable. Many problems involve seemingly well-behaved polynomial time algorithms (such as all-to-all comparisons) but have massive computational requirements due to the large data sets that must be analyzed. High-throughput techniques for DNA sequencing and analysis of gene expression have led to exponential growth in the amount of publicly available genomic data. With the increased availability of genomic data traditional database approaches are no longer sufficient for rapidly performing life science queries involving the fusion of data types. Computing systems are now so powerful it is possible for researchers to consider modeling the folding of a protein or even the simulation of an entire human body. This research paper emphasizes the computational biology's growing need for high-performance computing and Big Data. It illustrates this article’s indispensability in meeting the scientific and engineering challenges of the twenty-first century, and how Protein Folding (the structure and function of proteins) and Phylogeny Reconstruction (evolutionary history of a group of genes) can use HPC that provides sufficient capability for evaluating or solving more limited but meaningful instances. This article also indicates solutions to optimization problems, and benefits Big Data and Computational Biology. The article illustrates the Current State-of-the-Art and Future-Generation Biology of HPC Computing with Big Data.Keywords: high performance, big data, parallel computation, molecular data, computational biology
Procedia PDF Downloads 364928 Causal Inference Engine between Continuous Emission Monitoring System Combined with Air Pollution Forecast Modeling
Authors: Yu-Wen Chen, Szu-Wei Huang, Chung-Hsiang Mu, Kelvin Cheng
Abstract:
This paper developed a data-driven based model to deal with the causality between the Continuous Emission Monitoring System (CEMS, by Environmental Protection Administration, Taiwan) in industrial factories, and the air quality around environment. Compared to the heavy burden of traditional numerical models of regional weather and air pollution simulation, the lightweight burden of the proposed model can provide forecasting hourly with current observations of weather, air pollution and emissions from factories. The observation data are included wind speed, wind direction, relative humidity, temperature and others. The observations can be collected real time from Open APIs of civil IoT Taiwan, which are sourced from 439 weather stations, 10,193 qualitative air stations, 77 national quantitative stations and 140 CEMS quantitative industrial factories. This study completed a causal inference engine and gave an air pollution forecasting for the next 12 hours related to local industrial factories. The outcomes of the pollution forecasting are produced hourly with a grid resolution of 1km*1km on IIoTC (Industrial Internet of Things Cloud) and saved in netCDF4 format. The elaborated procedures to generate forecasts comprise data recalibrating, outlier elimination, Kriging Interpolation and particle tracking and random walk techniques for the mechanisms of diffusion and advection. The solution of these equations reveals the causality between factories emission and the associated air pollution. Further, with the aid of installed real-time flue emission (Total Suspension Emission, TSP) sensors and the mentioned forecasted air pollution map, this study also disclosed the converting mechanism between the TSP and PM2.5/PM10 for different region and industrial characteristics, according to the long-term data observation and calibration. These different time-series qualitative and quantitative data which successfully achieved a causal inference engine in cloud for factory management control in practicable. Once the forecasted air quality for a region is marked as harmful, the correlated factories are notified and asked to suppress its operation and reduces emission in advance.Keywords: continuous emission monitoring system, total suspension particulates, causal inference, air pollution forecast, IoT
Procedia PDF Downloads 87927 Design and Evaluation of a Prototype for Non-Invasive Screening of Diabetes – Skin Impedance Technique
Authors: Pavana Basavakumar, Devadas Bhat
Abstract:
Diabetes is a disease which often goes undiagnosed until its secondary effects are noticed. Early detection of the disease is necessary to avoid serious consequences which could lead to the death of the patient. Conventional invasive tests for screening of diabetes are mostly painful, time consuming and expensive. There’s also a risk of infection involved, therefore it is very essential to develop non-invasive methods to screen and estimate the level of blood glucose. Extensive research is going on with this perspective, involving various techniques that explore optical, electrical, chemical and thermal properties of the human body that directly or indirectly depend on the blood glucose concentration. Thus, non-invasive blood glucose monitoring has grown into a vast field of research. In this project, an attempt was made to device a prototype for screening of diabetes by measuring electrical impedance of the skin and building a model to predict a patient’s condition based on the measured impedance. The prototype developed, passes a negligible amount of constant current (0.5mA) across a subject’s index finger through tetra polar silver electrodes and measures output voltage across a wide range of frequencies (10 KHz – 4 MHz). The measured voltage is proportional to the impedance of the skin. The impedance was acquired in real-time for further analysis. Study was conducted on over 75 subjects with permission from the institutional ethics committee, along with impedance, subject’s blood glucose values were also noted, using conventional method. Nonlinear regression analysis was performed on the features extracted from the impedance data to obtain a model that predicts blood glucose values for a given set of features. When the predicted data was depicted on Clarke’s Error Grid, only 58% of the values predicted were clinically acceptable. Since the objective of the project was to screen diabetes and not actual estimation of blood glucose, the data was classified into three classes ‘NORMAL FASTING’,’NORMAL POSTPRANDIAL’ and ‘HIGH’ using linear Support Vector Machine (SVM). Classification accuracy obtained was 91.4%. The developed prototype was economical, fast and pain free. Thus, it can be used for mass screening of diabetes.Keywords: Clarke’s error grid, electrical impedance of skin, linear SVM, nonlinear regression, non-invasive blood glucose monitoring, screening device for diabetes
Procedia PDF Downloads 325926 Mesocarbon Microbeads Modification of Stainless-Steel Current Collector to Stabilize Lithium Deposition and Improve the Electrochemical Performance of Anode Solid-State Lithium Hybrid Battery
Authors: Abebe Taye
Abstract:
The interest in enhancing the performance of all-solid-state batteries featuring lithium metal anodes as a potential alternative to traditional lithium-ion batteries has prompted exploration into new avenues. A promising strategy involves transforming lithium-ion batteries into hybrid configurations by integrating lithium-ion and lithium-metal solid-state components. This study is focused on achieving stable lithium deposition and advancing the electrochemical capabilities of solid-state lithium hybrid batteries with anodes by incorporating mesocarbon microbeads (MCMBs) blended with silver nanoparticles. To achieve this, mesocarbon microbeads (MCMBs) blended with silver nanoparticles are coated on stainless-steel current collectors. These samples undergo a battery of analyses employing diverse techniques. Surface morphology is studied through scanning electron microscopy (SEM). The electrochemical behavior of the coated samples is evaluated in both half-cell and full-cell setups utilizing an argyrodite-type sulfide electrolyte. The stability of MCMBs in the electrolyte is assessed using electrochemical impedance spectroscopy (EIS). Additional insights into the composition are gleaned through X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). At an ultra-low N/P ratio of 0.26, stability is upheld for over 100 charge/discharge cycles in half-cells. When applied in a full-cell configuration, the hybrid anode preserves 60.1% of its capacity after 80 cycles at 0.3 C under a low N/P ratio of 0.45. In sharp contrast, the capacity retention of the cell using untreated MCMBs declines to 20.2% after a mere 60 cycles. The introduction of mesocarbon microbeads (MCMBs) combined with silver nanoparticles into the hybrid anode of solid-state lithium batteries substantially elevates their stability and electrochemical performance. This approach ensures consistent lithium deposition and removal, mitigating dendrite growth and the accumulation of inactive lithium. The findings from this investigation hold significant value in elevating the reversibility and energy density of lithium-ion batteries, thereby making noteworthy contributions to the advancement of more efficient energy storage systems.Keywords: MCMB, lithium metal, hybrid anode, silver nanoparticle, cycling stability
Procedia PDF Downloads 76925 Optimization of Temperature Coefficients for MEMS Based Piezoresistive Pressure Sensor
Authors: Vijay Kumar, Jaspreet Singh, Manoj Wadhwa
Abstract:
Piezo-resistive pressure sensors were one of the first developed micromechanical system (MEMS) devices and still display a significant growth prompted by the advancements in micromachining techniques and material technology. In MEMS based piezo-resistive pressure sensors, temperature can be considered as the main environmental condition which affects the system performance. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics to drift. In this work, a study on the effects of temperature and doping concentration in a boron implanted piezoresistor for a silicon-based pressure sensor is discussed. We have optimized the temperature coefficient of resistance (TCR) and temperature coefficient of sensitivity (TCS) values to determine the effect of temperature drift on the sensor performance. To be more precise, in order to reduce the temperature drift, a high doping concentration is needed. And it is well known that the Wheatstone bridge in a pressure sensor is supplied with a constant voltage or a constant current input supply. With a constant voltage supply, the thermal drift can be compensated along with an external compensation circuit, whereas the thermal drift in the constant current supply can be directly compensated by the bridge itself. But it would be beneficial to also compensate the temperature coefficient of piezoresistors so as to further reduce the temperature drift. So, with a current supply, the TCS is dependent on both the TCπ and TCR. As TCπ is a negative quantity and TCR is a positive quantity, it is possible to choose an appropriate doping concentration at which both of them cancel each other. An exact cancellation of TCR and TCπ values is not readily attainable; therefore, an adjustable approach is generally used in practical applications. Thus, one goal of this work has been to better understand the origin of temperature drift in pressure sensor devices so that the temperature effects can be minimized or eliminated. This paper describes the optimum doping levels for the piezoresistors where the TCS of the pressure transducers will be zero due to the cancellation of TCR and TCπ values. Also, the fabrication and characterization of the pressure sensor are carried out. The optimized TCR value obtained for the fabricated die is 2300 ± 100ppm/ᵒC, for which the piezoresistors are implanted at a doping concentration of 5E13 ions/cm³ and the TCS value of -2100ppm/ᵒC is achieved. Therefore, the desired TCR and TCS value is achieved, which are approximately equal to each other, so the thermal effects are considerably reduced. Finally, we have calculated the effect of temperature and doping concentration on the output characteristics of the sensor. This study allows us to predict the sensor behavior against temperature and to minimize this effect by optimizing the doping concentration.Keywords: piezo-resistive, pressure sensor, doping concentration, TCR, TCS
Procedia PDF Downloads 182924 Knowledge Transfer to Builders in Improving Housing Resilience
Authors: Saima Shaikh, Andre Brown, Wallace Enegbuma
Abstract:
Earthquakes strike both developed and developing countries, causing tremendous damage and the loss of lives of millions of people, mainly due to the collapsing of buildings, particularly in poorer countries. Despite the socio-economic and technological restrictions, the poorer countries have adopted proven and established housing-strengthening techniques from affluent countries. Rural communities are aware of the earthquake-strengthening mechanisms for improving housing resilience, but owing to socio-economic and technological constraints, the seismic guidelines are rarely implemented, resulting in informal construction practice. Unregistered skilled laborers make substantial contributions to the informal construction sector, particularly in rural areas where knowledge is scarce. Laborers employ their local expertise in house construction; however, owing to a lack of seismic expertise in safe building procedures, the authorities' regulated seismic norms are not applied. From the perspective of seismic knowledge transformation in safe buildings practices, the study focuses on the feasibility of seismic guidelines implementation. The study firstly employs a literature review of massive-scale reconstruction after the 2005 earthquake in rural Pakistan. The 2005-earthquake damaged over 400,000 homes, killed 70,000 people and displaced 2.8 million people. The research subsequently corroborated the pragmatic approach using questionnaire field survey among the rural people in 2005-earthquake affected areas. Using the literature and the questionnaire survey, the research analyzing people's perspectives on technical acceptability, financial restrictions, and socioeconomic viability and examines the effectiveness of seismic knowledge transfer in safe buildings practices. The findings support the creation of a knowledge transfer framework in disaster mitigation and recovery planning, assisting rural communities and builders in minimising losses and improving response and recovery, as well as improving housing resilience and lowering vulnerabilities. Finally, certain conclusions are obtained in order to continue the resilience research. The research can be further applied in rural areas of developing countries having similar construction practices.Keywords: earthquakes, knowledge transfer, resilience, informal construction practices
Procedia PDF Downloads 173923 Hydrogen Sulfide Releasing Ibuprofen Derivative Can Protect Heart After Ischemia-Reperfusion
Authors: Virag Vass, Ilona Bereczki, Erzsebet Szabo, Nora Debreczeni, Aniko Borbas, Pal Herczegh, Arpad Tosaki
Abstract:
Hydrogen sulfide (H₂S) is a toxic gas, but it is produced by certain tissues in a small quantity. According to earlier studies, ibuprofen and H₂S has a protective effect against damaging heart tissue caused by ischemia-reperfusion. Recently, we have been investigating the effect of a new water-soluble H₂S releasing ibuprofen molecule administered after artificially generated ischemia-reperfusion on isolated rat hearts. The H₂S releasing property of the new ibuprofen derivative was investigated in vitro in medium derived from heart endothelial cell isolation at two concentrations. The ex vivo examinations were carried out on rat hearts. Rats were anesthetized with an intraperitoneal injection of ketamine, xylazine, and heparin. After thoracotomy, hearts were excised and placed into ice-cold perfusion buffer. Perfusion of hearts was conducted in Langendorff mode via the cannulated aorta. In our experiments, we studied the dose-effect of the H₂S releasing molecule in Langendorff-perfused hearts with the application of gradually increasing concentration of the compound (0- 20 µM). The H₂S releasing ibuprofen derivative was applied before the ischemia for 10 minutes. H₂S concentration was measured with an H₂S detecting electrochemical sensor from the coronary effluent solution. The 10 µM concentration was chosen for further experiments when the treatment with this solution was occurred after the ischemia. The release of H₂S is occurred by the hydrolyzing enzymes that are present in the heart endothelial cells. The protective effect of the new H₂S releasing ibuprofen molecule can be confirmed by the infarct sizes of hearts using the Triphenyl-tetrazolium chloride (TTC) staining method. Furthermore, we aimed to define the effect of the H₂S releasing ibuprofen derivative on autophagic and apoptotic processes in damaged hearts after investigating the molecular markers of these events by western blotting and immunohistochemistry techniques. Our further studies will include the examination of LC3I/II, p62, Beclin1, caspase-3, and other apoptotic molecules. We hope that confirming the protective effect of new H₂S releasing ibuprofen molecule will open a new possibility for the development of more effective cardioprotective agents with exerting fewer side effects. Acknowledgment: This study was supported by the grants of NKFIH- K-124719 and the European Union and the State of Hungary co- financed by the European Social Fund in the framework of GINOP- 2.3.2-15-2016-00043.Keywords: autophagy, hydrogen sulfide, ibuprofen, ischemia, reperfusion
Procedia PDF Downloads 140922 Effect of Upper Face Sheet Material on Flexural Strength of Polyurethane Foam Hybrid Sandwich Material
Authors: M. Atef Gabr, M. H. Abdel Latif, Ramadan El Gamsy
Abstract:
Sandwich panels comprise a thick, light-weight plastic foam such as polyurethane (PU) sandwiched between two relatively thin faces. One or both faces may be flat, lightly profiled or fully profiled. Until recently sandwich panel construction in Egypt has been widely used in cold-storage buildings, cold trucks, prefabricated buildings and insulation in construction. Recently new techniques are used in mass production of Sandwich Materials such as Reaction Injection Molding (RIM) and Vacuum bagging technique. However, in recent times their use has increased significantly due to their widespread structural applications in building systems. Structural sandwich panels generally used in Egypt comprise polyurethane foam core and thinner (0.42 mm) and high strength about 550 MPa (yield strength) flat steel faces bonded together using separate adhesives and By RIM technique. In this paper, we will use a new technique in sandwich panel preparation by using different face sheet materials in combination with polyurethane foam to form sandwich panel structures. Previously, PU Foam core with same thin 2 faces material was used, but in this work, we use different face materials and thicknesses for the upper face sheet such as Galvanized steel sheets (G.S),Aluminum sheets (Al),Fiberglass sheets (F.G) and Aluminum-Rubber composite sheets (Al/R) with polyurethane foam core 10 mm thickness and 45 Kg/m3 Density and Galvanized steel as lower face sheet. Using Aluminum-Rubber composite sheets as face sheet is considered a hybrid composite sandwich panel which is built by Hand-Layup technique by using PU glue as adhesive. This modification increases the benefits of the face sheet that will withstand different working environments with relatively small increase in its weight and will be useful in several applications. In this work, a 3-point bending test is used assistant professor to measure the most important factor in sandwich materials that is strength to weight ratio(STW) for different combinations of sandwich structures and make a comparison to study the effect of changing the face sheet material on the mechanical behavior of PU sandwich material. Also, the density of the different prepared sandwich materials will be measured to obtain the specific bending strength.Keywords: hybrid sandwich panel, mechanical behavior, PU foam, sandwich panel, 3-point bending, flexural strength
Procedia PDF Downloads 317921 Nanomaterials for Archaeological Stone Conservation: Re-Assembly of Archaeological Heavy Stones Using Epoxy Resin Modified with Clay Nanoparticles
Authors: Sayed Mansour, Mohammad Aldoasri, Nagib Elmarzugi, Nadia A. Al-Mouallimi
Abstract:
The archaeological large stone used in construction of ancient Pharaonic tombs, temples, obelisks and other sculptures, always subject to physicomechanical deterioration and destructive forces, leading to their partial or total broken. The task of reassembling this type of artifact represent a big challenge for the conservators. Recently, the researchers are turning to new technologies to improve the properties of traditional adhesive materials and techniques used in re-assembly of broken large stone. The epoxy resins are used extensively in stone conservation and re-assembly of broken stone because of their outstanding mechanical properties. The introduction of nanoparticles to polymeric adhesives at low percentages may lead to substantial improvements of their mechanical performances in structural joints and large objects. The aim of this study is to evaluate the effectiveness of clay nanoparticles in enhancing the performances of epoxy adhesives used in re-assembly of archaeological massive stone by adding proper amounts of those nanoparticles. The nanoparticles reinforced epoxy nanocomposite was prepared by direct melt mixing with a nanoparticles content of 3% (w/v), and then mould forming in the form of rectangular samples, and used as adhesive for experimental stone samples. Scanning electron microscopy (SEM) was employed to investigate the morphology of the prepared nanocomposites, and the distribution of nanoparticles inside the composites. The stability and efficiency of the prepared epoxy-nanocomposites and stone block assemblies with new formulated adhesives were tested by aging artificially the samples under different environmental conditions. The effect of incorporating clay nanoparticles on the mechanical properties of epoxy adhesives was evaluated comparatively before and after aging by measuring the tensile, compressive, and Elongation strength tests. The morphological studies revealed that the mixture process between epoxy and nanoparticles has succeeded with a relatively homogeneous morphology and good dispersion in low nano-particles loadings in epoxy matrix was obtained. The results show that the epoxy-clay nanocomposites exhibited superior tensile, compressive, and Elongation strength. Moreover, a marked improvement of the mechanical properties of stone joints increased in all states by adding nano-clay to epoxy in comparison with pure epoxy resin.Keywords: epoxy resins, nanocomposites, clay nanoparticles, re-assembly, archaeological massive stones, mechanical properties
Procedia PDF Downloads 113920 Design and Test a Robust Bearing-Only Target Motion Analysis Algorithm Based on Modified Gain Extended Kalman Filter
Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy
Abstract:
Passive sonar is a method for detecting acoustic signals in the ocean. It detects the acoustic signals emanating from external sources. With passive sonar, we can determine the bearing of the target only, no information about the range of the target. Target Motion Analysis (TMA) is a process to estimate the position and speed of a target using passive sonar information. Since bearing is the only available information, the TMA technique called Bearing-only TMA. Many TMA techniques have been developed. However, until now, there is not a very effective method that could be used to always track an unknown target and extract its moving trace. In this work, a design of effective Bearing-only TMA Algorithm is done. The measured bearing angles are very noisy. Moreover, for multi-beam sonar, the measurements is quantized due to the sonar beam width. To deal with this, modified gain extended Kalman filter algorithm is used. The algorithm is fine-tuned, and many modules are added to improve the performance. A special validation gate module is used to insure stability of the algorithm. Many indicators of the performance and confidence level measurement are designed and tested. A new method to detect if the target is maneuvering is proposed. Moreover, a reactive optimal observer maneuver based on bearing measurements is proposed, which insure converging to the right solution all of the times. To test the performance of the proposed TMA algorithm a simulation is done with a MATLAB program. The simulator program tries to model a discrete scenario for an observer and a target. The simulator takes into consideration all the practical aspects of the problem such as a smooth transition in the speed, a circular turn of the ship, noisy measurements, and a quantized bearing measurement come for multi-beam sonar. The tests are done for a lot of given test scenarios. For all the tests, full tracking is achieved within 10 minutes with very little error. The range estimation error was less than 5%, speed error less than 5% and heading error less than 2 degree. For the online performance estimator, it is mostly aligned with the real performance. The range estimation confidence level gives a value equal to 90% when the range error less than 10%. The experiments show that the proposed TMA algorithm is very robust and has low estimation error. However, the converging time of the algorithm is needed to be improved.Keywords: target motion analysis, Kalman filter, passive sonar, bearing-only tracking
Procedia PDF Downloads 402919 Nanorods Based Dielectrophoresis for Protein Concentration and Immunoassay
Authors: Zhen Cao, Yu Zhu, Junxue Fu
Abstract:
Immunoassay, i.e., antigen-antibody reaction, is crucial for disease diagnostics. To achieve the adequate signal of the antigen protein detection, a large amount of sample and long incubation time is needed. However, the amount of protein is usually small at the early stage, which makes it difficult to detect. Unlike cells and DNAs, no valid chemical method exists for protein amplification. Thus, an alternative way to improve the signal is through particle manipulation techniques to concentrate proteins, among which dielectrophoresis (DEP) is an effective one. DEP is a technique that concentrates particles to the designated region through a force created by the gradient in a non-uniform electric field. Since DEP force is proportional to the cube of particle size and square of electric field gradient, it is relatively easy to capture larger particles such as cells. For smaller ones like proteins, a super high gradient is then required. In this work, three-dimensional Ag/SiO2 nanorods arrays, fabricated by an easy physical vapor deposition technique called as oblique angle deposition, have been integrated with a DEP device and created the field gradient as high as of 2.6×10²⁴ V²/m³. The nanorods based DEP device is able to enrich bovine serum albumin (BSA) protein by 1800-fold and the rate has reached 180-fold/s when only applying 5 V electric potential. Based on the above nanorods integrated DEP platform, an immunoassay of mouse immunoglobulin G (IgG) proteins has been performed. Briefly, specific antibodies are immobilized onto nanorods, then IgG proteins are concentrated and captured, and finally, the signal from fluorescence-labelled antibodies are detected. The limit of detection (LoD) is measured as 275.3 fg/mL (~1.8 fM), which is a 20,000-fold enhancement compared with identical assays performed on blank glass plates. Further, prostate-specific antigen (PSA), which is a cancer biomarker for diagnosis of prostate cancer after radical prostatectomy, is also quantified with a LoD as low as 2.6 pg/mL. The time to signal saturation has been significantly reduced to one minute. In summary, together with an easy nanorod fabrication and integration method, this nanorods based DEP platform has demonstrated highly sensitive immunoassay performance and thus poses great potentials in applications for early point-of-care diagnostics.Keywords: dielectrophoresis, immunoassay, oblique angle deposition, protein concentration
Procedia PDF Downloads 103918 The Illegal Architecture of Apartheid in Palestine
Authors: Hala Barakat
Abstract:
Architecture plays a crucial role in the colonization and organization of spaces, as well as the preservation of cultures and history. As a result of 70 years of occupation, Palestinian land, culture, and history are endangered today. The government of Israel has used architecture to strangulate Palestinians out and seize their land. The occupation has managed to fragment the West Bank and cause sensible scars on the landscape by creating obstacles, barriers, watchtowers, checkpoints, walls, apartheid roads, border devices, and illegal settlements to unjustly claim land from its indigenous population. The apartheid architecture has divided the Palestinian social and urban fabric into pieces, similarly to the Bantustans. The architectural techniques and methods used by the occupation are evidence of prejudice, and while the illegal settlements remain to be condemned by the United Nations, little is being done to officially end this apartheid. Illegal settlements range in scale from individual units to established cities and house more than 60,000 Israeli settlers that immigrated from all over Europe and the United States. Often architecture by Israel is being directed towards expressing ideologies and serving as evidence of its political agenda. More than 78% of what was granted to Palestine after the development of the Green Line in 1948 is under Israeli occupation today. This project aims to map the illegal architecture as a criticism of governmental agendas in the West Bank and Historic Palestinian land. The paper will also discuss the resistance to the newly developed plan for the last Arab village in Jerusalem, Lifta. The illegal architecture has isolated Palestinians from each other and installed obstacles to control their movement. The architecture of occupation has no ethical or humane logic but rather entirely political, administrative, and it should not be left for the silenced architecture to tell the story. Architecture is not being used as a connecting device but rather a way to implement political injustice and spatial oppression. By narrating stories of the architecture of occupation, we can highlight the spatial injustice of the complex apartheid infrastructure. The Israeli government has managed to intoxicate architecture to serve as a divider between cultural groups, allowing the unlawful and unethical architecture to define its culture and values. As architects and designers, the roles we play in the development of illegal settlements must align with the spatial ethics we practice. Most importantly, our profession is not performing architecturally when we design a house with a particular roof color to ensure it would not be mistaken with a Palestinian house and be attacked accidentally.Keywords: apartheid, illegal architecture, occupation, politics
Procedia PDF Downloads 152917 The Use of Optical-Radar Remotely-Sensed Data for Characterizing Geomorphic, Structural and Hydrologic Features and Modeling Groundwater Prospective Zones in Arid Zones
Authors: Mohamed Abdelkareem
Abstract:
Remote sensing data contributed on predicting the prospective areas of water resources. Integration of microwave and multispectral data along with climatic, hydrologic, and geological data has been used here. In this article, Sentinel-2, Landsat-8 Operational Land Imager (OLI), Shuttle Radar Topography Mission (SRTM), Tropical Rainfall Measuring Mission (TRMM), and Advanced Land Observing Satellite (ALOS) Phased Array Type L‐band Synthetic Aperture Radar (PALSAR) data were utilized to identify the geological, hydrologic and structural features of Wadi Asyuti which represents a defunct tributary of the Nile basin, in the eastern Sahara. The image transformation of Sentinel-2 and Landsat-8 data allowed characterizing the different varieties of rock units. Integration of microwave remotely-sensed data and GIS techniques provided information on physical characteristics of catchments and rainfall zones that are of a crucial role for mapping groundwater prospective zones. A fused Landsat-8 OLI and ALOS/PALSAR data improved the structural elements that difficult to reveal using optical data. Lineament extraction and interpretation indicated that the area is clearly shaped by the NE-SW graben that is cut by NW-SE trend. Such structures allowed the accumulation of thick sediments in the downstream area. Processing of recent OLI data acquired on March 15, 2014, verified the flood potential maps and offered the opportunity to extract the extent of the flooding zone of the recent flash flood event (March 9, 2014), as well as revealed infiltration characteristics. Several layers including geology, slope, topography, drainage density, lineament density, soil characteristics, rainfall, and morphometric characteristics were combined after assigning a weight for each using a GIS-based knowledge-driven approach. The results revealed that the predicted groundwater potential zones (GPZs) can be arranged into six distinctive groups, depending on their probability for groundwater, namely very low, low, moderate, high very, high, and excellent. Field and well data validated the delineated zones.Keywords: GIS, remote sensing, groundwater, Egypt
Procedia PDF Downloads 98916 Satellite Interferometric Investigations of Subsidence Events Associated with Groundwater Extraction in Sao Paulo, Brazil
Authors: B. Mendonça, D. Sandwell
Abstract:
The Metropolitan Region of Sao Paulo (MRSP) has suffered from serious water scarcity. Consequently, the most convenient solution has been building wells to extract groundwater from local aquifers. However, it requires constant vigilance to prevent over extraction and future events that can pose serious threat to the population, such as subsidence. Radar imaging techniques (InSAR) have allowed continuous investigation of such phenomena. The analysis of data in the present study consists of 23 SAR images dated from October 2007 to March 2011, obtained by the ALOS-1 spacecraft. Data processing was made with the software GMTSAR, by using the InSAR technique to create pairs of interferograms with ground displacement during different time spans. First results show a correlation between the location of 102 wells registered in 2009 and signals of ground displacement equal or lower than -90 millimeters (mm) in the region. The longest time span interferogram obtained dates from October 2007 to March 2010. As a result, from that interferogram, it was possible to detect the average velocity of displacement in millimeters per year (mm/y), and which areas strong signals have persisted in the MRSP. Four specific areas with signals of subsidence of 28 mm/y to 40 mm/y were chosen to investigate the phenomenon: Guarulhos (Sao Paulo International Airport), the Greater Sao Paulo, Itaquera and Sao Caetano do Sul. The coverage area of the signals was between 0.6 km and 1.65 km of length. All areas are located above a sedimentary type of aquifer. Itaquera and Sao Caetano do Sul showed signals varying from 28 mm/y to 32 mm/y. On the other hand, the places most likely to be suffering from stronger subsidence are the ones in the Greater Sao Paulo and Guarulhos, right beside the International Airport of Sao Paulo. The rate of displacement observed in both regions goes from 35 mm/y to 40 mm/y. Previous investigations of the water use at the International Airport highlight the risks of excessive water extraction that was being done through 9 deep wells. Therefore, it is affirmed that subsidence events are likely to occur and to cause serious damage in the area. This study could show a situation that has not been explored with proper importance in the city, given its social and economic consequences. Since the data were only available until 2011, the question that remains is if the situation still persists. It could be reaffirmed, however, a scenario of risk at the International Airport of Sao Paulo that needs further investigation.Keywords: ground subsidence, Interferometric Satellite Aperture Radar (InSAR), metropolitan region of Sao Paulo, water extraction
Procedia PDF Downloads 354915 Reduction of Residual Stress by Variothermal Processing and Validation via Birefringence Measurement Technique on Injection Molded Polycarbonate Samples
Authors: Christoph Lohr, Hanna Wund, Peter Elsner, Kay André Weidenmann
Abstract:
Injection molding is one of the most commonly used techniques in the industrial polymer processing. In the conventional process of injection molding, the liquid polymer is injected into the cavity of the mold, where the polymer directly starts hardening at the cooled walls. To compensate the shrinkage, which is caused predominantly by the immediate cooling, holding pressure is applied. Through that whole process, residual stresses are produced by the temperature difference of the polymer melt and the injection mold and the relocation of the polymer chains, which were oriented by the high process pressures and injection speeds. These residual stresses often weaken or change the structural behavior of the parts or lead to deformation of components. One solution to reduce the residual stresses is the use of variothermal processing. Hereby the mold is heated – i.e. near/over the glass transition temperature of the polymer – the polymer is injected and before opening the mold and ejecting the part the mold is cooled. For the next cycle, the mold gets heated again and the procedure repeats. The rapid heating and cooling of the mold are realized indirectly by convection of heated and cooled liquid (here: water) which is pumped through fluid channels underneath the mold surface. In this paper, the influences of variothermal processing on the residual stresses are analyzed with samples in a larger scale (500 mm x 250 mm x 4 mm). In addition, the influence on functional elements, such as abrupt changes in wall thickness, bosses, and ribs, on the residual stress is examined. Therefore the polycarbonate samples are produced by variothermal and isothermal processing. The melt is injected into a heated mold, which has in our case a temperature varying between 70 °C and 160 °C. After the filling of the cavity, the closed mold is cooled down varying from 70 °C to 100 °C. The pressure and temperature inside the mold are monitored and evaluated with cavity sensors. The residual stresses of the produced samples are illustrated by birefringence where the effect on the refractive index on the polymer under stress is used. The colorful spectrum can be uncovered by placing the sample between a polarized light source and a second polarization filter. To show the achievement and processing effects on the reduction of residual stress the birefringence images of the isothermal and variothermal produced samples are compared and evaluated. In this comparison to the variothermal produced samples have a lower amount of maxima of each color spectrum than the isothermal produced samples, which concludes that the residual stress of the variothermal produced samples is lower.Keywords: birefringence, injection molding, polycarbonate, residual stress, variothermal processing
Procedia PDF Downloads 283914 Environmental Accounting: A Conceptual Study of Indian Context
Authors: Pradip Kumar Das
Abstract:
As the entire world continues its rapid move towards industrialization, it has seriously threatened mankind’s ability to maintain an ecological balance. Geographical and natural forces have a significant influence on the location of industries. Industrialization is the foundation stone of the development of any country, while the unplanned industrialization and discharge of waste by industries is the cause of environmental pollution. There is growing degree of awareness and concern globally among nations about environmental degradation or pollution. Environmental resources endowed by the gift of nature and not manmade are invaluable natural resources of a country like India. Any developmental activity is directly related to natural and environmental resources. Economic development without environmental considerations brings about environmental crises and damages the quality of life of present, as well as future generation. As corporate sectors in the global market, especially in India, are becoming anxious about environmental degradation, naturally more and more emphasis will be ascribed to how environment-friendly the outcomes are. Maintaining accounts of such environmental and natural resources in the country has become more urgent. Moreover, international awareness and acceptance of the importance of environmental issues has motivated the development of a branch of accounting called “Environmental Accounting”. Environmental accounting attempts to detect and focus the resources consumed and the costs rendered by an industrial unit to the environment. For the sustainable development of mankind, a healthy environment is indispensable. Gradually, therefore, in many countries including India, environment matters are being given top most priority. Accounting and disclosure of environmental matters have been increasingly manifesting as an important dimension of corporate accounting and reporting practices. But, as conventional accounting deals with mainly non-living things, the formulation of valuation, and measurement and accounting techniques for incorporating environment-related matters in the corporate financial statement sometimes creates problems for the accountant. In the light of this situation, the conceptual analysis of the study is concerned with the rationale of environmental accounting on the economy and society as a whole, and focuses the failures of the traditional accounting system. A modest attempt has been made to throw light on the environmental awareness in developing nations like India and discuss the problems associated with the implementation of environmental accounting. The conceptual study also reflects that despite different anomalies, environmental accounting is becoming an increasing important aspect of the accounting agenda within the corporate sector in India. Lastly, a conclusion, along with recommendations, has been given to overcome the situation.Keywords: environmental accounting, environmental degradation, environmental management, environmental resources
Procedia PDF Downloads 343