Search results for: air flow rates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7326

Search results for: air flow rates

1536 Theoretical Analysis of the Existing Sheet Thickness in the Calendering of Pseudoplastic Material

Authors: Muhammad Zahid

Abstract:

The mechanical process of smoothing and compressing a molten material by passing it through a number of pairs of heated rolls in order to produce a sheet of desired thickness is called calendering. The rolls that are in combination are called calenders, a term derived from kylindros the Greek word for the cylinder. It infects the finishing process used on cloth, paper, textiles, leather cloth, or plastic film and so on. It is a mechanism which is used to strengthen surface properties, minimize sheet thickness, and yield special effects such as a glaze or polish. It has a wide variety of applications in industries in the manufacturing of textile fabrics, coated fabrics, and plastic sheeting to provide the desired surface finish and texture. An analysis has been presented for the calendering of Pseudoplastic material. The lubrication approximation theory (LAT) has been used to simplify the equations of motion. For the investigation of the nature of the steady solutions that exist, we make use of the combination of exact solution and numerical methods. The expressions for the velocity profile, rate of volumetric flow and pressure gradient are found in the form of exact solutions. Furthermore, the quantities of interest by engineering point of view, such as pressure distribution, roll-separating force, and power transmitted to the fluid by the rolls are also computed. Some results are shown graphically while others are given in the tabulated form. It is found that the non-Newtonian parameter and Reynolds number serve as the controlling parameters for the calendering process.

Keywords: calendering, exact solutions, lubrication approximation theory, numerical solutions, pseudoplastic material

Procedia PDF Downloads 148
1535 Estimation of Hydrogen Production from PWR Spent Fuel Due to Alpha Radiolysis

Authors: Sivakumar Kottapalli, Abdesselam Abdelouas, Christoph Hartnack

Abstract:

Spent nuclear fuel generates a mixed field of ionizing radiation to the water. This radiation field is generally dominated by gamma rays and a limited flux of fast neutrons. The fuel cladding effectively attenuates beta and alpha particle radiation. Small fraction of the spent nuclear fuel exhibits some degree of fuel cladding penetration due to pitting corrosion and mechanical failure. Breaches in the fuel cladding allow the exposure of small volumes of water in the cask to alpha and beta ionizing radiation. The safety of the transport of radioactive material is assured by the package complying with the IAEA Requirements for the Safe Transport of Radioactive Material SSR-6. It is of high interest to avoid generation of hydrogen inside the cavity which may to an explosive mixture. The risk of hydrogen production along with other radiation gases should be analyzed for a typical spent fuel for safety issues. This work aims to perform a realistic study of the production of hydrogen by radiolysis assuming most penalizing initial conditions. It consists in the calculation of the radionuclide inventory of a pellet taking into account the burn up and decays. Westinghouse 17X17 PWR fuel has been chosen and data has been analyzed for different sets of enrichment, burnup, cycles of irradiation and storage conditions. The inventory is calculated as the entry point for the simulation studies of hydrogen production by radiolysis kinetic models by MAKSIMA-CHEMIST. Dose rates decrease strongly within ~45 μm from the fuel surface towards the solution(water) in case of alpha radiation, while the dose rate decrease is lower in case of beta and even slower in case of gamma radiation. Calculations are carried out to obtain spectra as a function of time. Radiation dose rate profiles are taken as the input data for the iterative calculations. Hydrogen yield has been found to be around 0.02 mol/L. Calculations have been performed for a realistic scenario considering a capsule containing the spent fuel rod. Thus, hydrogen yield has been debated. Experiments are under progress to validate the hydrogen production rate using cyclotron at > 5MeV (at ARRONAX, Nantes).

Keywords: radiolysis, spent fuel, hydrogen, cyclotron

Procedia PDF Downloads 521
1534 Evaluation of Adaptive Fitness of Indian Teak (Tectona grandis L. F.) Metapopulation through Inter Simple Sequence Repeat Markers

Authors: Vivek Vaishnav, Shamim Akhtar Ansari

Abstract:

Teak (Tectona grandis L.f.) belonging to plant family Lamiaceae and the most commercialized timber species is endemic to South-Asia. The adaptive fitness of the species metapopulation was evaluated through its genetic differentiation and assessing the influence of geo-climatic conditions. 290 genotypes were sampled from 29 locations of its natural distribution and the genetic data was incorporated with geo-climatic parameters. Through Bayesian approach based analysis of 43 highly polymorphic ISSR markers, six homogeneous clusters (0.8% genetic variability) were identified. The six clusters were found with the various regimes of the temperature range, i.e., I - 9.10±1.35⁰C, II -6.35±0.21⁰C, III -12.21±0.43⁰C, IV - 10.8±1.06⁰C, V - 11.67±3.04⁰C, and VI - 12.35±0.21⁰C. The population had a very high percentage of LD (21.48%) among the amplified loci possibly due to experiencing restricted gene flow as well as co-adaptation and association of distant/diverse loci/alleles as a result of the stabilized climatic conditions and countless cycles of historical recombination events on a large geological timescale. The same possibly accounts for the narrow distribution of teak as a climax species in the tropical deciduous forests of the country. The regions of strong LD in teak genome significantly associated with climatic parameters also reflect that the species is tolerant to the wide regimes of the temperature range and may possibly withstand global warming and climate change in the coming millennium.

Keywords: Bayesian analysis, inter simple sequence repeat, linkage disequilibrium, marker-geoclimatic association

Procedia PDF Downloads 263
1533 Hydrological Modelling of Geological Behaviours in Environmental Planning for Urban Areas

Authors: Sheetal Sharma

Abstract:

Runoff,decreasing water levels and recharge in urban areas have been a complex issue now a days pointing defective urban design and increasing demography as cause. Very less has been discussed or analysed for water sensitive Urban Master Plans or local area plans. Land use planning deals with land transformation from natural areas into developed ones, which lead to changes in natural environment. Elaborated knowledge of relationship between the existing patterns of land use-land cover and recharge with respect to prevailing soil below is less as compared to speed of development. The parameters of incompatibility between urban functions and the functions of the natural environment are becoming various. Changes in land patterns due to built up, pavements, roads and similar land cover affects surface water flow seriously. It also changes permeability and absorption characteristics of the soil. Urban planners need to know natural processes along with modern means and best technologies available,as there is a huge gap between basic knowledge of natural processes and its requirement for balanced development planning leading to minimum impact on water recharge. The present paper analyzes the variations in land use land cover and their impacts on surface flows and sub-surface recharge in study area. The methodology adopted was to analyse the changes in land use and land cover using GIS and Civil 3d auto cad. The variations were used in  computer modeling using Storm-water Management Model to find out the runoff for various soil groups and resulting recharge observing water levels in POW data for last 40 years of the study area. Results were anlayzed again to find best correlations for sustainable recharge in urban areas.

Keywords: geology, runoff, urban planning, land use-land cover

Procedia PDF Downloads 318
1532 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units

Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov

Abstract:

The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.

Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis

Procedia PDF Downloads 273
1531 Creation of a Clinical Tool for Diagnosis and Treatment of Skin Disease in HIV Positive Patients in Malawi

Authors: Alice Huffman, Joseph Hartland, Sam Gibbs

Abstract:

Dermatology is often a neglected specialty in low-resource settings, despite the high morbidity associated with skin disease. This becomes even more significant when associated with HIV infection, as dermatological conditions are more common and aggressive in HIV positive patients. African countries have the highest HIV infection rates and skin conditions are frequently misdiagnosed and mismanaged, because of a lack of dermatological training and educational material. The frequent lack of diagnostic tests in the African setting renders basic clinical skills all the more vital. This project aimed to improve diagnosis and treatment of skin disease in the HIV population in a district hospital in Malawi. A basic dermatological clinical tool was developed and produced in collaboration with local staff and based on available literature and data collected from clinics. The aim was to improve diagnostic accuracy and provide guidance for the treatment of skin disease in HIV positive patients. A literature search within Embase, Medline and Google scholar was performed and supplemented through data obtained from attending 5 Antiretroviral clinics. From the literature, conditions were selected for inclusion in the resource if they were described as specific, more prevalent, or extensive in the HIV population or have more adverse outcomes if they develop in HIV patients. Resource-appropriate treatment options were decided using Malawian Ministry of Health guidelines and textbooks specific to African dermatology. After the collection of data and discussion with local clinical and pharmacy staff a list of 15 skin conditions was included and a booklet created using the simple layout of a picture, a diagnostic description of the disease and treatment options. Clinical photographs were collected from local clinics (with full consent of the patient) or from the book ‘Common Skin Diseases in Africa’ (permission granted if fully acknowledged and used in a not-for-profit capacity). This tool was evaluated by the local staff, alongside an educational teaching session on skin disease. This project aimed to reduce uncertainty in diagnosis and provide guidance for appropriate treatment in HIV patients by gathering information into one practical and manageable resource. To further this project, we hope to review the effectiveness of the tool in practice.

Keywords: dermatology, HIV, Malawi, skin disease

Procedia PDF Downloads 204
1530 Aging-Related Changes in Calf Muscle Function: Implications for Venous Hemodynamic and the Role of External Mechanical Activation

Authors: Bhavatharani S., Boopathy V., Kavin S., Naveethkumar R.

Abstract:

Context: Resistance training with blood flow restriction (BFR) has increased in clinical rehabilitation due to the substantial benefits observed in augmenting muscle mass and strength using low loads. However, there is a great variability of training pressures for clinical populations as well as methods to estimate it. The aim of this study was to estimate the percentage of maximal BFR that could result by applying different methodologies based on arbitrary or individual occlusion levels using a cuff width between 9 and 13 cm. Design: A secondary analysis was performed on the combined databases of 2 previous larger studies using BFR training. Methods: To estimate these percentages, the occlusion values needed to reach complete BFR (100% limb occlusion pressure [LOP]) were estimated by Doppler ultrasound. Seventy-five participants (age 24.32 [4.86] y; weight: 78.51 [14.74] kg; height: 1.77 [0.09] m) were enrolled in the laboratory study for measuring LOP in the thigh, arm, or calf. Results: When arbitrary values of restriction are applied, a supra-occlusive LOP between 120% and 190% LOP may result. Furthermore, the application of 130% resting brachial systolic blood pressure creates a similar occlusive stimulus as 100% LOP. Conclusions: Methods using 100 mm Hg and the resting brachial systolic blood pressure could represent the safest application prescriptions as they resulted in applied pressures between 60% and 80% LOP. One hundred thirty percent of the resting brachial systolic blood pressure could be used to indirectly estimate 100% LOP at cuff widths between 9 and 13 cm. Finally, methodologies that use standard values of 200 and, 300 mm Hg far exceed LOP and may carry additional risk during BFR exercise.

Keywords: lower limb rehabilitation, ESP32, pneumatics for medical, programmed rehabilitation

Procedia PDF Downloads 83
1529 MAOD Is Estimated by Sum of Contributions

Authors: David W. Hill, Linda W. Glass, Jakob L. Vingren

Abstract:

Maximal accumulated oxygen deficit (MAOD), the gold standard measure of anaerobic capacity, is the difference between the oxygen cost of exhaustive severe intensity exercise and the accumulated oxygen consumption (O2; mL·kg–1). In theory, MAOD can be estimated as the sum of independent estimates of the phosphocreatine and glycolysis contributions, which we refer to as PCr+glycolysis. Purpose: The purpose was to test the hypothesis that PCr+glycolysis provides a valid measure of anaerobic capacity in cycling and running. Methods: The participants were 27 women (mean ± SD, age 22 ±1 y, height 165 ± 7 cm, weight 63.4 ± 9.7 kg) and 25 men (age 22 ± 1 y, height 179 ± 6 cm, weight 80.8 ± 14.8 kg). They performed two exhaustive cycling and running tests, at speeds and work rates that were tolerable for ~5 min. The rate of oxygen consumption (VO2; mL·kg–1·min–1) was measured in warmups, in the tests, and during 7 min of recovery. Fingerprick blood samples obtained after exercise were analysed to determine peak blood lactate concentration (PeakLac). The VO2 response in exercise was fitted to a model, with a fast ‘primary’ phase followed by a delayed ‘slow’ component, from which was calculated the accumulated O2 and the excess O2 attributable to the slow component. The VO2 response in recovery was fitted to a model with a fast phase and slow component, sharing a common time delay. Oxygen demand (in mL·kg–1·min–1) was determined by extrapolation from steady-state VO2 in warmups; the total oxygen cost (in mL·kg–1) was determined by multiplying this demand by time to exhaustion and adding the excess O2; then, MAOD was calculated as total oxygen cost minus accumulated O2. The phosphocreatine contribution (area under the fast phase of the post-exercise VO2) and the glycolytic contribution (converted from PeakLac) were summed to give PCr+glycolysis. There was not an interaction effect involving sex, so values for anaerobic capacity were examined using a two-way ANOVA, with repeated measures across method (PCr+glycolysis vs MAOD) and mode (cycling vs running). Results: There was a significant effect only for exercise mode. There was no difference between MAOD and PCr+glycolysis: values were 59 ± 6 mL·kg–1 and 61 ± 8 mL·kg–1 in cycling and 78 ± 7 mL·kg–1 and 75 ± 8 mL·kg–1 in running. Discussion: PCr+glycolysis is a valid measure of anaerobic capacity in cycling and running, and it is as valid for women as for men.

Keywords: alactic, anaerobic, cycling, ergometer, glycolysis, lactic, lactate, oxygen deficit, phosphocreatine, running, treadmill

Procedia PDF Downloads 136
1528 Deriving Framework for Slum Rehabilitation through Environmental Perspective: Case of Mumbai

Authors: Ashwini Bhosale, Yogesh Patil

Abstract:

Urban areas are extremely complicated environmental settings, where health and well-being of an individual and population are governed by a large number of bio-physical, socio-economical, and inclusive aspects. Although poverty and slums are the prime issues under UN-HABITAT agenda of environmental sustainability, slums, the inevitable part of urban environment, have not accounted for inclusive city planning. Developing nations, where about 60 % of world slum population resides, are increasingly under pressure to uplift the urban poor, particularly slum dwellers. From a point of advantage, these new slum redevelopment projects have succeeded in providing legitimized and more permanent and stable shelter for the low income people, as well as individualized sanitation and water supply. However, they unfortunately follow the “one type fits all" approach and exhibit no response to the climatic design needs on Mumbai. The thesis focuses on the study of environmental perspectives in the context of Daylight, natural ventilation and social aspects in the design process of Slum-Rehabilitation schemes (SRS) – case of Mumbai. It attempts to investigate into Indian approaches about SRS and concludes upon strategies to be incorporated in SRS to improve the overall SRS environment. The main objectives of this work have been to identify and study the spatial configuration and possibilities of daylight and natural ventilation in Slum Rehabilitated buildings. The performance of the proposed method was evaluated by comparison with the daylight luminance simulated by lighting software, namely ECOTECT, and with measurements under real skies whereas for the ventilation study purpose, software named FLOW DESIGN was used.

Keywords: urban environment, slum-rehabilitation, daylight, natural-ventilation, architectural consequences

Procedia PDF Downloads 387
1527 Biodegradation of Carbamazepine and Diclofenac by Bacterial Strain Labrys Portucalensis

Authors: V. S. Bessa, I. S. Moreira, S. Murgolo, C. Piccirillo, G. Mascolo, P. M. L. Castro

Abstract:

The occurrence of pharmaceuticals in the environment has been a topic of increasing concern. Pharmaceuticals are not completely mineralized in the human body and are released on the sewage systems as the pharmaceutical itself and as their “biologically active” metabolites through excretion, as well as by improper elimination and disposal. Conventional wastewater treatment plants (WWTPs) are not designed to remove these emerging pollutants and they are thus released into the environment. The antiepileptic drug carbamazepine (CBZ) and the non-steroidal anti-inflammatory diclofenac (DCF) are two widely used pharmaceuticals, frequently detected in water bodies, including rivers and groundwater, in concentrations ranging from ng L 1 to mg L 1. These two compounds were classified as medium to high-risk pollutants in WWTP effluents and surface waters. Also, CBZ has been suggested as a molecular marker of wastewater contamination in surface water and groundwater and the European Union included DCF in the watch list of substances Directive to be monitored. In the present study, biodegradation of CBZ and DCF by the bacterial strain Labrys portucalensis F11, a strain able to degrade other pharmaceutical compounds, was assessed; tests were performed with F11 as single carbon and energy source, as well as in presence of 5.9mM of sodium acetate. In assays supplemented with 2.0 and 4.0 µM of CBZ, the compound was no longer detected in the bulk medium after 24hr and 5days, respectively. Complete degradation was achieved in 21 days for 11.0 µM and in 23 days for 21.0 µM. For the highest concentration tested (43.0 µM), 95% of degradation was achieved in 30days. Supplementation with acetate increased the degradation rate of CBZ, for all tested concentrations. In the case of DCF, when supplemented as a single carbon source, approximately 70% of DCF (1.7, 3.3, 8.4, 17.5 and 34.0 µM) was degraded in 30days. Complete degradation was achieved in the presence of acetate for all tested concentrations, at higher degradation rates. The detection of intermediates produced during DCF biodegradation was performed by UPLC-QTOF/MS/MS, which allowed the identification of a range of metabolites. Stoichiometric liberation of chorine occurred and no metabolites were detected at the end of the biodegradation assays suggesting a complete mineralization of DCF. Strain Labrys portucalensis F11 proved to be able to degrade these two top priority environmental contaminants and may be potentially useful for biotechnological applications/environment remediation.

Keywords: biodegradation, carbamazepine, diclofenac, pharmaceuticals

Procedia PDF Downloads 273
1526 An Approach to Correlate the Statistical-Based Lorenz Method, as a Way of Measuring Heterogeneity, with Kozeny-Carman Equation

Authors: H. Khanfari, M. Johari Fard

Abstract:

Dealing with carbonate reservoirs can be mind-boggling for the reservoir engineers due to various digenetic processes that cause a variety of properties through the reservoir. A good estimation of the reservoir heterogeneity which is defined as the quality of variation in rock properties with location in a reservoir or formation, can better help modeling the reservoir and thus can offer better understanding of the behavior of that reservoir. Most of reservoirs are heterogeneous formations whose mineralogy, organic content, natural fractures, and other properties vary from place to place. Over years, reservoir engineers have tried to establish methods to describe the heterogeneity, because heterogeneity is important in modeling the reservoir flow and in well testing. Geological methods are used to describe the variations in the rock properties because of the similarities of environments in which different beds have deposited in. To illustrate the heterogeneity of a reservoir vertically, two methods are generally used in petroleum work: Dykstra-Parsons permeability variations (V) and Lorenz coefficient (L) that are reviewed briefly in this paper. The concept of Lorenz is based on statistics and has been used in petroleum from that point of view. In this paper, we correlated the statistical-based Lorenz method to a petroleum concept, i.e. Kozeny-Carman equation and derived the straight line plot of Lorenz graph for a homogeneous system. Finally, we applied the two methods on a heterogeneous field in South Iran and discussed each, separately, with numbers and figures. As expected, these methods show great departure from homogeneity. Therefore, for future investment, the reservoir needs to be treated carefully.

Keywords: carbonate reservoirs, heterogeneity, homogeneous system, Dykstra-Parsons permeability variations (V), Lorenz coefficient (L)

Procedia PDF Downloads 221
1525 Exercise Intervention For Women After Treatment For Ovarian Cancer

Authors: Deirdre Mc Grath, Joanne Reid

Abstract:

Background: Ovarian cancer is the leading cause of mortality among gynaecologic cancers in developed countries and the seventh most common cancer worldwide with nearly 240,000 women diagnosed each year. Although it is recognized engaging in exercise results in positive health care outcomes, women with ovarian cancer are reluctant to participate. No evidence currently exists focusing on how to successfully implement an exercise intervention program for patients with ovarian cancer, using a realist approach. There is a requirement for the implementation of exercise programmes within the oncology health care setting as engagement in such interventions has positive health care outcomes for women with ovarian cancer both during and following treatment. Aim: To co-design the implementation of an exercise intervention for women following treatment for ovarian cancer. Methods: This study is a realist evaluation using quantitative and qualitative methods of data collection and analysis. Realist evaluation is well-established within the health and social care setting and has in relation to this study enabled a flexible approach to investigate how to optimise implementation of an exercise intervention for this patient population. This single centre study incorporates three stages in order to identify the underlying contexts and mechanisms which lead to the successful implementation of an exercise intervention for women who have had treatment for ovarian cancer. Stage 1 - A realist literature review. Stage 2 -Co-design of the implementation of an exercise intervention with women following treatment for ovarian cancer, their carer’s, and health care professionals. Stage 3 –Implementation of an exercise intervention with women following treatment for ovarian cancer. Evaluation of the implementation of the intervention from the perspectives of the women who participated in the intervention, their informal carers, and health care professionals. The underlying program theory initially conceptualised before and during the realist review was developed further during the co-design stage. The evolving program theory in relation to how to successfully implement an exercise for these women is currently been refined and tested during the final stage of this realist evaluation which is the implementation and evaluation stage. Results: This realist evaluation highlights key issues in relation to the implementation of an exercise intervention within this patient population. The underlying contexts and mechanisms which influence recruitment, adherence, and retention rates of participants are identified. Conclusions: This study will inform future research on the implementation of exercise interventions for this patient population. It is anticipated that this intervention will be implemented into practice as part of standard care for this group of patients.

Keywords: ovarian cancer, exercise intervention, implementation, Co-design

Procedia PDF Downloads 186
1524 Orthogonal Metal Cutting Simulation of Steel AISI 1045 via Smoothed Particle Hydrodynamic Method

Authors: Seyed Hamed Hashemi Sohi, Gerald Jo Denoga

Abstract:

Machining or metal cutting is one of the most widely used production processes in industry. The quality of the process and the resulting machined product depends on parameters like tool geometry, material, and cutting conditions. However, the relationships of these parameters to the cutting process are often based mostly on empirical knowledge. In this study, computer modeling and simulation using LS-DYNA software and a Smoothed Particle Hydrodynamic (SPH) methodology, was performed on the orthogonal metal cutting process to analyze three-dimensional deformation of AISI 1045 medium carbon steel during machining. The simulation was performed using the following constitutive models: the Power Law model, the Johnson-Cook model, and the Zerilli-Armstrong models (Z-A). The outcomes were compared against the simulated results obtained by Cenk Kiliçaslan using the Finite Element Method (FEM) and the empirical results of Jaspers and Filice. The analysis shows that the SPH method combined with the Zerilli-Armstrong constitutive model is a viable alternative to simulating the metal cutting process. The tangential force was overestimated by 7%, and the normal force was underestimated by 16% when compared with empirical values. The simulation values for flow stress versus strain at various temperatures were also validated against empirical values. The SPH method using the Z-A model has also proven to be robust against issues of time-scaling. Experimental work was also done to investigate the effects of friction, rake angle and tool tip radius on the simulation.

Keywords: metal cutting, smoothed particle hydrodynamics, constitutive models, experimental, cutting forces analyses

Procedia PDF Downloads 261
1523 Nanocomposites Based Micro/Nano Electro-Mechanical Systems for Energy Harvesters and Photodetectors

Authors: Radhamanohar Aepuru, R. V. Mangalaraja

Abstract:

Flexible electronic devices have drawn potential interest and provide significant new insights to develop energy conversion and storage devices such as photodetectors and nanogenerators. Recently, self-powered electronic systems have captivated huge attention for next generation MEMS/NEMS devices that can operate independently by generating built-in field without any need of external bias voltage and have wide variety of applications in telecommunication, imaging, environmental and defence sectors. The basic physical process involved in these devices are charge generation, separation, and charge flow across the electrodes. Many inorganic nanostructures have been exploring to fabricate various optoelectronic and electromechanical devices. However, the interaction of nanostructures and their excited charge carrier dynamics, photoinduced charge separation, and fast carrier mobility are yet to be studied. The proposed research is to address one such area and to realize the self-powered electronic devices. In the present work, nanocomposites of inorganic nanostructures based on ZnO, metal halide perovskites; and polyvinylidene fluoride (PVDF) based nanocomposites are realized for photodetectors and nanogenerators. The characterization of the inorganic nanostructures is carried out through steady state optical absorption and luminescence spectroscopies as well as X-ray diffraction and high-resolution transmission electron microscopy (TEM) studies. The detailed carrier dynamics is investigated using various spectroscopic techniques. The developed composite nanostructures exhibit significant optical and electrical properties, which have wide potential applications in various MEMS/NEMS devices such as photodetectors and nanogenerators.

Keywords: dielectrics, nanocomposites, nanogenerators, photodetectors

Procedia PDF Downloads 129
1522 Fishing Waste: A Source of Valuable Products through Anaerobic Treatments

Authors: Luisa Maria Arrechea Fajardo, Luz Stella Cadavid Rodriguez

Abstract:

Fish is one of the most commercialized foods worldwide. However, this industry only takes advantage of about 55% of the product's weight, the rest is converted into waste, which is mainly composed of viscera, gills, scales and spines. Consequently, if these wastes are not used or disposed of properly, they cause serious environmental impacts. This is the case of Tumaco (Colombia), the second largest producer of marine fisheries on the Colombian Pacific coast, where artisanal fishermen process more than 50% of the commercialized volume. There, fishing waste is disposed primarily in the ocean, causing negative impacts on the environment and society. Therefore, in the present research, a proposal was made to take advantage of fishing waste through anaerobic treatments, through which it is possible to obtain products with high added value from organic waste. The research was carried out in four stages. First, the production of volatile fatty acids (VFA) in semi-continuous 4L reactors was studied, evaluating three hydraulic retention times (HRT) (10, 7 and 5 days) with four organic loading rates (OLR) (16, 14, 12 and 10 gVS/L/day), the experiment was carried out for 150 days. Subsequently, biogas production was evaluated from the solid digestate generated in the VFA production reactors, initially evaluating the biochemical methane potential (BMP) of 4 total solid concentrations (1, 2, 4 and 6% TS), for 40 days and then, with the optimum TS concentration (2 gVS/L/day), 2 HRT (15 and 20 days) in semi-continuous reactors, were evaluated for 100 days. Finally, the integration of the processes was carried out with the best conditions found, a first phase of VFA production from fishing waste and a second phase of biogas production from unrecovered VFAs and unprocessed material Additionally, an VFA membrane extraction system was included. In the first phase, a liquid digestate with a concentration and VFA production yield of 59.04 gVFA/L and 0.527 gVFA/gVS, respectively, was obtained, with the best condition found (HRT:7 days and OLR: 16 gVS/L/día), where acetic acid and isobutyric acid were the predominant acids. In the second phase of biogas production, a BMP of 0.349 Nm3CH4/KgVS was reached, and it was found as best HRT 20 days. In the integration, the isovaleric, butyric and isobutyric acid were the VFA with the highest percentage of extraction, additionally a 106.67% increase in biogas production was achieved. This research shows that anaerobic treatments are a promising technology for an environmentally safe management of fishing waste and presents the basis of a possible biorefinery.

Keywords: biogas production, fishing waste, VFA membrane extraction, VFA production

Procedia PDF Downloads 117
1521 The Effects of Six Weeks Endurance Training and Aloe Vera on COX-2 and VEGF Levels in Mice with Breast Cancer

Authors: Alireza Barari, Ahmad Abdi

Abstract:

The aim of this study was to determine the effects of the effects of six weeks endurance training and Aloe Vera on cyclooxygenase 2 (COX-2) and VEGF levels in mice with breast cancer. For this purpose, 35 rats were randomly divided into 5 groups: control (healthy), control (cancer), training (cancer), Aloe Vera (cancer) and Aloe Vera + training (cancer). Induction of breast cancer tumors were done in mice by planting method. The training program includes six weeks of swimming training was done in three sessions per week. Training time from 10 minutes on the first day increased to 60 minutes in second week, and by stabilizing this time, the water flow rate was increased from 7 to 15 liters per minute. 300 mg per kg body weight of Aloe Vera extract was injected into the peritoneal. Sampling was done 48 hours after the last exercise session. K-S test to determine the normality of the data and analysis of variance for repeated measures and Tukey test was used to analyze the data. A significant difference in the p<0.05 accepted. The results showed that induction of cancer cells significantly increased levels of COX-2 in aloe group and VEGF in training and Aloe Vera + training groups. The results suggest that swimming exercise and Aloe Vera can reduce levels of COX-2 and VEGF in mice with breast cancer.The results of this study, Induction of cancer cells significantly increased levels of COX-2 and MMP-9 in the control group compared with the cancer control group. The results suggest that Aloe Vera can probably inhibit the cyclooxygenase pathway and thus production of prostaglandin E2 decrease of arachidonic acid.

Keywords: endurance training, aloe vera, COX-2, VEGF

Procedia PDF Downloads 289
1520 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-Fed Sesame (Sesamum Indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray, Ethiopia

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu

Abstract:

Sesame is an important oilseed crop in Ethiopia, which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool, which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validate the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates, 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99, and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99 and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, normalized water productivity, nitrogen fertilizer, canopy cover, sesame

Procedia PDF Downloads 79
1519 The Examination of Cement Effect on Isotropic Sands during Static, Dynamic, Melting and Freezing Cycles

Authors: Mehdi Shekarbeigi

Abstract:

The consolidation of loose substrates as well as substrate layers through promoting stabilizing materials is one of the most commonly used road construction techniques. Cement, lime, and flax, as well as asphalt emulsion, are common materials used for soil stabilization to enhance the soil’s strength and durability properties. Cement could be simply used to stabilize permeable materials such as sand in a relatively short time threshold. In this research, typical Portland cement is selected for the stabilization of isotropic sand; the effect of static and cyclic loading on the behavior of these soils has been examined with various percentages of Portland cement. Thus, firstly, a soil’s general features are investigated, and then static tests, including direct cutting, density and single axis tests, and California Bearing Ratio, are performed on the samples. After that, the dynamic behavior of cement on silica sand with the same grain size is analyzed. These experiments are conducted on cement samples of 3, 6, and 9 of the same rates and ineffective limiting pressures of 0 to 1200 kPa with 200 kPa steps of the face according to American Society for Testing and Materials D 3999 standards. Also, to test the effect of temperature on molds and frost samples, 0, 5, 10, and 20 are carried out during 0, 5, 10, and 20-second periods. Results of the static tests showed that increasing the cement percentage increases the soil density and shear strength. The single-axis compressive strength increase is higher for samples with higher cement content and lower densities. The results also illustrate the relationship between single-axial compressive strength and cement weight parameters. Results of the dynamic experiments indicate that increasing the number of loading cycles and melting and freezing cycles enhances permeability and decreases the applied pressure. According to the results of this research, it could be stated that samples containing 9% cement have the highest amount of shear modulus and, therefore, decrease the permeability of soil. This amount could be considered as the optimal amount. Also, the enhancement of effective limited pressure from 400 to 800kPa increased the shear modulus of the sample by an average of 20 to 30 percent in small strains.

Keywords: cement, isotropic sands, static load, three-axis cycle, melting and freezing cycles

Procedia PDF Downloads 76
1518 Numerical Simulations of Fire in Typical Air Conditioned Railway Coach

Authors: Manoj Sarda, Abhishek Agarwal, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Railways in India remain primary mode of transport having one of the largest networks in the world and catering to billions of transits yearly. Catastrophic economic damage and loss to life is encountered over the past few decades due to fire to locomotives. Study of fire dynamics and fire propagation plays an important role in evacuation planning and reducing losses. Simulation based study of propagation of fire and soot inside an air conditioned coach of Indian locomotive is done in this paper. Finite difference based solver, Fire Dynamic Simulator (FDS) version 6 has been used for analysis. A single air conditioned 3 tier coupe closed to ambient surroundings by glass windows having occupancy for 8 people is the basic unit of the domain. A system of three such coupes combined is taken to be fundamental unit for the entire study to resemble effect to an entire coach. Analysis of flame and soot contours and concentrations is done corresponding to variations in heat release rate per unit volume (HRRPUA) of fire source, variations in conditioned air velocity being circulated inside coupes by vents and an alternate fire initiation and propagation mechanism via ducts. Quantitative results of fractional area in top and front view of the three coupes under fire and smoke are obtained using MATLAB (IMT). Present simulations and its findings will be useful for organizations like Commission of Railway Safety and others in designing and implementing safety and evacuation measures.

Keywords: air conditioned coaches, fire propagation, flame contour, soot flow, train fire

Procedia PDF Downloads 284
1517 Flexible Current Collectors for Printed Primary Batteries

Authors: Vikas Kumar

Abstract:

Portable batteries are reliable source of mobile energy to power smart wearable electronics, medical devices, communications, and others internet of thing (IoT) devices. There is a continuous increase in demand for thinner, more flexible battery with high energy density and reliability to meet the requirement. For a flexible battery, factors that affect these properties are the stability of current collectors, electrode materials and their interfaces with the corrosive electrolytes. State-of-the-art conventional and flexible batteries utilise carbon as an electrode and current collectors which cause high internal resistance (~100 ohms) and limit the peak current to ~1mA. This makes them unsuitable for a wide range of applications. Replacing the carbon parts with metallic components would reduce the internal resistance (and hence reduce parasitic loss), but significantly increases the risk of corrosion due to galvanic interactions within the battery. To overcome these challenges, low cost electroplated nickel (Ni) on copper (Cu) was studied as a potential anode current collector for a zinc-manganese oxide primary battery with different concentration of NH4Cl/ZnCl2 electrolyte. Using electrical impedance spectroscopy (EIS), we monitored the open circuit potential (OCP) of electroplated nickel (different thicknesses) in different concentration of electrolytes to optimise the thickness of Ni coating. Our results show that electroless Ni coating suffer excessive corrosion in these electrolytes. Corrosion rates of Ni coatings for different concentrations of electrolytes have been calculated with Tafel analysis. These results suggest that for electroplated Ni, channelling and/or open porosity is a major issue, which was confirmed by morphological analysis. These channels are an easy pathway for electrolyte to penetrate thorough Ni to corrode the Ni/Cu interface completely. We further investigated the incorporation of a special printed graphene layer on Ni to provide corrosion protection in this corrosive electrolyte medium. We find that the incorporation of printed graphene layer provides the corrosion protection to the Ni and enhances the chemical bonding between the active materials and current collector and also decreases the overall internal resistance of the battery system.

Keywords: corrosion, electrical impedance spectroscopy, flexible battery, graphene, metal current collector

Procedia PDF Downloads 129
1516 Low Impact Development Strategies Applied in the Water System Planning in the Coastal Eco-Green Campus

Authors: Ying Li, Zaisheng Hong, Weihong Wang

Abstract:

With the rapid enlargement of the size of Chinese universities, newly built campuses are springing up everywhere in recent years. It is urged to build eco-green campus because the role of higher education institutions in the transition to a more sustainable society has been highlighted for almost three decades. On condition that a new campus is usually built on an undeveloped site, where the basic infrastructure is not completed, finding proper strategies in planning and design of the campus becomes a primary concern. Low Impact Development (LID) options have been proposed as an alternative approach to make better use of rainwater in planning and design of an undeveloped site. On the basis of analyzing the natural circumstance, geographic condition, and other relative information, four main LID approaches are coordinated in this study of Hebei Union University, which are ‘Storage’, ‘Retaining’, ‘Infiltration’ and ‘Purification’. ‘Storage’ refers to a big central lake in the campus for rainwater harvesting. ‘Retaining’ means rainwater gardens scattered in the campus, also being known as bioretention areas which mimic the naturally created pools of water, to decrease surface flow runoff. ‘Infiltration’ is designed of grassed swales, which also play a part of floodway channel. ‘Purification’ is known as either natural or artificial wetland to reduce pollutants such as nitrogen and phosphorous in the waterbody. With above mentioned measures dealing with the synthetic use of rainwater in the acid & alkali area in the coastal district, an eco-green campus construction and an ecological sustainability will be realized, which will give us more enlightenment and reference.

Keywords: newly built campus, low impact development, planning design, rainwater reuse

Procedia PDF Downloads 248
1515 Water Treatment Using Eichhornia crassipes and Avifauna Control in The "La Mansión" Pond

Authors: Milda A. Cruz-Huaranga, Natalí Carbo-Bustinza, Javier Linkolk López-Gonzales, K. Depaz, Gina M. Tito T., Soledad Torres-Calderón

Abstract:

The objective of this study was to improve water quality in the “La Mansión” pond in order to irrigate green spaces on the Peruvian Union University campus (Lima, Peru) using the aquatic species Eichhornia Crassipes. Furthermore, tree trimming and cleaning activities were performed that reduced water pollution caused by organic deposits and feathers from wild birds. The impaired waterbody is located on the campus of the Peruvian Union University, 580 meters above sea level, with a volume of 6,405.336 m3, an area of 3,050.16 m2, 256.81 m perimeter, and 0.12 m3/s input flow. Seven 1.8 m2 floating systems were implemented, with 12 common water hyacinth plants in each system. Before implementing this system, a water quality analysis was performed to analyse the physical-chemical, microbiological, and organoleptic parameters. The pre-analysis revealed the pond’s critical condition, with electrical conductivity: 556 mg/l; phosphate: < 0.5; pH: 7.06; total solids: 412 mg/l; arsenic: <0.01; lead: 0.115; BOD5: 14; COD: 16.94; dissolved oxygen: 13; total coliforms: 24000 MCL/100 ml; and thermo-tolerant coliforms: 11000 MCL/100 ml. After implementing the system, the following results were obtained: EC: 495 mg/l; DO:9.2 mg/l; TS: 235 mg/l; BOD5: 7.7; COD: 8.47; Pb: 0.001 mg/l; TC: 460 MCL/100 ml; FC: 240 MCL/100 ml. Thus, we confirmed that the system is 78.79% efficient regarding the Peruvian ECA (Environmental Quality Standards) established for water according to DS #015-2015-MINAM. Therefore, the water is suitable for plant irrigation. Finally, we concluded that treating wastewater with the species Eichhornia Crassipes is efficient since an improvement was achieved in the impaired waterbody.

Keywords: Eichhornia crassipes, plantlets, cleaning, impaired waterbody, pond

Procedia PDF Downloads 140
1514 Implementation of a Quality Management Approach in the Laboratory of Quality Control and the Repression of Fraud (CACQE) of the Wilaya of Bechar

Authors: Khadidja Mebarki, Naceur Boussouar, Nabila Ihaddadene, M. Akermi

Abstract:

Food products are particularly sensitive, since they concern the health of the consumer, whether it’s be from the health point of view or commercial, this kind of product must be subjected to rigorous controls, in order to prevent any fraud. Quality and safety are essential for food security, public health and economic development. The strengthening of food security is essential to increase food security which is considered reached when all individuals can at any time access safe and nutritious food they need to lead healthy and active lives. The objective of this project is to initiate a quality approach in the laboratories of the quality control and the repression of fraud. It will be directed towards the application of good laboratory practices, traceability, management of quality documents (quality, procedures and specification manual) and quality audits. And to prepare the ground for a possible accreditation by ISO 17025 standard of BECHAR laboratory’s. The project will take place in four main stages: 1- Preparation of an audit grid; 2- Realization of a quality audit according to the method of 5 M completed by a section on quality documentation; 3- Drafting of an audit report and proposal for recommendations; 4- Implementation of corrective actions on the ground. This last step consisted in the formalization of the cleaning disinfection plan; work on good hygiene practices, establishment of a mapping of processes and flow charts of the different processes of the laboratory, classifying quality documents and formalizing the process of document management. During the period of the study within the laboratory, all facets of the work were almost appreciated, as we participated in the expertise performed in within it.

Keywords: quality, management, ISO 17025 accreditation, GLP

Procedia PDF Downloads 518
1513 Using the SMT Solver to Minimize the Latency and to Optimize the Number of Cores in an NoC-DSP Architectures

Authors: Imen Amari, Kaouther Gasmi, Asma Rebaya, Salem Hasnaoui

Abstract:

The problem of scheduling and mapping data flow applications on multi-core architectures is notoriously difficult. This difficulty is related to the rapid evaluation of Telecommunication and multimedia systems accompanied by a rapid increase of user requirements in terms of latency, execution time, consumption, energy, etc. Having an optimal scheduling on multi-cores DSP (Digital signal Processors) platforms is a challenging task. In this context, we present a novel technic and algorithm in order to find a valid schedule that optimizes the key performance metrics particularly the Latency. Our contribution is based on Satisfiability Modulo Theories (SMT) solving technologies which is strongly driven by the industrial applications and needs. This paper, describe a scheduling module integrated in our proposed Workflow which is advised to be a successful approach for programming the applications based on NoC-DSP platforms. This workflow transform automatically a Simulink model to a synchronous dataflow (SDF) model. The automatic transformation followed by SMT solver scheduling aim to minimize the final latency and other software/hardware metrics in terms of an optimal schedule. Also, finding the optimal numbers of cores to be used. In fact, our proposed workflow taking as entry point a Simulink file (.mdl or .slx) derived from embedded Matlab functions. We use an approach which is based on the synchronous and hierarchical behavior of both Simulink and SDF. Whence, results of running the scheduler which exist in the Workflow mentioned above using our proposed SMT solver algorithm refinements produce the best possible scheduling in terms of latency and numbers of cores.

Keywords: multi-cores DSP, scheduling, SMT solver, workflow

Procedia PDF Downloads 286
1512 Integrated Design in Additive Manufacturing Based on Design for Manufacturing

Authors: E. Asadollahi-Yazdi, J. Gardan, P. Lafon

Abstract:

Nowadays, manufactures are encountered with production of different version of products due to quality, cost and time constraints. On the other hand, Additive Manufacturing (AM) as a production method based on CAD model disrupts the design and manufacturing cycle with new parameters. To consider these issues, the researchers utilized Design For Manufacturing (DFM) approach for AM but until now there is no integrated approach for design and manufacturing of product through the AM. So, this paper aims to provide a general methodology for managing the different production issues, as well as, support the interoperability with AM process and different Product Life Cycle Management tools. The problem is that the models of System Engineering which is used for managing complex systems cannot support the product evolution and its impact on the product life cycle. Therefore, it seems necessary to provide a general methodology for managing the product’s diversities which is created by using AM. This methodology must consider manufacture and assembly during product design as early as possible in the design stage. The latest approach of DFM, as a methodology to analyze the system comprehensively, integrates manufacturing constraints in the numerical model in upstream. So, DFM for AM is used to import the characteristics of AM into the design and manufacturing process of a hybrid product to manage the criteria coming from AM. Also, the research presents an integrated design method in order to take into account the knowledge of layers manufacturing technologies. For this purpose, the interface model based on the skin and skeleton concepts is provided, the usage and manufacturing skins are used to show the functional surface of the product. Also, the material flow and link between the skins are demonstrated by usage and manufacturing skeletons. Therefore, this integrated approach is a helpful methodology for designer and manufacturer in different decisions like material and process selection as well as, evaluation of product manufacturability.

Keywords: additive manufacturing, 3D printing, design for manufacturing, integrated design, interoperability

Procedia PDF Downloads 316
1511 Simulation-Based Control Module for Offshore Single Point Mooring System

Authors: Daehyun Baek, Seungmin Lee, Minju Kim Jangik Park, Hyeong-Soon Moon

Abstract:

SPM (Single Point Mooring) is one of the mooring buoy facilities installed on a coast near oil and gas terminal which is not able to berth FPSO or large oil tankers under the condition of high draft due to geometrical limitation. Loading and unloading of crude oil and gas through a subsea pipeline can be carried out between the mooring buoy, ships and onshore facilities. SPM is an offshore-standalone system which has to withstand the harsh marine environment with harsh conditions such as high wind, current and so on. Therefore, SPM is required to have high stability, reliability and durability. Also, SPM is comprised to be integrated systems which consist of power management, high pressure valve control, sophisticated hardware/software and a long distance communication system. In order to secure required functions of SPM system, a simulation model for the integrated system of SPM using MATLAB Simulink and State flow tool has been developed. The developed model consists of configuration of hydraulic system for opening and closing of PLEM (Pipeline End Manifold) valves and control system logic. To verify functions of the model, an integrated simulation model for overall systems of SPM was also developed by considering handshaking variables between individual systems. In addition to the dynamic model, a self-diagnostic function to determine failure of the system was configured, which enables the SPM system itself to alert users about the failure once a failure signal comes to arise. Controlling and monitoring the SPM system is able to be done by a HMI system which is capable of managing the SPM system remotely, which was carried out by building a communication environment between the SPM system and the HMI system.

Keywords: HMI system, mooring buoy, simulink simulation model, single point mooring, stateflow

Procedia PDF Downloads 417
1510 Relationships of Driver Drowsiness and Sleep-Disordered Breathing Syndrome

Authors: Cheng-Yu Tsai, Wen-Te Liu, Yin-Tzu Lin, Chen-Chen Lo, Kang Lo

Abstract:

Background: Driving drowsiness related to inadequate or disordered sleep accounts for a major percentage of traffic accidents. Sleep-disordered breathing (SDB) syndrome is a common respiratory disorder during sleep. However, the effects of SDB syndrome on driving fatigue remain unclear. Objective: This study aims to investigate the relationship between SDB pattern and driving drowsiness. Methodologies: The physical condition while driving was obtained from the questionnaires to classify the state of driving fatigue. SDB syndrome was quantified as the polysomnography, and the air flow pattern was collected by the thermistor and nasal pressure cannula. To evaluate the desaturation, the mean hourly number of greater than 3% dips in oxygen saturation was sentenced by reregistered technologist during examination in a hospital in New Taipei City (Taiwan). The independent T-test was used to investigate the correlations between sleep disorders related index and driving drowsiness. Results: There were 880 subjects recruited in this study, who had been done polysomnography for evaluating severity for obstructive sleep apnea syndrome (OSAS) as well as completed the driver condition questionnaire. Four-hundred-eighty-four subjects (55%) were classified as fatigue group, and 396 subjects (45%) were served as the control group. Significantly higher values of snoring index (242.14 ± 205.51 /hours) were observed in the fatigue group (p < 0.01). The value of respiratory disturbance index (RDI) (31.82 ± 19.34 /hours) in fatigue group were significantly higher than the control group (p < 0.01). Conclusion: We observe the considerable association between SDB syndrome and driving drowsiness. To promote traffic safety, SDB syndrome should be controlled and alleviated.

Keywords: driving drowsiness, sleep-disordered breathing syndrome, snoring index, respiratory disturbance index.

Procedia PDF Downloads 140
1509 Sustainable Urban Mobility: Rethinking the Bus Stop Infrastructures of Dhaka South

Authors: Hasnun Wara Khondker, M. Tarek Morad

Abstract:

Bangladesh is one of the most populous countries of the world in terms of density. Dhaka, the capital of Bangladesh currently has a population of approximately 15-16 million of which around 9 million people are accommodated in Dhaka South City Corporation (DSCC) within around 109 square kilometer area. Despite having various urban issues, country is at its pick of economic progress and Dhaka is the core of this economic growth. To ensure the proper economic development and citizens wellbeing, city needs an ingenious, congestion-free public transportation network. Bus stop/bus bay is an essential infrastructure for ensuring efficient public transportation flow within the city along with enhancing accessibility, user comfort, and safety through public amenities. At present, there is no established Mass Rapid Transit or Bus Rapid Transit network within the city and therefore these private owned buses are the only major mode of mass transportation of Dhaka city. DSCC has undertaken a project to re-design several bus stops and bus bays according to the universal standard for better urban mobility and user satisfaction. This paper will analyze the design approach of the bus stop/bay infrastructure within Dhaka South, putting the research lens on sustainable urban mobility with case studies of similar kind of urban context. The paper will also study the design process with setting several parameters, i.e., accessibility, passenger safety, comfort, sustainability, etc. Moreover, this research will recommend a guideline for designing a bus stop based on the analysis of the design methods.

Keywords: bus stop, Dhaka, public transportation, sustainable urban mobility, universal accessibility, user safety

Procedia PDF Downloads 381
1508 Erosion Influencing Factors Analysis: Case of Isser Watershed (North-West Algeria)

Authors: Chahrazed Salhi, Ayoub Zeroual, Yasmina Hamitouche

Abstract:

Soil water erosion poses a significant threat to the watersheds in Algeria today. The degradation of storage capacity in large dams over the past two decades, primarily due to erosion, necessitates a comprehensive understanding of the factors that contribute to soil erosion. The Isser watershed, located in the Northwestern region of Algeria, faces additional challenges such as recurrent droughts and the presence of delicate marl and clay outcrops, which amplify its susceptibility to water erosion. This study aims to employ advanced techniques such as Geographic Information Systems (GIS) and Remote Sensing (RS), in conjunction with the Canonical Correlation Analysis (CCA) method and Soil Water Assessment Tool (SWAT) model, to predict specific erosion patterns and analyze the key factors influencing erosion in the Isser basin. To accomplish this, an array of data sources including rainfall, climatic, hydrometric, land use, soil, digital elevation, and satellite data were utilized. The application of the SWAT model to the Isser basin yielded an average annual soil loss of approximately 16 t/ha/year. Particularly high erosion rates, exceeding 12 T/ha/year, were observed in the central and southern parts of the basin, encompassing 41% of the total basin area. Through Canonical Correlation Analysis, it was determined that vegetation cover and topography exerted the most substantial influence on erosion. Consequently, the study identified significant and spatially heterogeneous erosion throughout the study area. The impact of land topography on soil loss was found to be directly proportional, while vegetation cover exhibited an inverse proportional relationship. Modeling specific erosion for the Ladrat dam sub-basin estimated a rate of around 39 T/ha/year, thus accounting for the recorded capacity loss of 17.80% compared to the bathymetric survey conducted in 2019. The findings of this research provide valuable decision-support tools for soil conservation managers, empowering them to make informed decisions regarding soil conservation measures.

Keywords: Isser watershed, RS, CCA, SWAT, vegetation cover, topography

Procedia PDF Downloads 71
1507 Study on Varying Solar Blocking Depths in the Exploration of Energy-Saving Renovation of the Energy-Saving Design of the External Shell of Existing Buildings: Using Townhouse Residences in Kaohsiung City as an Example

Authors: Kuang Sheng Liu, Yu Lin Shih*, Chun Ta Tzeng, Cheng Chen Chen

Abstract:

Buildings in the 21st century are facing issues such as an extreme climate and low-carbon/energy-saving requirements. Many countries in the world are of the opinion that a building during its medium- and long-term life cycle is an energy-consuming entity. As for the use of architectural resources, including the United Nations-implemented "Global Green Policy" and "Sustainable building and construction initiative", all are working towards "zero-energy building" and "zero-carbon building" policies. Because of this, countries are cooperating with industry development using policies such as "mandatory design criteria", "green procurement policy" and "incentive grants and rebates programme". The results of this study can provide a reference for sustainable building renovation design criteria. Aimed at townhouses in Kaohsiung City, this study uses different levels of solar blocking depth to carry out evaluation of design and energy-saving renovation of the outer shell of existing buildings by using data collection and the selection of representative cases. Using building resources from a building information model (BIM), simulation and efficiency evaluation are carried out and proven with simulation estimation. This leads into the ECO-efficiency model (EEM) for the life cycle cost efficiency (LCCE) evalution. The buildings selected by this research sit in a north-south direction set with different solar blocking depths. The indoor air-conditioning consumption rates are compared. The current balcony depth of 1 metre as the simulated EUI value acts as a reference value of 100%. The solar blocking of the balcony is increased to 1.5, 2, 2.5 and 3 metres for a total of 5 different solar-blocking balcony depths, for comparison of the air-conditioning improvement efficacy. This research uses different solar-blocking balcony depths to carry out air-conditioning efficiency analysis. 1.5m saves 3.08%, 2m saves 6.74%, 2.5m saves 9.80% and 3m saves 12.72% from the air-conditioning EUI value. This shows that solar-blocking balconies have an efficiency-increasing potential for indoor air-conditioning.

Keywords: building information model, eco-efficiency model, energy-saving in the external shell, solar blocking depth.

Procedia PDF Downloads 402