Search results for: bottleneck model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16853

Search results for: bottleneck model

11153 Towards a Rigorous Analysis for a Supercritical Particulate Process

Authors: Yousef Bakhbakhi

Abstract:

Crystallization with supercritical fluids (SCFs), as a developed technology to produce particles of micron and sub-micron size with narrow size distribution, has found appreciable importance as an environmentally friendly technology. Particle synthesis using SCFs can be achieved employing a number of special processes involving solvent and antisolvent mechanisms. In this study, the compressed antisolvent (PCA) process is utilized as a model to analyze the theoretical complexity of crystallization with supercritical fluids. The population balance approach has proven to be an effectual technique to simulate and predict the particle size and size distribution. The nucleation and growth mechanisms of the particles formation in the PCA process is investigated using the population balance equation, which describes the evolution of the particle through coalescence and breakup levels with time. The employed mathematical population balance model contains a set of the partial differential equation with algebraic constraints, which demands a rigorous numerical approach. The combined Collocation and Galerkin finite element method are proposed as a high-resolution technique to solve the dynamics of the PCA process.

Keywords: particle formation, particle size and size distribution, PCA, supercritical carbon dioxide

Procedia PDF Downloads 197
11152 Online Yoga Asana Trainer Using Deep Learning

Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam

Abstract:

Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.

Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN

Procedia PDF Downloads 240
11151 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data

Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill

Abstract:

Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.

Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function

Procedia PDF Downloads 279
11150 Modeling Solute Transport through Porous Media with Scale Dependent Dispersion

Authors: Teodrose Atnafu Abegaze, P. K. Sharma

Abstract:

In this study, an attempt has been made to study the behavior of breakthrough curves in both layered and mixed heterogeneous soil by conducting experiments in long soil columns. Sodium chloride has been used as a conservative tracer in the experiment. Advective dispersive transport equations, including equilibrium sorption and first-order degradation coefficients, are used for solute transport through mobile-immobile porous media. In order to do the governing equation for solute transport, there are explicit and implicit schemes for our condition; we use an implicit scheme to numerically model the solute concentration. Results of experimental breakthrough curves indicate that the behavior of observed breakthrough curves is approximately similar in both cases of layered and mixed soil, while earlier arrival of solute concentration is obtained in the case of mixed soil. It means that the types of heterogeneity of the soil media affect the behavior of solute concentration. Finally, it is also shown that the asymptotic dispersion model simulates the experimental data better than the constant and linear distance-dependent dispersion models.

Keywords: numerical method, distance dependant dispersion, reactive transport, experiment

Procedia PDF Downloads 63
11149 The Tariffs of Water Service for Productive Users: A Model for Defining Fare Classes

Authors: M. Macchiaroli, V. Pellecchia, L. Dolores

Abstract:

The water supply for production users (craft, commercial, industrial), understood as the set of water supply and wastewater collection services becomes an increasingly felt problem in a water scarcity regime. In fact, disputes are triggered between the different social parties for the fair and efficient use of water resources. Within this aspect, the problem arises of the different pricing of services between civil users and production users. Of particular interest is the question of defining the tariff classes depending on consumption levels. If for civil users, this theme is strongly permeated by social profiles (a topic dealt with by the author in a forthcoming research contribution) connected with the inalienability of the right to have water and with the reconciliation of the needs of the weakest groups of the population, for consumers in the production sector the logic adopted by the manager may be inspired by criteria of greater corporate rationality. This work illustrates the Italian regulatory framework and shows an optimization model of tariff classes in the production sector that reconciles the public objective of sustainable use of the resource and the needs of a production system in search of recovery after the depressing effects caused by COVID-19 pandemic.

Keywords: decision making, economic evaluation, urban water management, water tariff

Procedia PDF Downloads 113
11148 Strengthening the Rights of Persons with Disabilities in the Gulf Cooperation Council: Shafallah Foundation as a Model

Authors: Osman Mohamed

Abstract:

Over the past two decades, the global interest in the rights of persons with disabilities (PWDs) has increased that resulted in the United Nations Convention on the Rights of Persons with Disabilities (UNCRPWDs). In this regard, the Gulf States have witnessed remarkable efforts towards strengthening the rights of persons with disabilities, including enactment of laws and establishment of specialized government councils for the Persons with Disabilities. This study aims to highlight the efforts of Shafallah Foundation in strengthening the rights of persons with disabilities as a model for the Gulf States. The researcher will conduct interviews with officials at Shafallah Foundation, some persons with disabilities who have benefited from the Foundation's programmes, officials from government agencies related to Persons with disabilities. The study is expected to reveal the role of Shafallah Foundation in implementing the UNCRPWDs through its programmes and activities as well as an overview of the situation of the rights of PWDs in the Gulf States. The study is important for stakeholders, decision-makers, policy-makers, academics, and the disability’s organizations.

Keywords: GCC, Gulf Cooperation Council, Shafallah Foundation, UNCRPWDs, United Nations Convention on the Rights of Persons with Disabilities, PWDs, persons with disabilities

Procedia PDF Downloads 200
11147 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education

Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue

Abstract:

In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.

Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education

Procedia PDF Downloads 107
11146 Using Personalized Spiking Neural Networks, Distinct Techniques for Self-Governing

Authors: Brwa Abdulrahman Abubaker

Abstract:

Recently, there has been a lot of interest in the difficult task of applying reinforcement learning to autonomous mobile robots. Conventional reinforcement learning (TRL) techniques have many drawbacks, such as lengthy computation times, intricate control frameworks, a great deal of trial and error searching, and sluggish convergence. In this paper, a modified Spiking Neural Network (SNN) is used to offer a distinct method for autonomous mobile robot learning and control in unexpected surroundings. As a learning algorithm, the suggested model combines dopamine modulation with spike-timing-dependent plasticity (STDP). In order to create more computationally efficient, biologically inspired control systems that are adaptable to changing settings, this work uses the effective and physiologically credible Izhikevich neuron model. This study is primarily focused on creating an algorithm for target tracking in the presence of obstacles. Results show that the SNN trained with three obstacles yielded an impressive 96% success rate for our proposal, with collisions happening in about 4% of the 214 simulated seconds.

Keywords: spiking neural network, spike-timing-dependent plasticity, dopamine modulation, reinforcement learning

Procedia PDF Downloads 21
11145 Deep Learning for Recommender System: Principles, Methods and Evaluation

Authors: Basiliyos Tilahun Betru, Charles Awono Onana, Bernabe Batchakui

Abstract:

Recommender systems have become increasingly popular in recent years, and are utilized in numerous areas. Nowadays many web services provide several information for users and recommender systems have been developed as critical element of these web applications to predict choice of preference and provide significant recommendations. With the help of the advantage of deep learning in modeling different types of data and due to the dynamic change of user preference, building a deep model can better understand users demand and further improve quality of recommendation. In this paper, deep neural network models for recommender system are evaluated. Most of deep neural network models in recommender system focus on the classical collaborative filtering user-item setting. Deep learning models demonstrated high level features of complex data can be learned instead of using metadata which can significantly improve accuracy of recommendation. Even though deep learning poses a great impact in various areas, applying the model to a recommender system have not been fully exploited and still a lot of improvements can be done both in collaborative and content-based approach while considering different contextual factors.

Keywords: big data, decision making, deep learning, recommender system

Procedia PDF Downloads 478
11144 Non-linear Model of Elasticity of Compressive Strength of Concrete

Authors: Charles Horace Ampong

Abstract:

Non-linear models have been found to be useful in modeling the elasticity (measure of degree of responsiveness) of a dependent variable with respect to a set of independent variables ceteris paribus. This constant elasticity principle was applied to the dependent variable (Compressive Strength of Concrete in MPa) which was found to be non-linearly related to the independent variable (Water-Cement ratio in kg/m3) for given Ages of Concrete in days (3, 7, 28) at different levels of admixtures Superplasticizer (in kg/m3), Blast Furnace Slag (in kg/m3) and Fly Ash (in kg/m3). The levels of the admixtures were categorized as: S1=Some Plasticizer added & S0=No Plasticizer added; B1=some Blast Furnace Slag added & B0=No Blast Furnace Slag added; F1=Some Fly Ash added & F0=No Fly Ash added. The number of observations (samples) used for the research was one-hundred and thirty-two (132) in all. For Superplasticizer, it was found that Compressive Strength of Concrete was more elastic with regards to Water-Cement ratio at S1 level than at S0 level for the given ages of concrete 3, 7and 28 days. For Blast Furnace Slag, Compressive Strength with regards to Water-Cement ratio was more elastic at B0 level than at B1 level for concrete ages 3, 7 and 28 days. For Fly Ash, Compressive Strength with regards to Water-Cement ratio was more elastic at B0 level than at B1 level for Ages 3, 7 and 28 days. The research also tested for different combinations of the levels of Superplasticizer, Blast Furnace Slag and Fly Ash. It was found that Compressive Strength elasticity with regards to Water-Cement ratio was lowest (Elasticity=-1.746) with a combination of S0, B0 and F0 for concrete age of 3 days. This was followed by Elasticity of -1.611 with a combination of S0, B0 and F0 for a concrete of age 7 days. Next, the highest was an Elasticity of -1.414 with combination of S0, B0 and F0 for a concrete age of 28 days. Based on preceding outcomes, three (3) non-linear model equations for predicting the output elasticity of Compressive Strength of Concrete (in %) or the value of Compressive Strength of Concrete (in MPa) with regards to Water to Cement was formulated. The model equations were based on the three different ages of concrete namely 3, 7 and 28 days under investigation. The three models showed that higher elasticity translates into higher compressive strength. And the models revealed a trend of increasing concrete strength from 3 to 28 days for a given amount of water to cement ratio. Using the models, an increasing modulus of elasticity from 3 to 28 days was deduced.

Keywords: concrete, compressive strength, elasticity, water-cement

Procedia PDF Downloads 292
11143 Analysis of Complex Business Negotiations: Contributions from Agency-Theory

Authors: Jan Van Uden

Abstract:

The paper reviews classical agency-theory and its contributions to the analysis of complex business negotiations and gives an approach for the modification of the basic agency-model in order to examine the negotiation specific dimensions of agency-problems. By illustrating fundamental potentials for the modification of agency-theory in context of business negotiations the paper highlights recent empirical research that investigates agent-based negotiations and inter-team constellations. A general theoretical analysis of complex negotiation would be based on a two-level approach. First, the modification of the basic agency-model in order to illustrate the organizational context of business negotiations (i.e., multi-agent issues, common-agencies, multi-period models and the concept of bounded rationality). Second, the application of the modified agency-model on complex business negotiations to identify agency-problems and relating areas of risk in the negotiation process. The paper is placed on the first level of analysis – the modification. The method builds on the one hand on insights from behavior decision research (BRD) and on the other hand on findings from agency-theory as normative directives to the modification of the basic model. Through neoclassical assumptions concerning the fundamental aspects of agency-relationships in business negotiations (i.e., asymmetric information, self-interest, risk preferences and conflict of interests), agency-theory helps to draw solutions on stated worst-case-scenarios taken from the daily negotiation routine. As agency-theory is the only universal approach able to identify trade-offs between certain aspects of economic cooperation, insights obtained provide a deeper understanding of the forces that shape business negotiation complexity. The need for a modification of the basic model is illustrated by highlighting selected issues of business negotiations from agency-theory perspective: Negotiation Teams require a multi-agent approach under the condition that often decision-makers as superior-agents are part of the team. The diversity of competences and decision-making authority is a phenomenon that overrides the assumptions of classical agency-theory and varies greatly in context of certain forms of business negotiations. Further, the basic model is bound to dyadic relationships preceded by the delegation of decision-making authority and builds on a contractual created (vertical) hierarchy. As a result, horizontal dynamics within the negotiation team playing an important role for negotiation success are therefore not considered in the investigation of agency-problems. Also, the trade-off between short-term relationships within the negotiation sphere and the long-term relationships of the corporate sphere calls for a multi-period perspective taking into account the sphere-specific governance-mechanisms already established (i.e., reward and monitoring systems). Within the analysis, the implementation of bounded rationality is closely related to findings from BRD to assess the impact of negotiation behavior on underlying principal-agent-relationships. As empirical findings show, the disclosure and reservation of information to the agent affect his negotiation behavior as well as final negotiation outcomes. Last, in context of business negotiations, asymmetric information is often intended by decision-makers acting as superior-agents or principals which calls for a bilateral risk-approach to agency-relations.

Keywords: business negotiations, agency-theory, negotiation analysis, interteam negotiations

Procedia PDF Downloads 139
11142 Regional Changes under Extreme Meteorological Events

Authors: Renalda El Samra, Elie Bou-Zeid, Hamza Kunhu Bangalath, Georgiy Stenchikov, Mutasem El Fadel

Abstract:

The regional-scale impact of climate change over complex terrain was examined through high-resolution dynamic downscaling conducted using the Weather Research and Forecasting (WRF) model, with initial and boundary conditions from a High-Resolution Atmospheric Model (HiRAM). The analysis was conducted over the eastern Mediterranean, with a focus on the country of Lebanon, which is characterized by a challenging complex topography that magnifies the effect of orographic precipitation. Four year-long WRF simulations, selected based on HiRAM time series, were performed to generate future climate projections of extreme temperature and precipitation over the study area under the conditions of the Representative Concentration Pathway (RCP) 4.5. One past WRF simulation year, 2008, was selected as a baseline to capture dry extremes of the system. The results indicate that the study area might be exposed to a temperature increase between 1.0 and 3ºC in summer mean values by 2050, in comparison to 2008. For extreme years, the decrease in average annual precipitation may exceed 50% at certain locations in comparison to 2008.

Keywords: HiRAM, regional climate modeling, WRF, Representative Concentration Pathway (RCP)

Procedia PDF Downloads 396
11141 Between Subscribers of Two Telecommunication Providers in Indonesia: Factors Involved in Customer Retention

Authors: Frista Dearetha Marasabessy, Usep Suhud, Mohammad Rizan

Abstract:

The study objective was to compare influencing factors on customer retention of two brands – SimPATI and IM3 – of telecommunication services owned by Telkomsel and Indosat, two giant mobile telecommunication providers in Indonesia. The authors applied predictor variables including perceived tariff, perceived quality, switching barriers, and customer satisfaction. These variables were used after reviewing literature in quantitative studies on consumer behaviour relating to telecommunication services. This study used indicators adopted and adapted from literature. The quantitative data were gathered in Jakarta, involving 205 subscribers of SimPATI and 202 subscribers of IM3. The authors selected respondents purposively. Data were analysed using both exploratory and confirmatory factor analyses. Two fitted models were developed confirming factors that were involved in customer retention as stated on the proposed model: perceived tariff, perceived quality, switching barriers, and customer satisfaction. However, parts of the hypotheses were rejected.

Keywords: customer retention, switching barriers, telecommunication providers, structural equation model, SimPATI, IM3, Indonesia

Procedia PDF Downloads 351
11140 Evaluation of Student Satisfaction Level Towards Anadolu University E-Services through E-Government Model and Importance Performance Analysis Method

Authors: Emrah Ayhan, Puspa Saananta Irfani, Ömer Doğukan Şahin

Abstract:

Public services, which are important for the order and continuity of social life, have begun to transform into electronic services (E-service) with the development of information and communication technologies in recent years. In particular, as a result of the widespread use of the internet and the increase in citizen demands, it has become necessary to provide public services electronically. In addition to facilitating traditional public services, new types of e-services strengthen the interaction, cooperation, accessibility, transparency, citizen participation (e-governance) and accountability between citizens and the state. In this context, the factors in the literature that are considered to influence the citizens’ satisfaction towards e-services will be examined through the example of student satisfaction with the e-services (Anasis, Mergen, E-mail, library, cafeteria and other transactions) offered by Anadolu University (Eskişehir, Türkiye) through university website and mobile application. The data for the analysis will be obtained from the survey research that will be used to measure user satisfaction with university e-services of 1,000 students studying at 9 different faculties and graduate schools of Anadolu University. These data will be analyzed with a unique methodology that uses the E-GovQual model and Importance Performance Analysis (IPA) methods together. The e-GovQual model serves as a framework for evaluating the quality of e-services, allowing a detailed understanding of students' perceptions. On the other hand, the IPA method will be used to determine the performance level of Anadolu University in the provision of e-services and to understand the areas that require improvement and student expectations. Strategic goals and suggestions will be made to decision-makers, students, and researchers in line with the findings obtained in the research. Thus, it is planned to contribute to e-governance and user satisfaction in educational institutions and to reveal practical implications for optimizing online platforms to better serve student needs.

Keywords: e-service, Anadolu university, student satisfaction, e-governance, e-govqual, importance performance analysis

Procedia PDF Downloads 55
11139 Random Vertical Seismic Vibrations of the Long Span Cantilever Beams

Authors: Sergo Esadze

Abstract:

Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems.

Keywords: cantilever, random process, seismic load, vertical acceleration

Procedia PDF Downloads 188
11138 Antioxydant Properties and Gastroprotective Effect of Rosa canina Aqueous Extract against Alcohol-Induced Ulceration and Oxidative Stress in Rat Model

Authors: H. Sebai, M. A. Jabria, D. Wannes, H. Tounsi, L. Marzouki

Abstract:

We aimed in the present study to investigate the protective effects of Tunisian Rosa canina aqueous extract (RCAE) against ethanol-induced gastric ulceration and oxidative stress in a rat model. In this respect, adult male Wistar rats were used and divided into six groups of ten each: control, EtOH, EtOH plus various doses of RCAE, EtOH plus famotidine and EtOH + gallic acid. Phytochemical and biochemical analysis were performed using colorimetric methods. We found that RCAE is rich in total polyphenols, total flavonoids, and condensed tannins, and exhibited an importance in vitro antioxidant activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. In vivo, the results showed that oral administration of EtOH caused macroscopic and histological changes in gastric mucosa. These injuries are accompanied by an oxidative stress status as assessed by an increase of lipid peroxidation as well as a decrease of antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Alcohol intoxication also induced intracellular mediators deregulation as assessed by an increase of hydrogen peroxide (H2O2), calcium and free iron levels in gastric mucosa. More, importantly, RCAE pretreatment reversed all macroscopic, histological and biochemical changes induced by EtOH administration. In conclusion, we suggest that RCAE has potent protective effects on acute ethanol-induced gastric ulceration related in part in part its antioxidant properties and its opposite effect on intracellular mediators. Indeed, Rosa canina can be offered as a food additive to protect against alcohol consumption-induced gastric and oxidative damage.

Keywords: alcohol, antioxidant properties, food additive, gastric ulceration, rat model, Rosa canina

Procedia PDF Downloads 197
11137 Impact of Output Market Participation on Cassava-Based Farming Households' Welfare in Nigeria

Authors: Seyi Olalekan Olawuyi, Abbyssiania Mushunje

Abstract:

The potential benefits of agricultural production to improve the welfare condition of smallholder farmers in developing countries is no more a news because it has been widely documented. Yet majority of these farming households suffer from shortfall in production output to meet both the consumption needs and market demand which adversely affects output market participation and by extension welfare condition. Therefore, this study investigated the impacts of output market participation on households’ welfare of cassava-based farmers in Oyo State, Nigeria. Multistage sampling technique was used to select 324 sample size used for this study. The findings from the data obtained and analyzed through composite score and crosstab analysis revealed that there is varying degree of output market participation among the farmers which also translate to the observed welfare profile differentials in the study area. The probit model analysis with respect to the selection equation identified gender of household head, household size, access to remittance, off-farm income and ownership of farmland as significant drivers of output market participation in the study area. Furthermore, the treatment effect model of the welfare equation and propensity score matching (PSM) technique were used as robust checks; and the findings attest to the fact that, complimentarily with other significant variables highlighted in this study, output market participation indeed has a significant impact on farming households’ welfare. As policy implication inferences, the study recommends female active inclusiveness and empowerment in farming activities, birth control strategies, secondary income smoothing activities and discouragement of land fragmentation habits, to boost productivity and output market participation, which by extension can significantly improve farming households’ welfare.

Keywords: Cassava market participation, households' welfare, propensity score matching, treatment effect model

Procedia PDF Downloads 162
11136 Calibration of Contact Model Parameters and Analysis of Microscopic Behaviors of Cuxhaven Sand Using The Discrete Element Method

Authors: Anjali Uday, Yuting Wang, Andres Alfonso Pena Olare

Abstract:

The Discrete Element Method is a promising approach to modeling microscopic behaviors of granular materials. The quality of the simulations however depends on the model parameters utilized. The present study focuses on calibration and validation of the discrete element parameters for Cuxhaven sand based on the experimental data from triaxial and oedometer tests. A sensitivity analysis was conducted during the sample preparation stage and the shear stage of the triaxial tests. The influence of parameters like rolling resistance, inter-particle friction coefficient, confining pressure and effective modulus were investigated on the void ratio of the sample generated. During the shear stage, the effect of parameters like inter-particle friction coefficient, effective modulus, rolling resistance friction coefficient and normal-to-shear stiffness ratio are examined. The calibration of the parameters is carried out such that the simulations reproduce the macro mechanical characteristics like dilation angle, peak stress, and stiffness. The above-mentioned calibrated parameters are then validated by simulating an oedometer test on the sand. The oedometer test results are in good agreement with experiments, which proves the suitability of the calibrated parameters. In the next step, the calibrated and validated model parameters are applied to forecast the micromechanical behavior including the evolution of contact force chains, buckling of columns of particles, observation of non-coaxiality, and sample inhomogeneity during a simple shear test. The evolution of contact force chains vividly shows the distribution, and alignment of strong contact forces. The changes in coordination number are in good agreement with the volumetric strain exhibited during the simple shear test. The vertical inhomogeneity of void ratios is documented throughout the shearing phase, which shows looser structures in the top and bottom layers. Buckling of columns is not observed due to the small rolling resistance coefficient adopted for simulations. The non-coaxiality of principal stress and strain rate is also well captured. Thus the micromechanical behaviors are well described using the calibrated and validated material parameters.

Keywords: discrete element model, parameter calibration, triaxial test, oedometer test, simple shear test

Procedia PDF Downloads 120
11135 Establishment and Characterization of a Dentigerous Cyst Cell Line

Authors: Muñiz-Lino Marcos Agustín, Vazquez Borbolla Jessica, Licéaga-Escalera Carlos

Abstract:

The ectomesenchymal tissues involved in tooth development and their remnants are the origin of different odontogenic lesions, including tumors and cysts of the jaws, with a wide range of clinical behaviors. Dentigerous cyst (DC) represents approximately 20% of all cases of odontogenic cysts, and it has been demonstrated that it can develop benign and malignant odontogenic tumors. DC is characterized by bone destruction of the area surrounding the crown of a tooth which has not erupted and it contain is liquid. The treatment of odontogenic tumors and cysts usually are partial or total removal of the jaw, causing important secondary co-morbidities. However, molecules implicated in DC pathogenesis as well in its development to odontogenic tumors remains unknown. A cellular model may be useful to study these molecules, but that model has not been established yet. Here, we reported the establishment of a cell culture derived from a dentigerous cyst. This cell line was named DeCy-1. In spite of its ectomesenchymal morphology, DeCy-1 cells express epithelial markers such as cytokeratins 5, 6, and 8. Furthermore, these cells express the ODAM protein, which is present in odontogenesis and in dental follicle, indicating that DeCy-1 cells derived from odontogenic epithelium. Analysis by electron microscopy of this cell line showed that it has a high vesicular activity, suggesting that DeCy-1 could secrete molecules that may be involved in DC pathogenesis. Thus, secreted proteins were analyzed by PAGE-SDS, where we observed approximately 11 bands. In addition, the capacity of these secretions to degrade proteins was analyzed by gelatin substrate zymography. A degradation band of about 62 kDa was found in these assays. Western blot assays suggested that the matrix metalloproteinase 2 (MMP-2) is responsible of this protease activity. Thus, our results indicate that the establishment of a cell line derived from DC is a useful in vitro model to study the biology of this odontogenic lesion and its participation in the development of odontogenic tumors.

Keywords: dentigerous cyst, MMP20, cancer, cell culture

Procedia PDF Downloads 135
11134 Shifted Window Based Self-Attention via Swin Transformer for Zero-Shot Learning

Authors: Yasaswi Palagummi, Sareh Rowlands

Abstract:

Generalised Zero-Shot Learning, often known as GZSL, is an advanced variant of zero-shot learning in which the samples in the unseen category may be either seen or unseen. GZSL methods typically have a bias towards the seen classes because they learn a model to perform recognition for both the seen and unseen classes using data samples from the seen classes. This frequently leads to the misclassification of data from the unseen classes into the seen classes, making the task of GZSL more challenging. In this work of ours, to solve the GZSL problem, we propose an approach leveraging the Shifted Window based Self-Attention in the Swin Transformer (Swin-GZSL) to work in the inductive GSZL problem setting. We run experiments on three popular benchmark datasets: CUB, SUN, and AWA2, which are specifically used for ZSL and its other variants. The results show that our model based on Swin Transformer has achieved state-of-the-art harmonic mean for two datasets -AWA2 and SUN and near-state-of-the-art for the other dataset - CUB. More importantly, this technique has a linear computational complexity, which reduces training time significantly. We have also observed less bias than most of the existing GZSL models.

Keywords: generalised, zero-shot learning, inductive learning, shifted-window attention, Swin transformer, vision transformer

Procedia PDF Downloads 71
11133 The Effects of Consumer Inertia and Emotions on New Technology Acceptance

Authors: Chyi Jaw

Abstract:

Prior literature on innovation diffusion or acceptance has almost exclusively concentrated on consumers’ positive attitudes and behaviors for new products/services. Consumers’ negative attitudes or behaviors to innovations have received relatively little marketing attention, but it happens frequently in practice. This study discusses consumer psychological factors when they try to learn or use new technologies. According to recent research, technological innovation acceptance has been considered as a dynamic or mediated process. This research argues that consumers can experience inertia and emotions in the initial use of new technologies. However, given such consumer psychology, the argument can be made as to whether the inclusion of consumer inertia (routine seeking and cognitive rigidity) and emotions increases the predictive power of new technology acceptance model. As data from the empirical study find, the process is potentially consumer emotion changing (independent of performance benefits) because of technology complexity and consumer inertia, and impact innovative technology use significantly. Finally, the study presents the superior predictability of the hypothesized model, which let managers can better predict and influence the successful diffusion of complex technological innovations.

Keywords: cognitive rigidity, consumer emotions, new technology acceptance, routine seeking, technology complexity

Procedia PDF Downloads 296
11132 Gender, Age, and Race Differences in Self-Reported Reading Attitudes of College Students

Authors: Jill Villarreal, Kristalyn Cooksey, Kai Lloyd, Daniel Ha

Abstract:

Little research has been conducted to examine college students' reading attitudes, including students' perceptions of reading behaviors and reading abilities. This is problematic, as reading assigned course material is a critical component to an undergraduate student's academic success. For this study, flyers were electronically disseminated to instructors at 24 public and 10 private U.S. institutions in “Reading-Intensive Departments” including Psychology, Sociology, Education, Business, and Communications. We requested the online survey be completed as an in-class activity during the fall 2019 and spring 2020 semesters. All participants voluntarily completed the questionnaire anonymously. Of the participants, 280 self-identified their race as Black and 280 self-identified their race as White. Of the participants, 177 self-identified their gender as Male and 383 self-identified their Gender as Female. Participants ranged in age from 18-24. Factor analysis found four dimensions resulting from the questions regarding reading. The first we interpret as “Reading Proficiency”, accounted for 19% of the variability. The second dimension was “Reading Anxiety” (15%), the third was “Textbook Reading Ability” (9%), and the fourth was “Reading Enjoyment” (8%). Linear models on each of these dimensions revealed no effect of Age, Gender, Race, or Income on “Reading proficiency”. The linear model of “Reading Anxiety” showed a significant effect of race (p = 0.02), with higher anxiety in white students, as well as higher reading anxiety in female students (p < 0.001). The model of “Textbook Reading Ability” found a significant effect of race (p < 0.001), with higher textbook problems in white students. The model of “Reading Enjoyment” showed significant effects of race (p = 0.013) with more enjoyment for white students, gender (p = 0.001) with higher enjoyment for female students, and age (p = 0.033) with older students showing higher enjoyment. These findings suggest that gender, age, and race are important factors in many aspects of college students' reading attitudes. Further research will investigate possible causes for these differences. In addition, the effectiveness of college-level programs to reduce reading anxiety, promote the reading of textbooks, and foster a love of reading will be assessed.

Keywords: age, college, gender, race, reading

Procedia PDF Downloads 152
11131 Performance of Coded Multi-Line Copper Wire for G.fast Communications in the Presence of Impulsive Noise

Authors: Israa Al-Neami, Ali J. Al-Askery, Martin Johnston, Charalampos Tsimenidis

Abstract:

In this paper, we focus on the design of a multi-line copper wire (MLCW) communication system. First, we construct our proposed MLCW channel and verify its characteristics based on the Kolmogorov-Smirnov test. In addition, we apply Middleton class A impulsive noise (IN) to the copper channel for further investigation. Second, the MIMO G.fast system is adopted utilizing the proposed MLCW channel model and is compared to a single line G-fast system. Second, the performance of the coded system is obtained utilizing concatenated interleaved Reed-Solomon (RS) code with four-dimensional trellis-coded modulation (4D TCM), and compared to the single line G-fast system. Simulations are obtained for high quadrature amplitude modulation (QAM) constellations that are commonly used with G-fast communications, the results demonstrate that the bit error rate (BER) performance of the coded MLCW system shows an improvement compared to the single line G-fast systems.

Keywords: G.fast, Middleton Class A impulsive noise, mitigation techniques, Copper channel model

Procedia PDF Downloads 132
11130 Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data

Authors: Sittampalam Manoharan, Gary Chai, Sanaul Chowdhury, Andrew Golding

Abstract:

The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets.

Keywords: adjusted structural number (SNP), maximum deflection (D0), equant standard axle (ESA), traffic speed deflectometer (TSD)

Procedia PDF Downloads 151
11129 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 75
11128 Applying Genetic Algorithm in Exchange Rate Models Determination

Authors: Mehdi Rostamzadeh

Abstract:

Genetic Algorithms (GAs) are an adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this study, we apply GAs for fundamental and technical models of exchange rate determination in exchange rate market. In this framework, we estimated absolute and relative purchasing power parity, Mundell-Fleming, sticky and flexible prices (monetary models), equilibrium exchange rate and portfolio balance model as fundamental models and Auto Regressive (AR), Moving Average (MA), Auto-Regressive with Moving Average (ARMA) and Mean Reversion (MR) as technical models for Iranian Rial against European Union’s Euro using monthly data from January 1992 to December 2014. Then, we put these models into the genetic algorithm system for measuring their optimal weight for each model. These optimal weights have been measured according to four criteria i.e. R-Squared (R2), mean square error (MSE), mean absolute percentage error (MAPE) and root mean square error (RMSE).Based on obtained Results, it seems that for explaining of Iranian Rial against EU Euro exchange rate behavior, fundamental models are better than technical models.

Keywords: exchange rate, genetic algorithm, fundamental models, technical models

Procedia PDF Downloads 273
11127 Development of a Forecast-Supported Approach for the Continuous Pre-Planning of Mandatory Transportation Capacity for the Design of Sustainable Transport Chains: A Literature Review

Authors: Georg Brunnthaller, Sandra Stein, Wilfried Sihn

Abstract:

Transportation service providers are facing increasing volatility concerning future transport demand. Short-term planning horizons and planning uncertainties lead to reduced capacity utilization and increasing empty mileage. To overcome these challenges, a model is proposed to continuously pre-plan future transportation capacity in order to redesign and adjust the intermodal fleet accordingly. It is expected that the model will enable logistics service providers to organize more economically and ecologically sustainable transport chains in a more flexible way. To further describe these planning aspects, this paper gives an overview on transportation planning problems in a structured way. The focus is on strategic and tactical planning levels, comprising relevant fleet-sizing, service-network-design and choice-of-carriers-problems. Models and their developed solution techniques are presented, and the literature review is concluded with an outlook to our future research directions.

Keywords: freight transportation planning, multimodal, fleet-sizing, service network design, choice of transportation mode, review

Procedia PDF Downloads 317
11126 Confirmatory Factor Analysis of Smartphone Addiction Inventory (SPAI) in the Yemeni Environment

Authors: Mohammed Al-Khadher

Abstract:

Currently, we are witnessing rapid advancements in the field of information and communications technology, forcing us, as psychologists, to combat the psychological and social effects of such developments. It also drives us to continually look for the development and preparation of measurement tools compatible with the changes brought about by the digital revolution. In this context, the current study aimed to identify the factor analysis of the Smartphone Addiction Inventory (SPAI) in the Republic of Yemen. The sample consisted of (1920) university students (1136 males and 784 females) who answered the inventory, and the data was analyzed using the statistical software (AMOS V25). The factor analysis results showed a goodness-of-fit of the data five-factor model with excellent indicators, as RMSEA-(.052), CFI-(.910), GFI-(.931), AGFI-(.915), TLI-(.897), NFI-(.895), RFI-(.880), and RMR-(.032). All within the ideal range to prove the model's fit of the scale’s factor analysis. The confirmatory factor analysis results showed factor loading in (4) items on (Time Spent), (4) items on (Compulsivity), (8) items on (Daily Life Interference), (5) items on (Craving), and (3) items on (Sleep interference); and all standard values of factor loading were statistically significant at the significance level (>.001).

Keywords: smartphone addiction inventory (SPAI), confirmatory factor analysis (CFA), yemeni students, people at risk of smartphone addiction

Procedia PDF Downloads 94
11125 How Addictive Are They: Effects of E-Cigarette Vapor on Intracranial Self-Stimulation Compared to Nicotine Alone

Authors: Annika Skansberg

Abstract:

Electronic cigarettes (e-cigarettes) use vapor to deliver nicotine, have recently become popular, especially amongst adolescents. Because of this, the FDA has decided to regulate e-cigarettes, and therefore would like to determine the abuse liability of the products compared to traditional nicotine products. This will allow them to determine the impact of regulating them on public health and shape the decisions they make when creating new laws. This study assessed the abuse liability of Aroma E-juice Dark Honey Tobacco compared to nicotine using an animal model. This e-liquid contains minor alkaloids that may increase abuse liability compared to nicotine alone. The abuse liability of nicotine alone and e-juice liquid were compared in rats using intracranial self-stimulation (ICSS) thresholds. E-liquid had less aversive effects at high nicotine doses in the ICSS model, suggesting that the minor alkaloids in the e-liquid allow users to use higher doses without experiencing the negative effects felt when using high doses of nicotine alone. This finding could mean that e-cigarettes have a higher abuse liability than nicotine alone, but more research is needed before this can be concluded. These findings are useful in observing the abuse liability of e-cigarettes and will help inform the FDA while regulating these products.

Keywords: electronic cigarettes, intra-cranial self stimulation, abuse liability, anhedonia

Procedia PDF Downloads 311
11124 Design and Development of the Force Plate for the Study of Driving-Point Biodynamic Responses

Authors: Vikas Kumar, V. H. Saran, Arpit Mathur, Avik Kathuria

Abstract:

The evaluation of biodynamic responses of the human body to whole body vibration exposure is necessary to quantify the exposure effects. A force plate model has been designed with the help of CAD software, which was investigated by performing the modal, stress and strain analysis using finite element approach in the software. The results of the modal, stress and strain analysis were under the limits for measurements of biodynamic responses to whole body vibration. The physical model of the force plate was manufactured and fixed to the vibration simulator and further used in the experimentation for the evaluation of apparent mass responses of the ten recruited subjects standing in an erect posture exposed to vertical whole body vibration. The platform was excited with sinusoidal vibration at vibration magnitude: 1.0 and 1.5 m/s2 rms at different frequency of 2, 3, 4, 5, 6, 8, 10, 12.5, 16 and 20 Hz. The results of magnitude of normalised apparent mass have shown the trend observed in the many past studies. The peak in the normalised apparent mass has been observed at 4 & 5 Hz frequency of vertical whole body vibration. The nonlinearity with respect to vibration magnitude has been also observed in the normalised apparent mass responses.

Keywords: whole body vibration, apparent mass, modeling, force plate

Procedia PDF Downloads 415