Search results for: unified commensurate multiple
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5066

Search results for: unified commensurate multiple

4526 Where Is the Sultan of Aceh? Reconsidering the Return of the Aceh Sultanate

Authors: Muhammad Harya Ramdhoni, Nidzam Sulaiman, Muhammad Ridwan

Abstract:

The Helsinki Agreement between the Indonesian Government (RI) and the Aceh Liberation Movement (GAM) on 15th Aug. 2005 fails to reconcile social and political turmoil in Aceh Darussalam (NAD). The political powers that were once unified in their struggle against Indonesian Government prior to this agreement have now become divided due to differences in political and economic interests. Using descriptive analysis and intellectual discourse, this paper proposes that the Aceh Sultanate be revived as an attempt to unite these divided political powers and to curtail potential conflicts in the area. This proposal is based on three assumptions. First, the Aceh Sultanate is the only Sultanate in Sumatera that did not fall victim to the social revolution post 1945 proclamation of independence. Second, the Acehnese still acknowledge the Sultanate as a sovereign political power even though it was defeated by the Dutch in 1904. Third, there are emotional, historical and cultural ties between the Acehnese and the Sultanate as they still perceived them to be their patron. Consequently, the Sultanate is the unifying element of all political powers in the area. This, however, is not an attempt to reinstate feudalism in Aceh. It only seeks to facilitate the political reconciliation process in Aceh Darussalam founded on sociological and historical background of locals.

Keywords: Sultanate Aceh, political reconciliation, political power, patron-client

Procedia PDF Downloads 266
4525 Predictors of School Safety Awareness among Malaysian Primary School Teachers

Authors: Ssekamanya, Mastura Badzis, Khamsiah Ismail, Dayang Shuzaidah Bt Abduludin

Abstract:

With rising incidents of school violence worldwide, educators and researchers are trying to understand and find ways to enhance the safety of children at school. The purpose of this study was to investigate the extent to which the demographic variables of gender, age, length of service, position, academic qualification, and school location predicted teachers’ awareness about school safety practices in Malaysian primary schools. A stratified random sample of 380 teachers was selected in the central Malaysian states of Kuala Lumpur and Selangor. Multiple regression analysis revealed that none of the factors was a good predictor of awareness about school safety training, delivery methods of school safety information, and available school safety programs. Awareness about school safety activities was significantly predicted by school location (whether the school was located in a rural or urban area). While these results may reflect a general lack of awareness about school safety among primary school teachers in the selected locations, a national study needs to be conducted for the whole country.

Keywords: school safety awareness, predictors of school safety, multiple regression analysis, malaysian primary schools

Procedia PDF Downloads 468
4524 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 125
4523 The Sexual Knowledge, Attitudes and Behaviors of College Students from Only-Child Families: A National Survey in China

Authors: Jiashu Shen

Abstract:

This study aims at exploring the characteristics of sexual knowledge, attitudes, and behaviors of Chinese college students from the 'one-child' families compared with those with siblings. This study utilized the data from the 'National College Student Survey on Sexual and Reproductive Health 2019'. Multiple logistic regression analyses were used to assess the association between the 'only-child' and their sexual knowledge, sexual attitudes, sexual behaviors, and risky sexual behaviors (RSB) stratified by sex and home regions, respectively. Compared with students with siblings, the 'only-child' students scored higher in sex-related knowledge (only-child students: 4.49 ± 2.28, students with siblings: 3.60 ± 2.27). Stronger associations between only-child and more liberal sexual attitudes were found in urban areas, including the approval of premarital sexual intercourse (OR: 1.51, 95% CI: 1.50-1.65) and multiple sexual partners (OR: 1.85, 95% CI: 1.72-1.99). For risky sexual behaviors, being only-child is more likely to use condoms in first sexual intercourse, especially among male students (OR: 0.68, 95% CI: 0.58-0.80). Only-child students are more likely to have more sexual knowledge, more liberal sexual attitude, and less risky sexual behavior. Further health policy and sex education should focus more on students with siblings.

Keywords: attitudes and behaviors, only-child students, sexual knowledge, students with siblings

Procedia PDF Downloads 182
4522 Measurement Errors and Misclassifications in Covariates in Logistic Regression: Bayesian Adjustment of Main and Interaction Effects and the Sample Size Implications

Authors: Shahadut Hossain

Abstract:

Measurement errors in continuous covariates and/or misclassifications in categorical covariates are common in epidemiological studies. Regression analysis ignoring such mismeasurements seriously biases the estimated main and interaction effects of covariates on the outcome of interest. Thus, adjustments for such mismeasurements are necessary. In this research, we propose a Bayesian parametric framework for eliminating deleterious impacts of covariate mismeasurements in logistic regression. The proposed adjustment method is unified and thus can be applied to any generalized linear and non-linear regression models. Furthermore, adjustment for covariate mismeasurements requires validation data usually in the form of either gold standard measurements or replicates of the mismeasured covariates on a subset of the study population. Initial investigation shows that adequacy of such adjustment depends on the sizes of main and validation samples, especially when prevalences of the categorical covariates are low. Thus, we investigate the impact of main and validation sample sizes on the adjusted estimates, and provide a general guideline about these sample sizes based on simulation studies.

Keywords: measurement errors, misclassification, mismeasurement, validation sample, Bayesian adjustment

Procedia PDF Downloads 408
4521 Software Quality Assurance in 5G Technology-Redefining Wireless Communication: A Comprehensive Survey

Authors: Sumbal Riaz, Sardar-un-Nisa, Mehreen Sirshar

Abstract:

5G - The 5th generation of mobile phone and data communication standards is the next edge of innovation for whole mobile industry. 5G is Real Wireless World System and it will provide a totally wireless communication system all over the world without limitations. 5G uses many 4g technologies and it will hit the market in 2020. This research is the comprehensive survey on the quality parameters of 5G technology.5G provide High performance, Interoperability, easy roaming, fully converged services, friendly interface and scalability at low cost. To meet the traffic demands in future fifth generation wireless communications systems will include i) higher densification of heterogeneous networks with massive deployment of small base stations supporting various Radio Access Technologies (RATs), ii) use of massive Multiple Input Multiple Output (MIMO) arrays, iii) use of millimetre Wave spectrum where larger wider frequency bands are available, iv) direct device to device (D2D) communication, v) simultaneous transmission and reception, vi) cognitive radio technology.

Keywords: 5G, 5th generation, innovation, standard, wireless communication

Procedia PDF Downloads 444
4520 Generalized Mathematical Description and Simulation of Grid-Tied Thyristor Converters

Authors: V. S. Klimash, Ye Min Thu

Abstract:

Thyristor rectifiers, inverters grid-tied, and AC voltage regulators are widely used in industry, and on electrified transport, they have a lot in common both in the power circuit and in the control system. They have a common mathematical structure and switching processes. At the same time, the rectifier, but the inverter units and thyristor regulators of alternating voltage are considered separately both theoretically and practically. They are written about in different books as completely different devices. The aim of this work is to combine them into one class based on the unity of the equations describing electromagnetic processes, and then, to show this unity on the mathematical model and experimental setup. Based on research from mathematics to the product, a conclusion is made about the methodology for the rapid conduct of research and experimental design work, preparation for production and serial production of converters with a unified bundle. In recent years, there has been a transition from thyristor circuits and transistor in modular design. Showing the example of thyristor rectifiers and AC voltage regulators, we can conclude that there is a unity of mathematical structures and grid-tied thyristor converters.

Keywords: direct current, alternating current, rectifier, AC voltage regulator, generalized mathematical model

Procedia PDF Downloads 250
4519 Clash of Civilizations without Civilizational Groups: Revisiting Samuel P. Huntington´s Clash of Civilizations Theory

Authors: Jamal Abdi

Abstract:

This paper is largely a response/critique of Samuel P. Huntington´s Clash of Civilizations thesis. The overriding argument is that Huntington´s thesis is characterized by failure to distinguish between ´groups´ and ´categories´. Multinational civilizations overcoming their internal collective action problems, which would enable them to pursue a unified strategy vis-à-vis the West, is a rather foundational assumption in his theory. Without assigning sufficient intellectual attention to the processes through which multinational civilizations may gain capacity for concerted action i.e. become a group, he contended that the post-cold-war world would be shaped in large measure by interactions among seven or eight major civilizations. Thus, failure in providing a convincing analysis of multi-national civilizations´ transition from categories to groups is a significant weakness in Huntington´s clash theory. It is also suggested that so-called Islamic terrorism and the war on terror is not to be taken as an expression of presence of clash between a Western and an Islamic civilization, as terrorist organizations would be superfluous in a world characterized by clash of civilizations. Consequences of multinational civilizations becoming a group are discussed in relation to contemporary Western superiority.

Keywords: categories, civilizations, clash, groups, groupness

Procedia PDF Downloads 175
4518 An Integrated Web-Based Workflow System for Design of Computational Pipelines in the Cloud

Authors: Shuen-Tai Wang, Yu-Ching Lin

Abstract:

With more and more workflow systems adopting cloud as their execution environment, it presents various challenges that need to be addressed in order to be utilized efficiently. This paper introduces a method for resource provisioning based on our previous research of dynamic allocation and its pipeline processes. We present an abstraction for workload scheduling in which independent tasks get scheduled among various available processors of distributed computing for optimization. We also propose an integrated web-based workflow designer by taking advantage of the HTML5 technology and chaining together multiple tools. In order to make the combination of multiple pipelines executing on the cloud in parallel, we develop a script translator and an execution engine for workflow management in the cloud. All information is known in advance by the workflow engine and tasks are allocated according to the prior knowledge in the repository. This proposed effort has the potential to provide support for process definition, workflow enactment and monitoring of workflow processes. Users would benefit from the web-based system that allows creation and execution of pipelines without scripting knowledge.

Keywords: workflow systems, resources provisioning, workload scheduling, web-based, workflow engine

Procedia PDF Downloads 160
4517 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera

Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin

Abstract:

We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.

Keywords: human action recognition, pose estimation, D-CNN, deep learning

Procedia PDF Downloads 146
4516 Load Management Using Multiple Sequential Load Shaping Techniques

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasi

Abstract:

Demand Side Management (DSM) is an essential characteristic of current and future smart grid systems. As one of DSM functions, load management aims to control customers’ total electric consumption and utility’s load factor by using various load shaping techniques. However, applying load shaping techniques such as load shifting, peak clipping, or strategic conservation individually does not provide the desired level of improvement for load factor increment and/or customer’s bill reduction. In this paper, two load shaping techniques will be simulated as constrained optimization problems. The purpose is to reflect the application of combined load shifting and strategic conservation model together at the same time, and the application of combined load shifting and peak clipping model as well. The problem will be formulated and solved by using disciplined convex programming (CVX) based MATLAB® R2013b. Simulation results will be evaluated and compared for studying the most impactful multi-techniques model in improving load curve.

Keywords: convex programing, demand side management, load shaping, multiple, building energy optimization

Procedia PDF Downloads 313
4515 Factors Associated with Acute Kidney Injury in Multiple Trauma Patients with Rhabdomyolysis

Authors: Yong Hwang, Kang Yeol Suh, Yundeok Jang, Tae Hoon Kim

Abstract:

Introduction: Rhabdomyolysis is a syndrome characterized by muscle necrosis and the release of intracellular muscle constituents into the circulation. Acute kidney injury is a potential complication of severe rhabdomyolysis and the prognosis is substantially worse if renal failure develops. We try to identify the factors that were predictive of AKI in severe trauma patients with rhabdomyolysis. Methods: This retrospective study was conducted at the emergency department of a level Ⅰ trauma center. Patients enrolled that initial creatine phosphokinase (CPK) levels were higher than 1000 IU with acute multiple trauma, and more than 18 years older from Oct. 2012 to June 2016. We collected demographic data (age, gender, length of hospital day, and patients’ outcome), laboratory data (ABGA, lactate, hemoglobin. hematocrit, platelet, LDH, myoglobin, liver enzyme, and BUN/Cr), and clinical data (Injury Mechanism, RTS, ISS, AIS, and TRISS). The data were compared and analyzed between AKI and Non-AKI group. Statistical analyses were performed using IMB SPSS 20.0 statistics for Window. Results: Three hundred sixty-four patients were enrolled that AKI group were ninety-six and non-AKI group were two hundred sixty-eight. The base excess (HCO3), AST/ALT, LDH, and myoglobin in AKI group were significantly higher than non-AKI group from laboratory data (p ≤ 0.05). The injury severity score (ISS), revised Trauma Score (RTS), Abbreviated Injury Scale 3 and 4 (AIS 3 and 4) were showed significant results in clinical data. The patterns of CPK level were increased from first and second day, but slightly decreased from third day in both group. Seven patients had received hemodialysis treatment despite the bleeding risk and were survived in AKI group. Conclusion: We recommend that HCO3, CPK, LDH, and myoglobin should be checked and be concerned about ISS, RTS, AIS with injury mechanism at the early stage of treatment in the emergency department.

Keywords: acute kidney injury, emergencies, multiple trauma, rhabdomyolysis

Procedia PDF Downloads 339
4514 The Strong Interactions among the Protons

Authors: Yin Rui, Yin Ming, Yang Wang

Abstract:

This paper presents empirical evidence validating the Lorentz transformation of rotational frames for both inside critical cylinder (ICC) and outside critical cylinder (OCC) configurations, as well as the corresponding transformations of associated physical quantities. These transformations have been applied to derive the electromagnetic field parameters of a spinning charged particle. In our analysis of a two-proton system, we have not only uncovered strong interactions that are 238 times stronger than the electrostatic force but also elucidated the mechanisms underlying its stability and self-sustainable nature. This strong interaction manifests exclusively at distances on the order of 〖10〗^(-15)meters, consistent with the known range of the strong nuclear force. Furthermore, we have extended our analysis to multi-proton systems, specifically examining configurations containing four to seven protons. For these more complex systems, we have derived the strong interaction forces, providing insights into the nuclear dynamics of larger atomic nuclei. Our findings offer a more comprehensive understanding of the nature of strong interactions among protons. This work may have significant implications for advancing our knowledge of nuclear structure and stability and could potentially bridge the gap between electromagnetic and strong nuclear forces within a unified theoretical framework.

Keywords: special relativity, Lorentz transformation, strong interactions, particle spin

Procedia PDF Downloads 8
4513 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables

Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner

Abstract:

High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)

Keywords: eigenvalues, multiple-input multiple-output, quantum graph, random matrix theory, transmission line

Procedia PDF Downloads 173
4512 Contactless and Multiple Space Debris Removal by Micro to Nanno Satellites

Authors: Junichiro Kawaguchi

Abstract:

Space debris problems have emerged and threatened the use of low earth orbit around the Earth owing to a large number of spacecraft. In debris removal, a number of research and patents have been proposed and published so far. They assume servicing spacecraft, robots to be built for accessing the target debris objects. The robots should be sophisticated enough automatically to access the debris articulating the attitude and the translation motion with respect to the debris. This paper presents the idea of using the torpedo-like third unsophisticated and disposable body, in addition to the first body of the servicing robot and the second body of the target debris. The third body is launched from the first body from a distance farer than the size of the second body. This paper presents the method and the system, so that the third body is launched from the first body. The third body carries both a net and an inflatable or extendible drag deceleration device and is built small and light. This method enables even a micro to nano satellite to perform contactless and multiple debris removal even via a single flight.

Keywords: ballute, debris removal, echo satellite, gossamer, gun-net, inflatable space structure, small satellite, un-cooperated target

Procedia PDF Downloads 121
4511 Performance Comparison and Visualization of COMSOL Multiphysics, Matlab, and Fortran for Predicting the Reservoir Pressure on Oil Production in a Multiple Leases Reservoir with Boundary Element Method

Authors: N. Alias, W. Z. W. Muhammad, M. N. M. Ibrahim, M. Mohamed, H. F. S. Saipol, U. N. Z. Ariffin, N. A. Zakaria, M. S. Z. Suardi

Abstract:

This paper presents the performance comparison of some computation software for solving the boundary element method (BEM). BEM formulation is the numerical technique and high potential for solving the advance mathematical modeling to predict the production of oil well in arbitrarily shaped based on multiple leases reservoir. The limitation of data validation for ensuring that a program meets the accuracy of the mathematical modeling is considered as the research motivation of this paper. Thus, based on this limitation, there are three steps involved to validate the accuracy of the oil production simulation process. In the first step, identify the mathematical modeling based on partial differential equation (PDE) with Poisson-elliptic type to perform the BEM discretization. In the second step, implement the simulation of the 2D BEM discretization using COMSOL Multiphysic and MATLAB programming languages. In the last step, analyze the numerical performance indicators for both programming languages by using the validation of Fortran programming. The performance comparisons of numerical analysis are investigated in terms of percentage error, comparison graph and 2D visualization of pressure on oil production of multiple leases reservoir. According to the performance comparison, the structured programming in Fortran programming is the alternative software for implementing the accurate numerical simulation of BEM. As a conclusion, high-level language for numerical computation and numerical performance evaluation are satisfied to prove that Fortran is well suited for capturing the visualization of the production of oil well in arbitrarily shaped.

Keywords: performance comparison, 2D visualization, COMSOL multiphysic, MATLAB, Fortran, modelling and simulation, boundary element method, reservoir pressure

Procedia PDF Downloads 491
4510 Operation Strategy of Multi-Energy Storage System Considering Power System Reliability

Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim

Abstract:

As the penetration of Energy Storage System (ESS) increases in the power system due to higher performance and lower cost than ever, ESS is expanding its role to the ancillary service as well as the storage of extra energy from the intermittent renewable energy resources. For multi-ESS with different capacity and SOC level each other, it is required to make the optimal schedule of SOC level use the multi-ESS effectively. This paper proposes the energy allocation method for the multiple battery ESS with reliability constraint, in order to make the ESS discharge the required energy as long as possible. A simple but effective method is proposed in this paper, to satisfy the power for the spinning reserve requirement while improving the system reliability. Modelling of ESS is also proposed, and reliability is evaluated by using the combined reliability model which includes the proposed ESS model and conventional generation one. In the case study, it can be observed that the required power is distributed to each ESS adequately and accordingly, the SOC is scheduled to improve the reliability indices such as Loss of Load Probability (LOLP) and Loss of Load Expectation (LOLE).

Keywords: multiple energy storage system (MESS), energy allocation method, SOC schedule, reliability constraints

Procedia PDF Downloads 368
4509 Factors Influencing the Use Intention of Unmanned Retail Stores

Authors: Yen-Ting Chiu, Chia-Ying Lin, Pei-Hsuan Ho

Abstract:

New technologies can help solve the problem of labor shortage and the decline of birthrate. Technologies can improve human’s life and reduce the burden on the staff and bring convenience to people. That’s why unmanned retail store X-Store was established in Taiwan to create more valuable services and shopping experiences based on smart retailing. The purpose of this study is to examine the impact of unmanned stores, X-Store, on customers’ behavioral intentions. It uses the Unified theory of acceptance and use of technology (UTAUT) model as a basis and adds a perceived value factor to explain customer willingness to use the X-Store. In addition, the study further divided the sample into gender and age groups to compare behavioral differences between different groups. The study collected 214 valid questionnaires through online questionnaires. Using SPSS as a statistical analysis tool, the results of the study show that effort expectancy, social influence, facilitating conditions, and perceived value have a significant impact on behavioral intention to use X-Store. However, performance expectancy is not significant. This research concludes with managerial implications and suggestions for retail practitioners.

Keywords: perceived value, smart retailing, unmanned store, UTAUT, X-Store

Procedia PDF Downloads 90
4508 An Industrial Workplace Alerting and Monitoring Platform to Prevent Workplace Injury and Accidents

Authors: Sanjay Adhikesaven

Abstract:

Workplace accidents are a critical problem that causes many deaths, injuries, and financial losses. Climate change has a severe impact on industrial workers, partially caused by global warming. To reduce such casualties, it is important to proactively find unsafe environments where injuries could occur by detecting the use of personal protective equipment (PPE) and identifying unsafe activities. Thus, we propose an industrial workplace alerting and monitoring platform to detect PPE use and classify unsafe activity in group settings involving multiple humans and objects over a long period of time. Our proposed method is the first to analyze prolonged actions involving multiple people or objects. It benefits from combining pose estimation with PPE detection in one platform. Additionally, we propose the first open-source annotated data set with video data from industrial workplaces annotated with the action classifications and detected PPE. The proposed system can be implemented within the surveillance cameras already present in industrial settings, making it a practical and effective solution.

Keywords: computer vision, deep learning, workplace safety, automation

Procedia PDF Downloads 103
4507 Multiple-Material Flow Control in Construction Supply Chain with External Storage Site

Authors: Fatmah Almathkour

Abstract:

Managing and controlling the construction supply chain (CSC) are very important components of effective construction project execution. The goals of managing the CSC are to reduce uncertainty and optimize the performance of a construction project by improving efficiency and reducing project costs. The heart of much SC activity is addressing risk, and the CSC is no different. The delivery and consumption of construction materials is highly variable due to the complexity of construction operations, rapidly changing demand for certain components, lead time variability from suppliers, transportation time variability, and disruptions at the job site. Current notions of managing and controlling CSC, involve focusing on one project at a time with a push-based material ordering system based on the initial construction schedule and, then, holding a tremendous amount of inventory. A two-stage methodology was proposed to coordinate the feed-forward control of advanced order placement with a supplier to a feedback local control in the form of adding the ability to transship materials between projects to improve efficiency and reduce costs. It focused on the single supplier integrated production and transshipment problem with multiple products. The methodology is used as a design tool for the CSC because it includes an external storage site not associated with one of the projects. The idea is to add this feature to a highly constrained environment to explore its effectiveness in buffering the impact of variability and maintaining project schedule at low cost. The methodology uses deterministic optimization models with objectives that minimizing the total cost of the CSC. To illustrate how this methodology can be used in practice and the types of information that can be gleaned, it is tested on a number of cases based on the real example of multiple construction projects in Kuwait.

Keywords: construction supply chain, inventory control supply chain, transshipment

Procedia PDF Downloads 122
4506 Multi-source Question Answering Framework Using Transformers for Attribute Extraction

Authors: Prashanth Pillai, Purnaprajna Mangsuli

Abstract:

Oil exploration and production companies invest considerable time and efforts to extract essential well attributes (like well status, surface, and target coordinates, wellbore depths, event timelines, etc.) from unstructured data sources like technical reports, which are often non-standardized, multimodal, and highly domain-specific by nature. It is also important to consider the context when extracting attribute values from reports that contain information on multiple wells/wellbores. Moreover, semantically similar information may often be depicted in different data syntax representations across multiple pages and document sources. We propose a hierarchical multi-source fact extraction workflow based on a deep learning framework to extract essential well attributes at scale. An information retrieval module based on the transformer architecture was used to rank relevant pages in a document source utilizing the page image embeddings and semantic text embeddings. A question answering framework utilizingLayoutLM transformer was used to extract attribute-value pairs incorporating the text semantics and layout information from top relevant pages in a document. To better handle context while dealing with multi-well reports, we incorporate a dynamic query generation module to resolve ambiguities. The extracted attribute information from various pages and documents are standardized to a common representation using a parser module to facilitate information comparison and aggregation. Finally, we use a probabilistic approach to fuse information extracted from multiple sources into a coherent well record. The applicability of the proposed approach and related performance was studied on several real-life well technical reports.

Keywords: natural language processing, deep learning, transformers, information retrieval

Procedia PDF Downloads 193
4505 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling

Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow

Abstract:

Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.

Keywords: dynamic modeling, missing data, mobility, multiple imputation

Procedia PDF Downloads 164
4504 Project Paulina: A Human-Machine Interface for Individuals with Limited Mobility and Conclusions from Research and Development

Authors: Radoslaw Nagay

Abstract:

The Paulina Project aims to address the challenges faced by immobilized individuals, such as those with multiple sclerosis, muscle dystrophy, or spinal cord injuries, by developing a flexible hardware and software solution. This paper presents the research and development efforts of our team, which commenced in 2019 and is now in its final stage. Recognizing the diverse needs and limitations of individuals with limited mobility, we conducted in-depth testing with a group of 30 participants. The insights gained from these tests led to the complete redesign of the system. Our presentation covers the initial project ideas, observations from in-situ tests, and the newly developed system that is currently under construction. Moreover, in response to the financial constraints faced by many disabled individuals, we propose an affordable business model for the future commercialization of our invention. Through the Paulina Project, we strive to empower immobilized individuals, providing them with greater independence and improved quality of life.

Keywords: UI, human-machine interface, social inclusion, multiple sclerosis, muscular dystrophy, spinal cord injury, quadriplegic

Procedia PDF Downloads 70
4503 Image Classification with Localization Using Convolutional Neural Networks

Authors: Bhuyain Mobarok Hossain

Abstract:

Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).

Keywords: image classification, object detection, localization, particle filter

Procedia PDF Downloads 305
4502 The Co-Simulation Interface SystemC/Matlab Applied in JPEG and SDR Application

Authors: Walid Hassairi, Moncef Bousselmi, Mohamed Abid

Abstract:

Functional verification is a major part of today’s system design task. Several approaches are available for verification on a high abstraction level, where designs are often modeled using MATLAB/Simulink. However, different approaches are a barrier to a unified verification flow. In this paper, we propose a co-simulation interface between SystemC and MATLAB and Simulink to enable functional verification of multi-abstraction levels designs. The resulting verification flow is tested on JPEG compression algorithm. The required synchronization of both simulation environments, as well as data type conversion is solved using the proposed co-simulation flow. We divided into two encoder jpeg parts. First implemented in SystemC which is the DCT is representing the HW part. Second, consisted of quantization and entropy encoding which is implemented in Matlab is the SW part. For communication and synchronization between these two parts we use S-Function and engine in Simulink matlab. With this research premise, this study introduces a new implementation of a Hardware SystemC of DCT. We compare the result of our simulation compared to SW / SW. We observe a reduction in simulation time you have 88.15% in JPEG and the design efficiency of the supply design is 90% in SDR.

Keywords: hardware/software, co-design, co-simulation, systemc, matlab, s-function, communication, synchronization

Procedia PDF Downloads 405
4501 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 290
4500 Digital Activism and the Individual: A Utilitarian Perspective

Authors: Tania Mitra

Abstract:

Digital Activism or Cyber Activism uses digital media as a means to disseminate information and mobilize masses towards a specific goal. When digital activism was first born in the early 1990s, it was primarily used by groups of organized political activists. However, with the advent of social media, online activism has filtered down to the individual- one who does not necessarily belong to or identify with an agenda, group, or political party. A large part of digital activism today stems from the individual’s notion of what is right and wrong. This gives rise to a discourse around descriptive ethics and the implications of the independent digital activist. Although digital activism has paved the way for and bolstered support for causes like the MeToo Movement and Black Lives Matter, the lack of a unified, organized body has led to counterintuitive progressions and suspicions regarding the movements. The paper introduces the ideas of 'clout' culture, click baits, and clicktivism (the phenomenon where activism is reduced to a blind following of the online trends), to discuss the impacts of exclusive digital activism. By using Jeremy Bentham's utilitarian approach to ethics, that places emphasis on the best possible outcome for a society, the paper will show how individual online activism reaching for a larger, more common end can sometimes lead to an undermining of that end, not only in the online space but also how it manifests in the real world.

Keywords: digital activism, ethics, independent digital activist, utilitarianism

Procedia PDF Downloads 125
4499 Study on Multi-Point Stretch Forming Process for Double Curved Surface

Authors: Jiwoo Park, Junseok Yoon, Jeong Kim, Beomsoo Kang

Abstract:

Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal.

Keywords: multi-point stretch forming, double curved surface, numerical simulation, manufacturing

Procedia PDF Downloads 481
4498 Bag of Words Representation Based on Fusing Two Color Local Descriptors and Building Multiple Dictionaries

Authors: Fatma Abdedayem

Abstract:

We propose an extension to the famous method called Bag of words (BOW) which proved a successful role in the field of image categorization. Practically, this method based on representing image with visual words. In this work, firstly, we extract features from images using Spatial Pyramid Representation (SPR) and two dissimilar color descriptors which are opponent-SIFT and transformed-color-SIFT. Secondly, we fuse color local features by joining the two histograms coming from these descriptors. Thirdly, after collecting of all features, we generate multi-dictionaries coming from n random feature subsets that obtained by dividing all features into n random groups. Then, by using these dictionaries separately each image can be represented by n histograms which are lately concatenated horizontally and form the final histogram, that allows to combine Multiple Dictionaries (MDBoW). In the final step, in order to classify image we have applied Support Vector Machine (SVM) on the generated histograms. Experimentally, we have used two dissimilar image datasets in order to test our proposition: Caltech 256 and PASCAL VOC 2007.

Keywords: bag of words (BOW), color descriptors, multi-dictionaries, MDBoW

Procedia PDF Downloads 297
4497 Scene Classification Using Hierarchy Neural Network, Directed Acyclic Graph Structure, and Label Relations

Authors: Po-Jen Chen, Jian-Jiun Ding, Hung-Wei Hsu, Chien-Yao Wang, Jia-Ching Wang

Abstract:

A more accurate scene classification algorithm using label relations and the hierarchy neural network was developed in this work. In many classification algorithms, it is assumed that the labels are mutually exclusive. This assumption is true in some specific problems, however, for scene classification, the assumption is not reasonable. Because there are a variety of objects with a photo image, it is more practical to assign multiple labels for an image. In this paper, two label relations, which are exclusive relation and hierarchical relation, were adopted in the classification process to achieve more accurate multiple label classification results. Moreover, the hierarchy neural network (hierarchy NN) is applied to classify the image and the directed acyclic graph structure is used for predicting a more reasonable result which obey exclusive and hierarchical relations. Simulations show that, with these techniques, a much more accurate scene classification result can be achieved.

Keywords: convolutional neural network, label relation, hierarchy neural network, scene classification

Procedia PDF Downloads 459