Search results for: protein structure classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11770

Search results for: protein structure classification

11230 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation

Procedia PDF Downloads 235
11229 Modification of Four Layer through the Thickness Woven Structure for Improved Impact Resistance

Authors: Muhammad Liaqat, Hafiz Abdul Samad, Syed Talha Ali Hamdani, Yasir Nawab

Abstract:

In the current research, the four layers, orthogonal through the thickness, 2D woven, 3D fabric structure was modified to improve the impact resistance of 3D fabric reinforced composites. This was achieved by imparting the auxeticity into four layers through the thickness woven structure. A comparison was made between the standard and modified four layers through the thickness woven structure in terms of auxeticity, penetration and impact resistance. It was found that the modified structure showed auxeticity in both warp and weft direction. It was also found that the penetration resistance of modified sample was less as compared to the standard structure, but impact resistance was improved up to 6.7% of modified four layers through the thickness woven structure.

Keywords: 2D woven, 3D fabrics, auxetic, impact resistance, orthogonal through the thickness

Procedia PDF Downloads 337
11228 Auto Classification of Multiple ECG Arrhythmic Detection via Machine Learning Techniques: A Review

Authors: Ng Liang Shen, Hau Yuan Wen

Abstract:

Arrhythmia analysis of ECG signal plays a major role in diagnosing most of the cardiac diseases. Therefore, a single arrhythmia detection of an electrocardiographic (ECG) record can determine multiple pattern of various algorithms and match accordingly each ECG beats based on Machine Learning supervised learning. These researchers used different features and classification methods to classify different arrhythmia types. A major problem in these studies is the fact that the symptoms of the disease do not show all the time in the ECG record. Hence, a successful diagnosis might require the manual investigation of several hours of ECG records. The point of this paper presents investigations cardiovascular ailment in Electrocardiogram (ECG) Signals for Cardiac Arrhythmia utilizing examination of ECG irregular wave frames via heart beat as correspond arrhythmia which with Machine Learning Pattern Recognition.

Keywords: electrocardiogram, ECG, classification, machine learning, pattern recognition, detection, QRS

Procedia PDF Downloads 376
11227 Siderophore Receptor Protein from Klebsiella pneumoniae as a Promising Immunogen for Serotype-Independent Therapeutic Lead Development

Authors: Sweta Pandey, Samridhi Dhyani, Susmita Chaudhuri

Abstract:

Klebsiella pneumoniae causes a wide range of infections, including urinary tract infections, sepsis, bacteremia, pneumonia, and liver abscesses. The emergence of multi-drug resistance in this bacterium led to a major setback for clinical management. WHO also endorsed a need for finding alternative therapy to antibiotics for the treatment of these infections. Development of vaccines and passive antibody therapy has been proven as a potent alternative to antibiotics in the case of MDR, XDR, and PDR Klebsiella infections. Siderophore receptors have been demonstrated to be overexpressed for the internalization of iron siderophore complexes during infections in most Gram-negative bacteria. For the present study, immune response to siderophore receptors to establish this protein as a potential immunogen for the development of therapeutic leads was explored. Clinical strains of Klebsiella pneumoniae were grown in iron-deficient conditions, and the iron-regulated outer membrane proteins were extracted and characterized through mass spectrometry for specific identification. The gene for identified protein was cloned in pET- 28a vector and expressed in E. coli. The native protein and the recombinant protein were isolated and purified and used as antigens for the generation of immune response in BALB/c mice. The native protein of Klebsiella pneumoniae grown in iron-deficient conditions was identified as FepA (Ferrienterobactin receptor) and other siderophore receptors. This 80 kDa protein generated an immune response in BALB/c mice. The antiserum from mice after subsequent booster doses was collected and showed binding with FepA protein in western blot and phagocytic uptake of the K. pneumoniae in the presence antiserum from immunized mice also observed from the animal studies after bacterial challenge post immunisation in mice have shown bacterial clearance. The antiserum from mice showed binding and clearance of the Klebsiella pneumoniae bacteria in vitro and in vivo. These antigens used for generating an active immune response in mice can further be used for therapeutic monoclonal antibody development against Klebsiella pneumoniae infections.

Keywords: antiserum, FepA, Klebsiella pneumoniae, multi drug resistance, siderophore receptor

Procedia PDF Downloads 102
11226 Land Use/Land Cover Mapping Using Landsat 8 and Sentinel-2 in a Mediterranean Landscape

Authors: Moschos Vogiatzis, K. Perakis

Abstract:

Spatial-explicit and up-to-date land use/land cover information is fundamental for spatial planning, land management, sustainable development, and sound decision-making. In the last decade, many satellite-derived land cover products at different spatial, spectral, and temporal resolutions have been developed, such as the European Copernicus Land Cover product. However, more efficient and detailed information for land use/land cover is required at the regional or local scale. A typical Mediterranean basin with a complex landscape comprised of various forest types, crops, artificial surfaces, and wetlands was selected to test and develop our approach. In this study, we investigate the improvement of Copernicus Land Cover product (CLC2018) using Landsat 8 and Sentinel-2 pixel-based classification based on all available existing geospatial data (Forest Maps, LPIS, Natura2000 habitats, cadastral parcels, etc.). We examined and compared the performance of the Random Forest classifier for land use/land cover mapping. In total, 10 land use/land cover categories were recognized in Landsat 8 and 11 in Sentinel-2A. A comparison of the overall classification accuracies for 2018 shows that Landsat 8 classification accuracy was slightly higher than Sentinel-2A (82,99% vs. 80,30%). We concluded that the main land use/land cover types of CLC2018, even within a heterogeneous area, can be successfully mapped and updated according to CLC nomenclature. Future research should be oriented toward integrating spatiotemporal information from seasonal bands and spectral indexes in the classification process.

Keywords: classification, land use/land cover, mapping, random forest

Procedia PDF Downloads 125
11225 Terrain Classification for Ground Robots Based on Acoustic Features

Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow

Abstract:

The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.

Keywords: acoustic features, autonomous robots, feature extraction, terrain classification

Procedia PDF Downloads 368
11224 The Implementation of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications

Authors: Mohamed R. Mhereeg

Abstract:

The paper discusses the implementation of the MultiAgent classification System (MACS) and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies, which are the .NET widows service based agents, the Windows Communication Foundation (WCF) services, the Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). Microsoft's .NET windows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW. The Monitoring Agents (MAs) were configured to execute automatically to monitor excel spreadsheets development activities by content. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent (DUA) residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers.

Keywords: MACS, implementation, multi-agent, SOA, autonomous, WCF

Procedia PDF Downloads 274
11223 Analysis of Nitrogenase Fe Protein Activity in Transplastomic Tobacco

Authors: Jose A. Aznar-Moreno, Xi Jiang, Stefan Burén, Luis M. Rubio

Abstract:

Integration of prokaryotic nitrogen fixation (nif) genes into the plastid genome for expression of functional nitrogenase components could render plants capable of assimilating atmospheric N2 making their crops less dependent of nitrogen fertilizers. The nitrogenase Fe protein component (NifH) has been used as proxy for expression and targeting of Nif proteins within plant and yeast cells. Here we use tobacco plants with the Azotobacter vinelandii nifH and nifM genes integrated into the plastid genome. NifH and its maturase NifM were constitutively produced in leaves, but not roots, during light and dark periods. Nif protein expression in transplastomic plants was stable throughout development. Chloroplast NifH was soluble, but it only showed in vitro activity when isolated from leaves collected at the end of the dark period. Exposing the plant extracts to elevated temperatures precipitated NifM and apo-NifH protein devoid of [Fe4S4] clusters, dramatically increasing the specific activity of remaining NifH protein. Our data indicate that the chloroplast endogenous [Fe-S] cluster biosynthesis was insufficient for complete NifH maturation, albeit a negative effect on NifH maturation due to excess NifM in the chloroplast cannot be excluded. NifH and NifM constitutive expression in transplastomic plants did not affect any of the following traits: seed size, germination time, germination ratio, seedling growth, emergence of the cotyledon and first leaves, chlorophyll content and plant height throughout development.

Keywords: NifH, chloroplast, nitrogen fixation, crop improvement, transplastomic plants, fertilizer, biotechnology

Procedia PDF Downloads 162
11222 Role of Biomaterial Surface Nanotopography on Protein Unfolding and Immune Response

Authors: Rahul Madathiparambil Visalakshan, Alex Cavallaro, John Hayball, Krasimir Vasilev

Abstract:

The role of biomaterial surface nanotopograhy on fibrinogen adsorption and unfolding, and the subsequent immune response were studied. Inconsistent topography and varying chemical functionalities along with a lack of reproducibility pose a challenge in determining the specific effects of nanotopography or chemistry on proteins and cells. It is important to have a well-defined nanotopography with a homogeneous chemistry to study the real effect of nanotopography on biological systems. Therefore, we developed a technique that can produce well-defined and highly reproducible topography to identify the role of specific roughness, size, height and density with the presence of homogeneous chemical functionality. Using plasma polymerisation of oxazoline monomers and immobilized gold nanoparticles we created surfaces with an equal number density of nanoparticles of different sizes. This surface was used to study the role of surface nanotopography and the interplay of surface chemistry on proteins and immune cells. The effect of nanotopography on fibrinogen adsorption was investigated using Quartz Cristal Microbalance with Dissipation and micro BCA. The mass of fibrinogen adsorbed on the surface increased with increasing size of nano-topography. Protein structural changes up on adsorption to the nano rough surface was studied using circular dichroism spectroscopy. Fibrinogen unfolding varied depending on the specific nanotopography of the surfaces. It was revealed that the in vitro immune response to the nanotopography surfaces changed due to this protein unfolding.

Keywords: biomaterial inflammation, protein and cell responses, protein unfolding, surface nanotopography

Procedia PDF Downloads 175
11221 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques

Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart

Abstract:

Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.

Keywords: machine learning, text classification, NLP techniques, semantic representation

Procedia PDF Downloads 100
11220 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 86
11219 Effects of Different Food Matrices on Viscosity and Protein Degradation during in vitro Digestion

Authors: Gulay Oncu Ince, Sibel Karakaya

Abstract:

Food is a worldwide concern. Among the factors that have influences on human health, food, nutrition and life style have been regarded as the most important factors since they can be intervened. While some parts of the world has been faced with food shortages and hence, chronic metabolic diseases, the other part of the world have been emerged from over consumption of food. Both situations can result in shorter life expectancy and represent a major global health problem. Hunger, satiety and appetite sensation form a balance ensures the operation of feeding behavior between food intake and energy consumption. Satiety is one of the approaches that is effective in ensuring weight control and avoid eating more in the postprandial period. By manipulating the microstructure of food macro and micronutrient bioavailability may be increased or reduced. For the food industry appearance, texture, taste structural properties as well as the gastrointestinal tract behavior of the food after the consumption is becoming increasingly important. Also, this behavior has been the subject of several researches in recent years by the scientific community. Numerous studies have been published about changing the food matrix in order to increase expected impacts. In this study, yogurts were enriched with caseinomacropeptide (CMP), whey protein (WP), CMP and sodium alginate (SA), and WP + SA in order to produce goat yogurts having different food matrices. SDS Page profiles of the samples after in vitro digestion and viscosities of the stomach digesta at different share rates were determined. Energy values were 62.11kcal/100 g, 70.27 kcal/100 g, 70.61 kcal/100 g, 71.20 kcal/100 g and 71.67 kcal/100 g for control, CMP added WP added, WP + SA added, and CMP + SA added yogurts respectively. The results of viscosity analysis showed that control yogurt had the lowest viscosity value and this was followed by CMP added, WP added, CMP + SA added and WP + SA added yogurts, respectively. Protein contents of the stomach and duedonal digests of the samples after subjected to two different in vitro digestion methods were changed between 5.34-5.91 mg protein / g sample and 16.93-19.75 mg protein /g of sample, respectively. Viscosity measurements of the stomach digests showed that CMP + SA added yogurt displayed the highest viscosity value in both in vitro digestion methods. There were differences between the protein profiles of the stomach and duedonal digests obtained by two different in vitro digestion methods (p<0.05).

Keywords: caseinomacropeptide, protein profile, whey protein, yogurt

Procedia PDF Downloads 489
11218 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification

Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro

Abstract:

Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.

Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification

Procedia PDF Downloads 116
11217 A Deep Learning Approach to Subsection Identification in Electronic Health Records

Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan

Abstract:

Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.

Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification

Procedia PDF Downloads 217
11216 The Combination of Porcine Plasma Protein and Maltodextrin as Wall Materials on Microencapsulated Turmeric Oil Powder Quality

Authors: Namfon Samsalee, Rungsinee Sothornvit

Abstract:

Turmeric is a natural plant herb and generally extracted as essential oil and widely used in food, cosmetic, pharmaceutical products including insect repellent. However, turmeric oil is a volatile essential oil which is easy to be lost during storage or exposure to light. Therefore, biopolymers such as protein and polysaccharide can be used as wall materials to encapsulate the essential oil which will solve this drawback. Approximately 60% plasma from porcine blood contains 6-7% of protein content mainly albumin and globulin which can be a good source of animal protein at the low-cost biopolymer from by-product. Microencapsulation is a useful technique to entrap volatile compounds in the biopolymer matrix and protect them to degrade. The objective of this research was to investigate the different ratios of two biopolymers (PPP and maltodextrin; MD) as wall materials at 100:0, 75:25, 50:50, 25:75 and 0:100 at a fixed ratio of wall material: core material (turmeric oil) at 3:1 (oil in water) on the qualities of microencapsulated powder using freeze drying. It was found that the combination of PPP and MD showed higher solubility of microencapsules compared to the use of PPP alone (P < 0.05). Moreover, the different ratios of wall materials also affected on color (L*, a* and b*) of microencapsulated powder. Morphology of microencapsulated powder using a scanning electron microscope showed holes on the surface reflecting on free oil content and encapsulation efficiency of microencapsules. At least 50% of MD was needed to increase encapsulation efficiency of microencapsulates rather than using only PPP as the wall material (P < 0.05). Microencapsulated turmeric oil powder can be useful as food additives to improve food texture, as a biopolymer material for edible film and coating to maintain quality of food products.

Keywords: microencapsulation, turmeric oil, porcine plasma protein, maltodextrin

Procedia PDF Downloads 185
11215 Comparative Analysis of Spectral Estimation Methods for Brain-Computer Interfaces

Authors: Rafik Djemili, Hocine Bourouba, M. C. Amara Korba

Abstract:

In this paper, we present a method in order to classify EEG signals for Brain-Computer Interfaces (BCI). EEG signals are first processed by means of spectral estimation methods to derive reliable features before classification step. Spectral estimation methods used are standard periodogram and the periodogram calculated by the Welch method; both methods are compared with Logarithm of Band Power (logBP) features. In the method proposed, we apply Linear Discriminant Analysis (LDA) followed by Support Vector Machine (SVM). Classification accuracy reached could be as high as 85%, which proves the effectiveness of classification of EEG signals based BCI using spectral methods.

Keywords: brain-computer interface, motor imagery, electroencephalogram, linear discriminant analysis, support vector machine

Procedia PDF Downloads 499
11214 Formulation and Nutrition Analysis of Low-Sugar Snack Bars

Authors: S. Kongtun-Janphuk, S. Niwitpong Jr., J. Saengsai

Abstract:

Low-sugar snack bars were formulated with 3 main formulas depending on the main ingredient, which were peanut-green bean-sesame, apple, and prune. The most acceptable formula of each group was obtained by sensory evaluation using a nine-point hedonic scale. The moisture content, total ash, protein, fat and fiber were analyzed by the standard methods of AOAC. The peanut-mung bean-sesame snack bar showed the highest protein content (88.32%) and total fat (0.48%) with the lowest of fiber content (0.01%) while the prune formula showed the lowest protein content (71.91%) and total fat (0.21%) with the highest of fiber content (0.03%). This result indicated that the prune formula could be used as diet food to assist in weight loss program.

Keywords: low-sugar snack bar, diet food, nutrition analysis, food formulation

Procedia PDF Downloads 397
11213 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 64
11212 Obstacle Classification Method Based on 2D LIDAR Database

Authors: Moohyun Lee, Soojung Hur, Yongwan Park

Abstract:

In this paper is proposed a method uses only LIDAR system to classification an obstacle and determine its type by establishing database for classifying obstacles based on LIDAR. The existing LIDAR system, in determining the recognition of obstruction in an autonomous vehicle, has an advantage in terms of accuracy and shorter recognition time. However, it was difficult to determine the type of obstacle and therefore accurate path planning based on the type of obstacle was not possible. In order to overcome this problem, a method of classifying obstacle type based on existing LIDAR and using the width of obstacle materials was proposed. However, width measurement was not sufficient to improve accuracy. In this research, the width data was used to do the first classification; database for LIDAR intensity data by four major obstacle materials on the road were created; comparison is made to the LIDAR intensity data of actual obstacle materials; and determine the obstacle type by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that data declined in quality in comparison to 3D LIDAR and it was possible to classify obstacle materials using 2D LIDAR.

Keywords: obstacle, classification, database, LIDAR, segmentation, intensity

Procedia PDF Downloads 349
11211 Mitigating the Aggregation of Human Islet Amyloid Polypeptide with Nanomaterials

Authors: Ava Faridi, Pouya Faridi, Aleksandr Kakinen, Ibrahim Javed, Thomas P. Davis, Pu Chun Ke

Abstract:

Human islet amyloid polypeptide (IAPP) is a hormone associated with glycemic control and type 2 diabetes. Biophysically, the chirality of IAPP fibrils has been little explored with respect to the aggregation and toxicity of the peptide. Biochemically, it remains unclear as for how protein expression in pancreatic beta cells may be altered by cell exposure to the peptide, and how such changes may be mitigated by nanoparticle inhibitors for IAPP aggregation. In this study, we first demonstrated the elimination of the IAPP nucleation phase and shortening of its elongation phase by silica nanoribbons. This accelerated IAPP fibrillization translated to reduced toxicity, especially for the right-handed silica nanoribbons, as revealed by cell viability, helium ion microscopy, as well as zebrafish embryo survival, developmental and behavioral assays. We then examined the proteomes of βTC6 pancreatic beta cells exposed to the three main aggregation states of monomeric, oligomeric and amyloid fibrillar IAPP, and compared that with cellular protein expression modulated by graphene quantum dots (GQDs). A total of 29 proteins were significantly regulated by different forms of IAPP, and the majority of these proteins were nucleotide-binding proteins. A regulatory capacity of GQDs against aberrant protein expression was confirmed. These studies have demonstrated the great potential of employing nanomaterials targeting the mesoscopic enantioselectivity and protein expression dysregulation in pancreatic beta cells.

Keywords: graphene quantum dots, IAPP, silica nanoribbons, protein expression, toxicity

Procedia PDF Downloads 142
11210 Performance Analysis with the Combination of Visualization and Classification Technique for Medical Chatbot

Authors: Shajida M., Sakthiyadharshini N. P., Kamalesh S., Aswitha B.

Abstract:

Natural Language Processing (NLP) continues to play a strategic part in complaint discovery and medicine discovery during the current epidemic. This abstract provides an overview of performance analysis with a combination of visualization and classification techniques of NLP for a medical chatbot. Sentiment analysis is an important aspect of NLP that is used to determine the emotional tone behind a piece of text. This technique has been applied to various domains, including medical chatbots. In this, we have compared the combination of the decision tree with heatmap and Naïve Bayes with Word Cloud. The performance of the chatbot was evaluated using accuracy, and the results indicate that the combination of visualization and classification techniques significantly improves the chatbot's performance.

Keywords: sentimental analysis, NLP, medical chatbot, decision tree, heatmap, naïve bayes, word cloud

Procedia PDF Downloads 73
11209 Metamorphic Computer Virus Classification Using Hidden Markov Model

Authors: Babak Bashari Rad

Abstract:

A metamorphic computer virus uses different code transformation techniques to mutate its body in duplicated instances. Characteristics and function of new instances are mostly similar to their parents, but they cannot be easily detected by the majority of antivirus in market, as they depend on string signature-based detection techniques. The purpose of this research is to propose a Hidden Markov Model for classification of metamorphic viruses in executable files. In the proposed solution, portable executable files are inspected to extract the instructions opcodes needed for the examination of code. A Hidden Markov Model trained on portable executable files is employed to classify the metamorphic viruses of the same family. The proposed model is able to generate and recognize common statistical features of mutated code. The model has been evaluated by examining the model on a test data set. The performance of the model has been practically tested and evaluated based on False Positive Rate, Detection Rate and Overall Accuracy. The result showed an acceptable performance with high average of 99.7% Detection Rate.

Keywords: malware classification, computer virus classification, metamorphic virus, metamorphic malware, Hidden Markov Model

Procedia PDF Downloads 315
11208 Improving Binding Selectivity in Molecularly Imprinted Polymers from Templates of Higher Biomolecular Weight: An Application in Cancer Targeting and Drug Delivery

Authors: Ben Otange, Wolfgang Parak, Florian Schulz, Michael Alexander Rubhausen

Abstract:

The feasibility of extending the usage of molecular imprinting technique in complex biomolecules is demonstrated in this research. This technique is promising in diverse applications in areas such as drug delivery, diagnosis of diseases, catalysts, and impurities detection as well as treatment of various complications. While molecularly imprinted polymers MIP remain robust in the synthesis of molecules with remarkable binding sites that have high affinities to specific molecules of interest, extending the usage to complex biomolecules remains futile. This work reports on the successful synthesis of MIP from complex proteins: BSA, Transferrin, and MUC1. We show in this research that despite the heterogeneous binding sites and higher conformational flexibility of the chosen proteins, relying on their respective epitopes and motifs rather than the whole template produces highly sensitive and selective MIPs for specific molecular binding. Introduction: Proteins are vital in most biological processes, ranging from cell structure and structural integrity to complex functions such as transport and immunity in biological systems. Unlike other imprinting templates, proteins have heterogeneous binding sites in their complex long-chain structure, which makes their imprinting to be marred by challenges. In addressing this challenge, our attention is inclined toward the targeted delivery, which will use molecular imprinting on the particle surface so that these particles may recognize overexpressed proteins on the target cells. Our goal is thus to make surfaces of nanoparticles that specifically bind to the target cells. Results and Discussions: Using epitopes of BSA and MUC1 proteins and motifs with conserved receptors of transferrin as the respective templates for MIPs, significant improvement in the MIP sensitivity to the binding of complex protein templates was noted. Through the Fluorescence Correlation Spectroscopy FCS measurements on the size of protein corona after incubation of the synthesized nanoparticles with proteins, we noted a high affinity of MIPs to the binding of their respective complex proteins. In addition, quantitative analysis of hard corona using SDS-PAGE showed that only a specific protein was strongly bound on the respective MIPs when incubated with similar concentrations of the protein mixture. Conclusion: Our findings have shown that the merits of MIPs can be extended to complex molecules of higher biomolecular mass. As such, the unique merits of the technique, including high sensitivity and selectivity, relative ease of synthesis, production of materials with higher physical robustness, and higher stability, can be extended to more templates that were previously not suitable candidates despite their abundance and usage within the body.

Keywords: molecularly imprinted polymers, specific binding, drug delivery, high biomolecular mass-templates

Procedia PDF Downloads 55
11207 Comparison of the Effectiveness of Neisseria gonorrhea Crude Protein Injections with Intravenous, Intracutaneous, and Subcutaneous

Authors: Annisa Amalina, Lintang Sekar Sari, Khairunnisa Salsabila, Astya Gema Ramadhan, M. Fatkhi, Andani Eka Putra

Abstract:

Gonorrhea is one of the sexually transmitted diseases by genito-genital, oro-genital and anogenital. Gonorrhea disease will cause complications if not treated properly. The diagnostic tool that has been used nowadays is microscopic. Thus a rapid diagnostic tool for gonorrhea is required, using polyclonal antibodies. The purpose of this study was to determine the effectiveness of injections of intravenous, subcutaneous and intracutaneous crude protein gonorrhea. The research method used in this research is experimental explorative. This research was conducted in Molecular Microbiology Laboratory of Faculty of Medicine, Andalas University for 3 months from April to June 2017. This study used 3 groups of rabbit with intravenous, subcutaneous, and intracutaneous injections. Each group was treated on days 1, 7, 21, and 28 with crude protein injection. After that, the examination of antibody levels held by using ELISA, followed by the antibody comparative tests contained in all three groups. The results examined by One Way ANOVA test on SPSS 21 and showed that there is no significant difference between intravenous, subcutaneous, and intracutaneous use p=0.69 (p < 0.05). However, there is an increased level (0.047 to 1.171) in antibodies from day 1 to day 14. In addition, subcutaneous use is preferred because it has minimal side effects compared to intravenous and intracutaneous use.

Keywords: crude protein, Neisseria gonorrhea, polyclonal antibodies, subcutaneous

Procedia PDF Downloads 160
11206 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification

Authors: Xiao Chen, Xiaoying Kong, Min Xu

Abstract:

This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.

Keywords: vehicle classification, signal processing, road traffic model, magnetic sensing

Procedia PDF Downloads 320
11205 Morroniside Intervention Mechanism of Renal Lesions, a Combination Model of AGEs Exacerbation of STZ-Induced Diabetes Mellitus

Authors: Hui-Qin Xu, Xing Lv, Yu-Han Tao

Abstract:

The depth study aimed on the mechanism of morroniside in protecting diabetic nephropathy. The diabetic mice models with blood glucose above 15mmol/L were divided into model, aminoguanidine, metformin, captopril, morroniside low-dose, and morroniside high-dose groups. And normal group was set simultaneously. All groups were fed with high AGEs food except normal group. Each group was intragastric administration of the corresponding medicine except model and normal groups. After 12 weeks, all the indictors were measured. It showed that the morroniside could reduce blood glucose significantly, urinary protein, serum urea nitrogen, creatine, pathological changes, AGEs levels, renal cortex RAGE mRNA and RAGE protein expression levels; increase food consumption, water intake, urine volume, insulin secretion. As a conclusion, morroniside from cornus officinalis can protect renal in diabetic mice, its mechanism may be related to the proliferation of islet cells, rectify glycometabolism, reduce serum and kidney AGEs content, and descend renal RAGEmRNA and RAGE protein expression levels.

Keywords: cornus officinalis, diabetic nephropathy, morroniside, RAGE protein

Procedia PDF Downloads 450
11204 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study

Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar

Abstract:

Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.

Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices

Procedia PDF Downloads 507
11203 Study of the Chronic Effects of CRACK on Some Biochemical Parameters Including Triglycerides, Cholesterol, HDL, LDL, VLDL, Amylase, Lipase, Albumin, Protein in Rat

Authors: Alireza Jafarzadeh, Bahram Amu-Oqhli Tabrizi, Hadi Khayat Nouri, Arash Khaki

Abstract:

30 head of adult Vistar rats were chosen to evaluate the chronic narcotic effects of crack on some biochemical parameters. The rats weighted approximately 200 to 250 g. They were divided into 5 groups of 6 and were housed in identical condition in terms of food and ambience. Rats were maintained at 12 hours light and 12 hours darkness. Rats were injected 7.8 mg/kg BW crack intraperitoneally. The groups one to four received daily medication for one to four weeks respectively. The control groups were injected identical dose of saline. The blood was taken from control and test groups then serum was separated from. Serum biochemical parameters of amylase, lipase, triglycerides, cholesterol, HDL, LDL, VLDL, protein and albumin were measured by diagnostic kits. Serum protein and albumin levels did not show statistically significant changes. Serum lipase and amylase showed significant changes both of which were increased. The serum levels of cholesterol, LDL and HDL demonstrated no significant changes. Triglycerides values showed a significant increase in serum. Serum VLDL in groups 3 and 4 exhibited significant changes compare to other groups.

Keywords: albumin, amylase, cholesterol, crack, HDL, LDL, lipase, protein, rat, triglycerides, VLDL

Procedia PDF Downloads 698
11202 MSIpred: A Python 2 Package for the Classification of Tumor Microsatellite Instability from Tumor Mutation Annotation Data Using a Support Vector Machine

Authors: Chen Wang, Chun Liang

Abstract:

Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite (MS) length due to a deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types and its status can be considered as an important indicator for tumor prognostic. Conventional clinical diagnosis of MSI examines PCR products of a panel of MS markers using electrophoresis (MSI-PCR) which is laborious, time consuming, and less reliable. MSIpred, a python 2 package for automatic classification of MSI was released by this study. It computes important somatic mutation features from files in mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, subsequently using these to predict tumor MSI status with a support vector machine (SVM) classifier trained by MAF files of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent 358-tumor test set achieved overall accuracy of over 98% and area under receiver operating characteristic (ROC) curve of 0.967. These results indicated that MSIpred is a robust pan-cancer MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.

Keywords: microsatellite instability, pan-cancer classification, somatic mutation, support vector machine

Procedia PDF Downloads 173
11201 The Effect of Feature Selection on Pattern Classification

Authors: Chih-Fong Tsai, Ya-Han Hu

Abstract:

The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.

Keywords: data mining, feature selection, pattern classification, dimensionality reduction

Procedia PDF Downloads 669