Search results for: heat exchangers modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6675

Search results for: heat exchangers modeling

1035 The Effects of Cooling during Baseball Games on Perceived Exertion and Core Temperature

Authors: Chih-Yang Liao

Abstract:

Baseball is usually played outdoors in the warmest months of the year. Therefore, baseball players are susceptible to the influence of the hot environment. It has been shown that hitting performance is increased in games played in warm weather, compared to in cold weather, in Major League Baseball. Intermittent cooling during sporting events can prevent the risk of hyperthermia and increase endurance performance. However, the effects of cooling during baseball games played in a hot environment are unclear. This study adopted a cross-over design. Ten Division I collegiate male baseball players in Taiwan volunteered to participate in this study. Each player played two simulated baseball games, with one day in between. Five of the players received intermittent cooling during the first simulated game, while the other five players received intermittent cooling during the second simulated game. The participants were covered in neck and forehand regions for 6 min with towels that were soaked in icy salt water 3 to 4 times during the games. The participants received the cooling treatment in the dugout when they were not on the field for defense or hitting. During the 2 simulated games, the temperature was 31.1-34.1°C and humidity was 58.2-61.8%, with no difference between the two games. Ratings of perceived exertion, thermal sensation, tympanic and forehead skin temperature immediately after each defensive half-inning and after cooling treatments were recorded. Ratings of perceived exertion were measured using the Borg 10-point scale. The thermal sensation was measured with a 6-point scale. The tympanic and skin temperature was measured with infrared thermometers. The data were analyzed with a two-way analysis of variance with repeated measurement. The results showed that intermitted cooling significantly reduced ratings of perceived exertion and thermal sensation. Forehead skin temperature was also significantly decreased after cooling treatments. However, the tympanic temperature was not significantly different between the two trials. In conclusion, intermittent cooling in the neck and forehead regions was effective in alleviating the perceived exertion and heat sensation. However, this cooling intervention did not affect the core temperature. Whether intermittent cooling has any impact on hitting or pitching performance in baseball players warrants further investigation.

Keywords: baseball, cooling, ratings of perceived exertion, thermal sensation

Procedia PDF Downloads 143
1034 Two-Level Separation of High Air Conditioner Consumers and Demand Response Potential Estimation Based on Set Point Change

Authors: Mehdi Naserian, Mohammad Jooshaki, Mahmud Fotuhi-Firuzabad, Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee

Abstract:

In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a recent solution is presented to uncover consumers with high air conditioner demand among large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.

Keywords: communication infrastructure, smart meters, power systems, HVAC system, residential HVAC systems

Procedia PDF Downloads 66
1033 Biophysical Study of the Interaction of Harmalol with Nucleic Acids of Different Motifs: Spectroscopic and Calorimetric Approaches

Authors: Kakali Bhadra

Abstract:

Binding of small molecules to DNA and recently to RNA, continues to attract considerable attention for developing effective therapeutic agents for control of gene expression. This work focuses towards understanding interaction of harmalol, a dihydro beta-carboline alkaloid, with different nucleic acid motifs viz. double stranded CT DNA, single stranded A-form poly(A), double-stranded A-form of poly(C)·poly(G) and clover leaf tRNAphe by different spectroscopic, calorimetric and molecular modeling techniques. Results of this study converge to suggest that (i) binding constant varied in the order of CT DNA > poly(C)·poly(G) > tRNAphe > poly(A), (ii) non-cooperative binding of harmalol to poly(C)·poly(G) and poly(A) and cooperative binding with CT DNA and tRNAphe, (iii) significant structural changes of CT DNA, poly(C)·poly(G) and tRNAphe with concomitant induction of optical activity in the bound achiral alkaloid molecules, while with poly(A) no intrinsic CD perturbation was observed, (iv) the binding was predominantly exothermic, enthalpy driven, entropy favoured with CT DNA and poly(C)·poly(G) while it was entropy driven with tRNAphe and poly(A), (v) a hydrophobic contribution and comparatively large role of non-polyelectrolytic forces to Gibbs energy changes with CT DNA, poly(C)·poly(G) and tRNAphe, and (vi) intercalated state of harmalol with CT DNA and poly(C)·poly(G) structure as revealed from molecular docking and supported by the viscometric data. Furthermore, with competition dialysis assay it was shown that harmalol prefers hetero GC sequences. All these findings unequivocally pointed out that harmalol prefers binding with ds CT DNA followed by ds poly(C)·poly(G), clover leaf tRNAphe and least with ss poly(A). The results highlight the importance of structural elements in these natural beta-carboline alkaloids in stabilizing different DNA and RNA of various motifs for developing nucleic acid based better therapeutic agents.

Keywords: calorimetry, docking, DNA/RNA-alkaloid interaction, harmalol, spectroscopy

Procedia PDF Downloads 228
1032 Laser - Ultrasonic Method for the Measurement of Residual Stresses in Metals

Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya

Abstract:

The theoretical analysis is carried out to get the relation between the ultrasonic wave velocity and the value of residual stresses. The laser-ultrasonic method is developed to evaluate the residual stresses and subsurface defects in metals. The method is based on the laser thermooptical excitation of longitudinal ultrasonic wave sand their detection by a broadband piezoelectric detector. A laser pulse with the time duration of 8 ns of the full width at half of maximum and with the energy of 300 µJ is absorbed in a thin layer of the special generator that is inclined relative to the object under study. The non-uniform heating of the generator causes the formation of a broadband powerful pulse of longitudinal ultrasonic waves. It is shown that the temporal profile of this pulse is the convolution of the temporal envelope of the laser pulse and the profile of the in-depth distribution of the heat sources. The ultrasonic waves reach the surface of the object through the prism that serves as an acoustic duct. At the interface ‚laser-ultrasonic transducer-object‘ the conversion of the most part of the longitudinal wave energy takes place into the shear, subsurface longitudinal and Rayleigh waves. They spread within the subsurface layer of the studied object and are detected by the piezoelectric detector. The electrical signal that corresponds to the detected acoustic signal is acquired by an analog-to-digital converter and when is mathematically processed and visualized with a personal computer. The distance between the generator and the piezodetector as well as the spread times of acoustic waves in the acoustic ducts are the characteristic parameters of the laser-ultrasonic transducer and are determined using the calibration samples. There lative precision of the measurement of the velocity of longitudinal ultrasonic waves is 0.05% that corresponds to approximately ±3 m/s for the steels of conventional quality. This precision allows one to determine the mechanical stress in the steel samples with the minimal detection threshold of approximately 22.7 MPa. The results are presented for the measured dependencies of the velocity of longitudinal ultrasonic waves in the samples on the values of the applied compression stress in the range of 20-100 MPa.

Keywords: laser-ultrasonic method, longitudinal ultrasonic waves, metals, residual stresses

Procedia PDF Downloads 325
1031 Examining the Structural Model of Mindfulness and Headache Intensity With the Mediation of Resilience and Perfectionism in Migraine Patients

Authors: Alireza Monzavi Chaleshtari, Mahnaz Aliakbari Dehkordi, Nazila Esmaeili, Ahmad Alipour, Amin Asadi Hieh

Abstract:

Headache disorders are one of the most common disorders of the nervous system and are associated with suffering, disability, and financial costs for patients. Mindfulness as a lifestyle, in line with human nature, has the ability to affect the emotional system, i.e. thoughts, body sensations, raw emotions and action impulses of people. The aim of this study was to test the fit of structural model of mindfulness and severity of headache mediated by resilience and perfectionism in patients with migraine. Methods: The statistical population of this study included all patients with migraine referred to neurologists in Tehran in the spring and summer of 1401. The inclusion criteria were diagnosis of migraine by a neurologist, not having mental disorders or other physical diseases, and having at least a diploma. According to the number of research variables, 180 people were selected by convenience sampling method, which online answered the Ahvaz perfectionism questionnaire (AMQ), Connor and Davidson resilience questionnaire (CD-RISC), Ahvaz migraine headache questionnaire (APS) and 5-factor mindfulness questionnaire ((MAAS). Data were analyzed using structural equation modeling and Amos software. Results: The results showed that the direct pathways of mindfulness were not significant for severe headache (P <0.05), but other direct pathways - mindfulness to resilience, mindfulness to perfectionism, resilience to severe headache and perfectionism to severe headache), Was significant (P <0.01). After modifying and removing the non-significant paths, the final model fitted. Mediating variables Resilience and perfectionism mediated all paths of predictor variables to the criterion. Conclusion: According to the findings of the present study, mindfulness in migraine patients reduces the severity of headache by promoting resilience and reducing perfectionism.

Keywords: migraine, headache severity, mindfulness, resilience, perfectionism

Procedia PDF Downloads 79
1030 Study of the Uncertainty Behaviour for the Specific Total Enthalpy of the Hypersonic Plasma Wind Tunnel Scirocco at Italian Aerospace Research Center

Authors: Adolfo Martucci, Iulian Mihai

Abstract:

By means of the expansion through a Conical Nozzle and the low pressure inside the Test Chamber, a large hypersonic stable flow takes place for a duration of up to 30 minutes. Downstream the Test Chamber, the diffuser has the function of reducing the flow velocity to subsonic values, and as a consequence, the temperature increases again. In order to cool down the flow, a heat exchanger is present at the end of the diffuser. The Vacuum System generates the necessary vacuum conditions for the correct hypersonic flow generation, and the DeNOx system, which follows the Vacuum System, reduces the nitrogen oxide concentrations created inside the plasma flow behind the limits imposed by Italian law. This very large, powerful, and complex facility allows researchers and engineers to reproduce entire re-entry trajectories of space vehicles into the atmosphere. One of the most important parameters for a hypersonic flowfield representative of re-entry conditions is the specific total enthalpy. This is the whole energy content of the fluid, and it represents how severe could be the conditions around a spacecraft re-entering from a space mission or, in our case, inside a hypersonic wind tunnel. It is possible to reach very high values of enthalpy (up to 45 MJ/kg) that, together with the large allowable size of the models, represent huge possibilities for making on-ground experiments regarding the atmospheric re-entry field. The maximum nozzle exit section diameter is 1950 mm, where values of Mach number very much higher than 1 can be reached. The specific total enthalpy is evaluated by means of a number of measurements, each of them concurring with its value and its uncertainty. The scope of the present paper is the evaluation of the sensibility of the uncertainty of the specific total enthalpy versus all the parameters and measurements involved. The sensors that, if improved, could give the highest advantages have so been individuated. Several simulations in Python with the METAS library and by means of Monte Carlo simulations are presented together with the obtained results and discussions about them.

Keywords: hypersonic, uncertainty, enthalpy, simulations

Procedia PDF Downloads 97
1029 Functional Connectivity Signatures of Polygenic Depression Risk in Youth

Authors: Louise Moles, Steve Riley, Sarah D. Lichenstein, Marzieh Babaeianjelodar, Robert Kohler, Annie Cheng, Corey Horien Abigail Greene, Wenjing Luo, Jonathan Ahern, Bohan Xu, Yize Zhao, Chun Chieh Fan, R. Todd Constable, Sarah W. Yip

Abstract:

Background: Risks for depression are myriad and include both genetic and brain-based factors. However, relationships between these systems are poorly understood, limiting understanding of disease etiology, particularly at the developmental level. Methods: We use a data-driven machine learning approach connectome-based predictive modeling (CPM) to identify functional connectivity signatures associated with polygenic risk scores for depression (DEP-PRS) among youth from the Adolescent Brain and Cognitive Development (ABCD) study across diverse brain states, i.e., during resting state, during affective working memory, during response inhibition, during reward processing. Results: Using 10-fold cross-validation with 100 iterations and permutation testing, CPM identified connectivity signatures of DEP-PRS across all examined brain states (rho’s=0.20-0.27, p’s<.001). Across brain states, DEP-PRS was positively predicted by increased connectivity between frontoparietal and salience networks, increased motor-sensory network connectivity, decreased salience to subcortical connectivity, and decreased subcortical to motor-sensory connectivity. Subsampling analyses demonstrated that model accuracies were robust across random subsamples of N’s=1,000, N’s=500, and N’s=250 but became unstable at N’s=100. Conclusions: These data, for the first time, identify neural networks of polygenic depression risk in a large sample of youth before the onset of significant clinical impairment. Identified networks may be considered potential treatment targets or vulnerability markers for depression risk.

Keywords: genetics, functional connectivity, pre-adolescents, depression

Procedia PDF Downloads 58
1028 Optimizing University Administration in a Globalized World: Leveraging AI and ICT for Enhanced Governance and Sustainability in Higher Education

Authors: Ikechukwu Ogeze Ukeje, Chinyere Ori Elom, Chukwudum Collins Umoke

Abstract:

This study explores the challenges in the integration of Artificial Intelligence (AI) and Information and Communication Technology (ICT) practices in enhancing governance and sustainable solution modeling in higher education, focusing on Alex Ekwueme Federal University Ndufu-Alike (AE-FUNAI), Nigeria. In the context of a developing country like Nigeria, leveraging AI and ICT tools presents a unique opportunity to improve teaching, learning, administrative processes, and governance. The research aims to evaluate how AI and ICT technologies can contribute to sustainable educational practices, enhance decision-making processes, and improve engagement among key stakeholders: students, lecturers, and administrative staff. Students are involved to provide insights into their interactions with AI and ICT tools, particularly in learning and participation in governance. Lecturers’ perspectives will offer a view into how these technologies influence teaching, research, and curriculum development. Administrative staff will provide a crucial understanding of how AI and ICT tools can streamline operations, support data-driven governance, and enhance institutional efficiency. This study will use a mixed-method approach to collect both qualitative and quantitative data. The finding of this study is geared towards shaping the future of education in Nigeria and beyond by developing an Inclusive AI-governance Integration Framework (I-AIGiF) for enhanced performance in the system. Examining the roles of these stakeholder groups, this research could guide the development of policies for more effective AI and ICT integration, leading to sustainable educational innovation and governance.

Keywords: university administration, AI, higher education governance, education sustainability, ICT challenges

Procedia PDF Downloads 19
1027 The Role of Social Capital and Dynamic Capabilities in a Circular Economy: Evidence from German Small and Medium-Sized Enterprises

Authors: Antonia Hoffmann, Andrea Stübner

Abstract:

Resource scarcity and rising material prices are forcing companies to rethink their business models. The conventional linear system of economic growth and rising social needs further exacerbates the problem of resource scarcity. Therefore, it is necessary to separate economic growth from resource consumption. This can be achieved through the circular economy (CE), which focuses on sustainable product life cycles. However, companies face challenges in implementing CE into their businesses. Small and medium-sized enterprises are particularly affected by these problems, as they have a limited resource base. Collaboration and social interaction between different actors can help to overcome these obstacles. Based on a self-generated sample of 1,023 German small and medium-sized enterprises, we use a questionnaire to investigate the influence of social capital and its three dimensions - structural, relational, and cognitive capital - on the implementation of CE and the mediating effect of dynamic capabilities in explaining these relationships. Using regression analyses and structural equation modeling, we find that social capital is positively associated with CE implementation and dynamic capabilities partially mediate this relationship. Interestingly, our findings suggest that not all social capital dimensions are equally important for CE implementation. We theoretically and empirically explore the network forms of social capital and extend the CE literature by suggesting that dynamic capabilities help organizations leverage social capital to drive the implementation of CE practices. The findings of this study allow us to suggest several implications for managers and institutions. From a practical perspective, our study contributes to building circular production and service capabilities in small and medium-sized enterprises. Various CE activities can transform products and services to contribute to a better and more responsible world.

Keywords: circular economy, dynamic capabilities, SMEs, social capital

Procedia PDF Downloads 82
1026 Investigation of Nucleation and Thermal Conductivity of Waxy Crude Oil on Pipe Wall via Particle Dynamics

Authors: Jinchen Cao, Tiantian Du

Abstract:

As waxy crude oil is easy to crystallization and deposition in the pipeline wall, it causes pipeline clogging and leads to the reduction of oil and gas gathering and transmission efficiency. In this paper, a mesoscopic scale dissipative particle dynamics method is employed, and constructed four pipe wall models, including smooth wall (SW), hydroxylated wall (HW), rough wall (RW), and single-layer graphene wall (GW). Snapshots of the simulation output trajectories show that paraffin molecules interact with each other to form a network structure that constrains water molecules as their nucleation sites. Meanwhile, it is observed that the paraffin molecules on the near-wall side are adsorbed horizontally between inter-lattice gaps of the solid wall. In the pressure range of 0 - 50 MPa, the pressure change has less effect on the affinity properties of SS, HS, and GS walls, but for RS walls, the contact angle between paraffin wax and water molecules was found to decrease with the increase in pressure, while the water molecules showed the opposite trend, the phenomenon is due to the change in pressure, leading to the transition of paraffin wax molecules from amorphous to crystalline state. Meanwhile, the minimum crystalline phase pressure (MCPP) was proposed to describe the lowest pressure at which crystallization of paraffin molecules occurs. The maximum number of crystalline clusters formed by paraffin molecules at MCPP in the system showed NSS (0.52 MPa) > NHS (0.55 MPa) > NRS (0.62 MPa) > NGS (0.75 MPa). The MCPP on the graphene surface, with the least number of clusters formed, indicates that the addition of graphene inhibited the crystallization process of paraffin deposition on the wall surface. Finally, the thermal conductivity was calculated, and the results show that on the near-wall side, the thermal conductivity changes drastically due to the occurrence of adsorption crystallization of paraffin waxes; on the fluid side the thermal conductivity gradually tends to stabilize, and the average thermal conductivity shows: ĸRS(0.254W/(m·K)) > ĸRS(0.249W/(m·K)) > ĸRS(0.218W/(m·K)) > ĸRS(0.188W/(m·K)).This study provides a theoretical basis for improving the transport efficiency and heat transfer characteristics of waxy crude oil in terms of wall type, wall roughness, and MCPP.

Keywords: waxy crude oil, thermal conductivity, crystallization, dissipative particle dynamics, MCPP

Procedia PDF Downloads 72
1025 Gassing Tendency of Natural Ester Based Transformer oils: Low Alkane Generation in Stray Gassing Behaviour

Authors: Thummalapalli CSM Gupta, Banti Sidhiwala

Abstract:

Mineral oils of naphthenic and paraffinic type have been traditionally been used as insulating liquids in the transformer applications to protect the solid insulation from moisture and ensures effective heat transfer/cooling. The performance of these type of oils have been proven in the field over many decades and the condition monitoring and diagnosis of transformer performance have been successfully monitored through oil properties and dissolved gas analysis methods successfully. Different type of gases representing various types of faults due to components or operating conditions effectively. While large amount of data base has been generated in the industry on dissolved gas analysis for mineral oil based transformer oils and various models for predicting the fault and analysis, oil specifications and standards have also been modified to include stray gassing limits which cover the low temperature faults and becomes an effective preventative maintenance tool that can benefit greatly to know the reasons for the breakdown of electrical insulating materials and related components. Natural esters have seen a rise in popularity in recent years due to their "green" credentials. Some of its benefits include biodegradability, a higher fire point, improvement in load capability of transformer and improved solid insulation life than mineral oils. However, the Stray gases evolution like hydrogen and hydrocarbons like methane (CH4) and ethane (C2H6) show very high values which are much higher than the limits of mineral oil standards. Though the standards for these type esters are yet to be evolved, the higher values of hydrocarbon gases that are available in the market is of concern which might be interpreted as a fault in transformer operation. The current paper focuses on developing a natural ester based transformer oil which shows very levels of stray gassing by standard test methods show much lower values compared to the products available currently and experimental results on various test conditions and the underlying mechanism explained.

Keywords: biodegadability, fire point, dissolved gassing analysis, stray gassing

Procedia PDF Downloads 96
1024 Impact of Climate Change on Some Physiological Parameters of Cyclic Female Egyptian Buffalo

Authors: Nabil Abu-Heakal, Ismail Abo-Ghanema, Basma Hamed Merghani

Abstract:

The aim of this investigation is to study the effect of seasonal variations in Egypt on hematological parameters, reproductive and metabolic hormones of Egyptian buffalo-cows. This study lasted one year extending from December 2009 to November 2010 and was conducted on sixty buffalo-cows. Group of 5 buffalo-cows at estrus phase were selected monthly. Then, after blood sampling through tail vein puncture in the 2nd day after natural service, they were divided in two samples: one with anticoagulant for hematological analysis and the other without anticoagulant for serum separation. Results of this investigation revealed that the highest atmospheric temperature was in hot summer 32.61±1.12°C versus 26.18±1.67°C in spring and 19.92±0.70°C in winter season, while the highest relative humidity % was in winter season 43.50±1.60% versus 32.50±2.29% in summer season. The rise in temperature-humidity index from 63.73±1.29 in winter to 78.53±1.58 in summer indicates severe heat stress which is associated with significant reduction in total red blood cell count (3.20±0.15×106), hemoglobin concentration (8.83±0.43 g/dl), packed cell volume (30.73±0.12%), lymphocytes % (40.66±2.33 %), serum progesterone hormone concentration (0.56±0.03 ng/mll), estradiol17-B concentration (16.8±0.64 ng/ml), triiodothyronin (T3) concentration (2.33±0.33 ng/ml) and thyroxin hormone (T4) concentration (21.66±1.66 ng/ml), while hot summer resulted in significant increase in mean cell volume (96.55±2.25 fl), mean cell hemoglobin (30.81±1.33 pg), total white blood cell count (10.63±0.97×103), neutrophils % (49.66±2.33%), serum prolactin hormone (PRL) concentration (23.45±1.72 ng/ml) and cortisol hormone concentration (4.47±0.33 ng/ml) compared to winter season. There was no significant seasonal variation in mean cell hemoglobin concentration (MCHC). It was concluded that in Egypt there was a seasonal variation in atmospheric temperature, relative humidity, temperature humidity index (THI) and the rise in THI above the upper critical level (72 units), which, for lactating buffalo-cows in Egypt is the major constraint on buffalo-cows' hematological parameters and hormonal secretion that affects animal reproduction. Hence, we should improve climatic conditions inside the dairy farm to eliminate or reduce summer infertility.

Keywords: buffalo, climate change, Egypt, physiological parameters

Procedia PDF Downloads 660
1023 Purification and Characterization of a Novel Extracellular Chitinase from Bacillus licheniformis LHH100

Authors: Laribi-Habchi Hasiba, Bouanane-Darenfed Amel, Drouiche Nadjib, Pausse André, Mameri Nabil

Abstract:

Chitin, a linear 1, 4-linked N-acetyl-d-glucosamine (GlcNAc) polysaccharide is the major structural component of fungal cell walls, insect exoskeletons and shells of crustaceans. It is one of the most abundant naturally occurring polysaccharides and has attracted tremendous attention in the fields of agriculture, pharmacology and biotechnology. Each year, a vast amount of chitin waste is released from the aquatic food industry, where crustaceans (prawn, crab, Shrimp and lobster) constitute one of the main agricultural products. This creates a serious environmental problem. This linear polymer can be hydrolyzed by bases, acids or enzymes such as chitinase. In this context an extracellular chitinase (ChiA-65) was produced and purified from a newly isolated LHH100. Pure protein was obtained after heat treatment and ammonium sulphate precipitation followed by Sephacryl S-200 chromatography. Based on matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis, the purified enzyme is a monomer with a molecular mass of 65,195.13 Da. The sequence of the 27 N-terminal residues of the mature ChiA-65 showed high homology with family-18 chitinases. Optimal activity was achieved at pH 4 and 75◦C. Among the inhibitors and metals tested p-chloromercuribenzoic acid, N-ethylmaleimide, Hg2+ and Hg + completelyinhibited enzyme activity. Chitinase activity was high on colloidal chitin, glycol chitin, glycol chitosane, chitotriose and chitooligosaccharide. Chitinase activity towards synthetic substrates in the order of p-NP-(GlcNAc) n (n = 2–4) was p-NP-(GlcNAc)2> p-NP-(GlcNAc)4> p-NP-(GlcNAc)3. Our results suggest that ChiA-65 preferentially hydrolyzed the second glycosidic link from the non-reducing end of (GlcNAc) n. ChiA-65 obeyed Michaelis Menten kinetics the Km and kcat values being 0.385 mg, colloidal chitin/ml and5000 s−1, respectively. ChiA-65 exhibited remarkable biochemical properties suggesting that this enzyme is suitable for bioconversion of chitin waste.

Keywords: Bacillus licheniformis LHH100, characterization, extracellular chitinase, purification

Procedia PDF Downloads 437
1022 Analyzing the Influence of Principals’ Cultural Intelligence on Teachers’ Perceived Diversity Climate

Authors: Meghry Nazarian, Ibrahim Duyar

Abstract:

Effective management of a diverse workforce in the United Arab Emirates (UAE) presents peculiar importance as two-thirds of residents are expatriates who have diverse ethnic and cultural backgrounds. Like any other organization in the country, UAE schools have become upmost diverse settings in the world. The purpose of this study was to examine whether principals’ cultural intelligence has direct and indirect (moderating) influences on teachers’ perceived diversity climate. A quantitative causal-comparative research design was employed to analyze the data. Participants included random samples of principals and teachers working in the private and charter schools in the Emirate of Abu Dhabi. The data-gathering online questionnaires included previously developed and validated scales as the measures of study variables. More specifically, the multidimensional short-form measure of Cultural Intelligence (CQ) and the diversity climate scale were used to measure the study variables. Multivariate statistics, including the analysis of multivariate analysis of variance (MANCOVA) and structural equation modeling (SEM), were employed to examine the relationships between the study variables. The preliminary analyses of data showed that principals and teachers have differing views of diversity management and climate in schools. Findings also showed that principals’ cultural intelligence has both direct and moderating influences on teachers’ perceived diversity climate. The study findings are expected to inform policymakers and practicing educational leaders in addressing diversity management in a country where the majority of the residents are the minority who have diverse ethnic and cultural backgrounds.

Keywords: diversity management, united arab emirates, school principals’ cultural intelligence (CQ), teachers’ perceived diversity climate

Procedia PDF Downloads 112
1021 Racial and Ethnic Health Disparities: An Investigation of the Relationship between Race, Ethnicity, Health Care Access, and Health Status

Authors: Dorcas Matowe

Abstract:

Inequality in health care for racial and ethnic minorities continues to be a growing concern for many Americans. Some of the barriers hindering the elimination of health disparities include lack of insurance, socioeconomic status (SES), and racism. This study will specifically focus on the association between some of these factors- health care access, which includes insurance coverage and frequency of doctor visits, race, ethnicity, and health status. The purpose of this study will be to address the following questions: is having health insurance associated with increased doctor visits? Are racial and ethnic minorities with health insurance more or less likely to see a doctor? Is the association between having health insurance moderated by being an ethnic minority? Given the current implications of the 2010 Affordable Care Act, this study will highlight the need to prioritize health care access for minorities and confront institutional racism. Critical Race Theory (CRT) will demonstrate how racism has reinforced these health disparities. This quantitative study design will analyze secondary data from the 2015 Behavioral Risk Factor Surveillance System (BRFSS) questionnaire, a telephone survey conducted annually in all 50 states and three US territories by state health departments in conjunction with the Center for Disease Control (CDC). Non-identifying health-related data is gathered annually from over 400,000 adults 18 years and above about their health status and use of preventative services. Through Structural Equation Modeling (SEM), the relationship between the predictor variables of health care access, race, and ethnicity, the criterion variable of health status, and the latent variables of emotional support and life satisfaction will be examined. It is hypothesized that there will be an interaction between certain racial and ethnic minorities who went to see a doctor, had insurance coverage, experienced racism, and the quality of their health status, emotional support, and life satisfaction.

Keywords: ethnic minorities, health disparities, health access, racism

Procedia PDF Downloads 273
1020 Analysis of Extracellular Vesicles Interactomes of two Isoforms of Tau Protein via SHSY-5Y Cell Lines

Authors: Mohammad Aladwan

Abstract:

Alzheimer’s disease (AD) is a widespread dementing illness with a complex and poorly understood etiology. An important role in improving our understanding of the AD process is the modeling of disease-associated changes in tau protein phosphorylation, a protein known to mediate events essential to the onset and progression of AD. A main feature of AD is the abnormal phosphorylation of tau protein and the presence of neurofibrillary tangles. In order to evaluate the respective roles of the microtubule-binding region (MTBR) and alternatively spliced exons in the N-terminal projection domains in AD, we have constructed SHSY-5Y cell lines that stably overexpress four different species of tau protein (4R2N, 4R0N, N(E-2), N(E+2)). Since the toxicity and spreading of tau lesions in AD depends on the interactions of tau with other proteins, we have performed a proteomic analysis of exosome-fraction interactomes for cell lysates and media samples that were isolated from SHSY-5Y cell lines. Functional analysis of tau interactomes based on gene ontology (GO) terms was performed using the String 10.5 database program. The highest number of exosomes proteomes and tau associated proteins were found with 4R2N isoform (2771 and 159) in cell lysate and they have a high strength of connectivity (78%) between proteins, while N(E-2) isoform in the media proteomes has the highest number of proteins and tau associated protein (1829 and 205). Moreover, known AD markers were significantly enriched in secreted interactomes relative to lysate interactomes in the SHSY-5Y cells of tau isoforms lacking exons 2 and 3 in the N-terminal. The lack of exon 2 (E-2) from tau protein can be mediated by tau secretion and spreading to different cells. Enriched functions in the secreted E-2 interactome include signaling and developmental pathways that have been linked to a) tau misprocessing and lesion development and b) tau secretion and which, therefore, could play novel roles in AD pathogenesis.

Keywords: Alzheimer's disease, dementia, tau protein, neurodegenration disease

Procedia PDF Downloads 100
1019 Bus Transit Demand Modeling and Fare Structure Analysis of Kabul City

Authors: Ramin Mirzada, Takuya Maruyama

Abstract:

Kabul is the heart of political, commercial, cultural, educational and social life in Afghanistan and the fifth fastest growing city in the world. Minimum income inclined most of Kabul residents to use public transport, especially buses, although there is no proper bus system, beside that there is no proper fare exist in Kabul city Due to wars. From 1992 to 2001 during civil wars, Kabul suffered damage and destruction of its transportation facilities including pavements, sidewalks, traffic circles, drainage systems, traffic signs and signals, trolleybuses and almost all of the public transport system (e.g. Millie bus). This research is mainly focused on Kabul city’s transportation system. In this research, the data used have been gathered by Japan International Cooperation Agency (JICA) in 2008 and this data will be used to find demand and fare structure, additionally a survey was done in 2016 to find satisfaction level of Kabul residents for fare structure. Aim of this research is to observe the demand for Large Buses, compare to the actual supply from the government, analyze the current fare structure and compare it with the proposed fare (distance based fare) structure which has already been analyzed. Outcome of this research shows that the demand of Kabul city residents for the public transport (Large Buses) exceeds from the current supply, so that current public transportation (Large Buses) is not sufficient to serve public transport in Kabul city, worth to be mentioned, that in order to overcome this problem, there is no need to build new roads or exclusive way for buses. This research proposes government to change the fare from fixed fare to distance based fare, invest on public transportation and increase the number of large buses so that the current demand for public transport is met.

Keywords: transportation, planning, public transport, large buses, Kabul, Afghanistan

Procedia PDF Downloads 314
1018 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm

Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan

Abstract:

Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.

Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power

Procedia PDF Downloads 85
1017 Thermal Decomposition Behaviors of Hexafluoroethane (C2F6) Using Zeolite/Calcium Oxide Mixtures

Authors: Kazunori Takai, Weng Kaiwei, Sadao Araki, Hideki Yamamoto

Abstract:

HFC and PFC gases have been commonly and widely used as refrigerant of air conditioner and as etching agent of semiconductor manufacturing process, because of their higher heat of vaporization and chemical stability. On the other hand, HFCs and PFCs gases have the high global warming effect on the earth. Therefore, we have to be decomposed these gases emitted from chemical apparatus like as refrigerator. Until now, disposal of these gases were carried out by using combustion method like as Rotary kiln treatment mainly. However, this treatment needs extremely high temperature over 1000 °C. In the recent year, in order to reduce the energy consumption, a hydrolytic decomposition method using catalyst and plasma decomposition treatment have been attracted much attention as a new disposal treatment. However, the decomposition of fluorine-containing gases under the wet condition is not able to avoid the generation of hydrofluoric acid. Hydrofluoric acid is corrosive gas and it deteriorates catalysts in the decomposition process. Moreover, an additional process for the neutralization of hydrofluoric acid is also indispensable. In this study, the decomposition of C2F6 using zeolite and zeolite/CaO mixture as reactant was evaluated in the dry condition at 923 K. The effect of the chemical structure of zeolite on the decomposition reaction was confirmed by using H-Y, H-Beta, H-MOR and H-ZSM-5. The formation of CaF2 in zeolite/CaO mixtures after the decomposition reaction was confirmed by XRD measurements. The decomposition of C2F6 using zeolite as reactant showed the closely similar behaviors regardless the type of zeolite (MOR, Y, ZSM-5, Beta type). There was no difference of XRD patterns of each zeolite before and after reaction. On the other hand, the difference in the C2F6 decomposition for each zeolite/CaO mixtures was observed. These results suggested that the rate-determining process for the C2F6 decomposition on zeolite alone is the removal of fluorine from reactive site. In other words, the C2F6 decomposition for the zeolite/CaO improved compared with that for the zeolite alone by the removal of the fluorite from reactive site. HMOR/CaO showed 100% of the decomposition for 3.5 h and significantly improved from zeolite alone. On the other hand, Y type zeolite showed no improvement, that is, the almost same value of Y type zeolite alone. The descending order of C2F6 decomposition was MOR, ZSM-5, beta and Y type zeolite. This order is similar to the acid strength characterized by NH3-TPD. Hence, it is considered that the C-F bond cleavage is closely related to the acid strength.

Keywords: hexafluoroethane, zeolite, calcium oxide, decomposition

Procedia PDF Downloads 481
1016 Digital Fashion: An Integrated Approach to Additive Manufacturing in Wearable Fashion

Authors: Lingju Wu, Hao Hua

Abstract:

This paper presents a digital fashion production methodology and workflow based on fused deposition modeling additive manufacturing technology, as demonstrated through a 3D printed fashion show held at Southeast University in Nanjing, China. Unlike traditional fashion, 3D printed fashion allows for the creation of complex geometric shapes and unique structural designs, facilitating diverse reconfiguration and sustainable production of textile fabrics. The proposed methodology includes two components: morphogenesis and the 3D printing process. The morphogenesis part comprises digital design methods such as mesh deformation, structural reorganization, particle flow stretching, sheet partitioning, and spreading methods. The 3D printing process section includes three types of methods: sculptural objects, multi-material composite fabric, and self-forming composite fabrics. This paper focuses on multi-material composite fabrics and self-forming composite fabrics, both of which involve weaving fabrics with 3D-printed material sandwiches. Multi-material composite fabrics create specially tailored fabric from the original properties of the printing path and multiple materials, while self-forming fabrics apply pre-stress to the flat fabric and then print the sandwich, allowing the fabric's own elasticity to interact with the printed components and shape into a 3D state. The digital design method and workflow enable the integration of abstract sensual aesthetics and rational thinking, showcasing a digital aesthetic that challenges conventional handicraft workshops. Overall, this paper provides a comprehensive framework for the production of 3D-printed fashion, from concept to final product.

Keywords: digital fashion, composite fabric, self-forming structure, additive manufacturing, generating design

Procedia PDF Downloads 122
1015 Spatio-Temporal Analysis of Land Use Change and Green Cover Index

Authors: Poonam Sharma, Ankur Srivastav

Abstract:

Cities are complex and dynamic systems that constitute a significant challenge to urban planning. The increasing size of the built-up area owing to growing population pressure and economic growth have lead to massive Landuse/Landcover change resulted in the loss of natural habitat and thus reducing the green covers in urban areas. Urban environmental quality is influenced by several aspects, including its geographical configuration, the scale, and nature of human activities occurring and environmental impacts generated. Cities have transformed into complex and dynamic systems that constitute a significant challenge to urban planning. Cities and their sustainability are often discussed together as the cities stand confronted with numerous environmental concerns as the world becoming increasingly urbanized, and the cities are situated in the mesh of global networks in multiple senses. A rapid transformed urban setting plays a crucial role to change the green area of natural habitats. To examine the pattern of urban growth and to measure the Landuse/Landcover change in Gurgoan in Haryana, India through the integration of Geospatial technique is attempted in the research paper. Satellite images are used to measure the spatiotemporal changes that have occurred in the land use and land cover resulting into a new cityscape. It has been observed from the analysis that drastically evident changes in land use has occurred with the massive rise in built up areas and the decrease in green cover and therefore causing the sustainability of the city an important area of concern. The massive increase in built-up area has influenced the localised temperatures and heat concentration. To enhance the decision-making process in urban planning, a detailed and real world depiction of these urban spaces is the need of the hour. Monitoring indicators of key processes in land use and economic development are essential for evaluating policy measures.

Keywords: cityscape, geospatial techniques, green cover index, urban environmental quality, urban planning

Procedia PDF Downloads 277
1014 Objective-Based System Dynamics Modeling to Forecast the Number of Health Professionals in Pudong New Area of Shanghai

Authors: Jie Ji, Jing Xu, Yuehong Zhuang, Xiangqing Kang, Ying Qian, Ping Zhou, Di Xue

Abstract:

Background: In 2014, there were 28,341 health professionals in Pudong new area of Shanghai and the number per 1000 population was 5.199, 55.55% higher than that in 2006. But it was always less than the average number of health professionals per 1000 population in Shanghai from 2006 to 2014. Therefore, allocation planning for the health professionals in Pudong new area has become a high priority task in order to meet the future demands of health care. In this study, we constructed an objective-based system dynamics model to forecast the number of health professionals in Pudong new area of Shanghai in 2020. Methods: We collected the data from health statistics reports and previous survey of human resources in Pudong new area of Shanghai. Nine experts, who were from health administrative departments, public hospitals and community health service centers, were consulted to estimate the current and future status of nine variables used in the system dynamics model. Based on the objective of the number of health professionals per 1000 population (8.0) in Shanghai for 2020, the system dynamics model for health professionals in Pudong new area of Shanghai was constructed to forecast the number of health professionals needed in Pudong new area in 2020. Results: The system dynamics model for health professionals in Pudong new area of Shanghai was constructed. The model forecasted that there will be 37,330 health professionals (6.433 per 1000 population) in 2020. If the success rate of health professional recruitment changed from 20% to 70%, the number of health professionals per 1000 population would be changed from 5.269 to 6.919. If this rate changed from 20% to 70% and the success rate of building new beds changed from 5% to 30% at the same time, the number of health professionals per 1000 population would be changed from 5.269 to 6.923. Conclusions: The system dynamics model could be used to simulate and forecast the health professionals. But, if there were no significant changes in health policies and management system, the number of health professionals per 1000 population would not reach the objectives in Pudong new area in 2020.

Keywords: allocation planning, forecast, health professional, system dynamics

Procedia PDF Downloads 386
1013 Optimization of Assembly and Welding of Complex 3D Structures on the Base of Modeling with Use of Finite Elements Method

Authors: M. N. Zelenin, V. S. Mikhailov, R. P. Zhivotovsky

Abstract:

It is known that residual welding deformations give negative effect to processability and operational quality of welded structures, complicating their assembly and reducing strength. Therefore, selection of optimal technology, ensuring minimum welding deformations, is one of the main goals in developing a technology for manufacturing of welded structures. Through years, JSC SSTC has been developing a theory for estimation of welding deformations and practical activities for reducing and compensating such deformations during welding process. During long time a methodology was used, based on analytic dependence. This methodology allowed defining volumetric changes of metal due to welding heating and subsequent cooling. However, dependences for definition of structures deformations, arising as a result of volumetric changes of metal in the weld area, allowed performing calculations only for simple structures, such as units, flat sections and sections with small curvature. In case of complex 3D structures, estimations on the base of analytic dependences gave significant errors. To eliminate this shortage, it was suggested to use finite elements method for resolving of deformation problem. Here, one shall first calculate volumes of longitudinal and transversal shortenings of welding joints using method of analytic dependences and further, with obtained shortenings, calculate forces, which action is equivalent to the action of active welding stresses. Further, a finite-elements model of the structure is developed and equivalent forces are added to this model. Having results of calculations, an optimal sequence of assembly and welding is selected and special measures to reduce and compensate welding deformations are developed and taken.

Keywords: residual welding deformations, longitudinal and transverse shortenings of welding joints, method of analytic dependences, finite elements method

Procedia PDF Downloads 409
1012 Advanced Analysis on Dissemination of Pollutant Caused by Flaring System Effect Using Computational Fluid Dynamics (CFD) Fluent Model with WRF Model Input in Transition Season

Authors: Benedictus Asriparusa

Abstract:

In the area of the oil industry, there is accompanied by associated natural gas. The thing shows that a large amount of energy is being wasted mostly in the developing countries by contributing to the global warming process. This research represents an overview of methods in Minas area employed by these researchers in PT. Chevron Pacific Indonesia to determine ways of measuring and reducing gas flaring and its emission drastically. It provides an approximation includes analytical studies, numerical studies, modeling, computer simulations, etc. Flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process will release emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the air and environment around the industrial area. Therefore, we need a simulation to create the pattern of the dissemination of pollutant. This research paper has being made to see trends in gas flaring model and current developments to predict dominant variable which gives impact to dissemination of pollutant. Fluent models used to simulate the distribution of pollutant gas coming out of the stack. While WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. This study condition focused on transition season in 2012 at Minas area. The goal of the simulation is looking for the exact time which is most influence towards dissemination of pollutants. The most influence factor divided into two main subjects. It is the quickest wind and the slowest wind. According to the simulation results, it can be seen that quickest wind moves to horizontal way and slowest wind moves to vertical way.

Keywords: flaring system, fluent model, dissemination of pollutant, transition season

Procedia PDF Downloads 380
1011 Association Between Short-term NOx Exposure and Asthma Exacerbations in East London: A Time Series Regression Model

Authors: Hajar Hajmohammadi, Paul Pfeffer, Anna De Simoni, Jim Cole, Chris Griffiths, Sally Hull, Benjamin Heydecker

Abstract:

Background: There is strong interest in the relationship between short-term air pollution exposure and human health. Most studies in this field focus on serious health effects such as death or hospital admission, but air pollution exposure affects many people with less severe impacts, such as exacerbations of respiratory conditions. A lack of quantitative analysis and inconsistent findings suggest improved methodology is needed to understand these effectsmore fully. Method: We developed a time series regression model to quantify the relationship between daily NOₓ concentration and Asthma exacerbations requiring oral steroids from primary care settings. Explanatory variables include daily NOₓ concentration measurements extracted from 8 available background and roadside monitoring stations in east London and daily ambient temperature extracted for London City Airport, located in east London. Lags of NOx concentrations up to 21 days (3 weeks) were used in the model. The dependent variable was the daily number of oral steroid courses prescribed for GP registered patients with asthma in east London. A mixed distribution model was then fitted to the significant lags of the regression model. Result: Results of the time series modelling showed a significant relationship between NOₓconcentrations on each day and the number of oral steroid courses prescribed in the following three weeks. In addition, the model using only roadside stations performs better than the model with a mixture of roadside and background stations.

Keywords: air pollution, time series modeling, public health, road transport

Procedia PDF Downloads 142
1010 A Modelling Study of the Photochemical and Particulate Pollution Characteristics above a Typical Southeast Mediterranean Urban Area

Authors: Fameli Kyriaki-Maria, Assimakopoulos D. Vasiliki, Kotroni Vassiliki

Abstract:

The Greater Athens Area (GAA) faces photochemical and particulate pollution episodes as a result of the combined effects of local pollutant emissions, regional pollution transport, synoptic circulation and topographic characteristics. The area has undergone significant changes since the Athens 2004 Olympic Games because of large scale infrastructure works that lead to the shift of population to areas previously characterized as rural, the increase of the traffic fleet and the operation of highways. However, no recent modelling studies have been performed due to the lack of an accurate, updated emission inventory. The photochemical modelling system MM5/CAMx was applied in order to study the photochemical and particulate pollution characteristics above the GAA for two distinct ten-day periods in the summer of 2006 and 2010, where air pollution episodes occurred. A new updated emission inventory was used based on official data. Comparison of modeled results with measurements revealed the importance and accuracy of the new Athens emission inventory as compared to previous modeling studies. The model managed to reproduce the local meteorological conditions, the daily ozone and particulates fluctuations at different locations across the GAA. Higher ozone levels were found at suburban and rural areas as well as over the sea at the south of the basin. Concerning PM10, high concentrations were computed at the city centre and the southeastern suburbs in agreement with measured data. Source apportionment analysis showed that different sources contribute to the ozone levels, the local sources (traffic, port activities) affecting its formation.

Keywords: photochemical modelling, urban pollution, greater Athens area, MM5/CAMx

Procedia PDF Downloads 285
1009 Assessment of Air Quality Around Western Refinery in Libya: Mobile Monitoring

Authors: A. Elmethnani, A. Jroud

Abstract:

This coastal crude oil refinery is situated north of a big city west of Tripoli; the city then could be highly prone to downwind refinery emissions where the NNE wind direction is prevailing through most seasons of the year. Furthermore, due to the absence of an air quality monitoring network and scarce emission data available for the neighboring community, nearby residents have serious worries about the impacts of the oil refining operations on local air quality. In responding to these concerns, a short term survey has performed for three consecutive days where a semi-continues mobile monitoring approach has developed effectively in this study; the monitoring station (Compact AQM 65 AeroQual) was mounted on a vehicle to move quickly between locations, measurements of 10 minutes averaging of 60 seconds then been taken at each fixed sampling point. The downwind ambient concentration of CO, H₂S, NOₓ, NO₂, SO₂, PM₁, PM₂.₅ PM₁₀, and TSP were measured at carefully chosen sampling locations, ranging from 200m nearby the fence-line passing through the city center up to 4.7 km east to attain best spatial coverage. Results showed worrying levels of PM₂.₅ PM₁₀, and TSP at one sampling location in the city center, southeast of the refinery site, with an average mean of 16.395μg/m³, 33.021μg/m³, and 42.426μg/m³ respectively, which could be attributed to road traffic. No significant concentrations have been detected for other pollutants of interest over the study area, as levels observed for CO, SO₂, H₂S, NOₓ, and NO₂ haven’t respectively exceeded 1.707 ppm, 0.021ppm, 0.134 ppm, 0.4582 ppm, and 0.0018 ppm, which was at the same sampling locations as well. Although it wasn’t possible to compare the results with the Libyan air quality standards due to the difference in the averaging time period, the technique was adequate for the baseline air quality screening procedure. Overall, findings primarily suggest modeling of dispersion of the refinery emissions to assess the likely impact and spatial-temporal distribution of air pollutants.

Keywords: air quality, mobil monitoring, oil refinery

Procedia PDF Downloads 96
1008 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders

Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen

Abstract:

With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.

Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming

Procedia PDF Downloads 151
1007 Comparison Approach for Wind Resource Assessment to Determine Most Precise Approach

Authors: Tasir Khan, Ishfaq Ahmad, Yejuan Wang, Muhammad Salam

Abstract:

Distribution models of the wind speed data are essential to assess the potential wind speed energy because it decreases the uncertainty to estimate wind energy output. Therefore, before performing a detailed potential energy analysis, the precise distribution model for data relating to wind speed must be found. In this research, material from numerous criteria goodness-of-fits, such as Kolmogorov Simonov, Anderson Darling statistics, Chi-Square, root mean square error (RMSE), AIC and BIC were combined finally to determine the wind speed of the best-fitted distribution. The suggested method collectively makes each criterion. This method was useful in a circumstance to fitting 14 distribution models statistically with the data of wind speed together at four sites in Pakistan. The consequences show that this method provides the best source for selecting the most suitable wind speed statistical distribution. Also, the graphical representation is consistent with the analytical results. This research presents three estimation methods that can be used to calculate the different distributions used to estimate the wind. In the suggested MLM, MOM, and MLE the third-order moment used in the wind energy formula is a key function because it makes an important contribution to the precise estimate of wind energy. In order to prove the presence of the suggested MOM, it was compared with well-known estimation methods, such as the method of linear moment, and maximum likelihood estimate. In the relative analysis, given to several goodness-of-fit, the presentation of the considered techniques is estimated on the actual wind speed evaluated in different time periods. The results obtained show that MOM certainly provides a more precise estimation than other familiar approaches in terms of estimating wind energy based on the fourteen distributions. Therefore, MOM can be used as a better technique for assessing wind energy.

Keywords: wind-speed modeling, goodness of fit, maximum likelihood method, linear moment

Procedia PDF Downloads 84
1006 Digital Twin for Retail Store Security

Authors: Rishi Agarwal

Abstract:

Digital twins are emerging as a strong technology used to imitate and monitor physical objects digitally in real time across sectors. It is not only dealing with the digital space, but it is also actuating responses in the physical space in response to the digital space processing like storage, modeling, learning, simulation, and prediction. This paper explores the application of digital twins for enhancing physical security in retail stores. The retail sector still relies on outdated physical security practices like manual monitoring and metal detectors, which are insufficient for modern needs. There is a lack of real-time data and system integration, leading to ineffective emergency response and preventative measures. As retail automation increases, new digital frameworks must control safety without human intervention. To address this, the paper proposes implementing an intelligent digital twin framework. This collects diverse data streams from in-store sensors, surveillance, external sources, and customer devices and then Advanced analytics and simulations enable real-time monitoring, incident prediction, automated emergency procedures, and stakeholder coordination. Overall, the digital twin improves physical security through automation, adaptability, and comprehensive data sharing. The paper also analyzes the pros and cons of implementation of this technology through an Emerging Technology Analysis Canvas that analyzes different aspects of this technology through both narrow and wide lenses to help decision makers in their decision of implementing this technology. On a broader scale, this showcases the value of digital twins in transforming legacy systems across sectors and how data sharing can create a safer world for both retail store customers and owners.

Keywords: digital twin, retail store safety, digital twin in retail, digital twin for physical safety

Procedia PDF Downloads 72