Search results for: harmonic data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25414

Search results for: harmonic data

19774 Local Revenue Generation: Its Contribution to the Development of the Municipality of Bacolod, Lanao Del Sur

Authors: Louvill M. Ozarraga

Abstract:

this study was designed to ascertain the concept of the revenue generation system of Bacolod, Lanao del Norte, through the completely enumerated elected officials and permanent employees sample respondents. The pertinent data were obtained through the use of a structured questionnaire and with the help of key informants. The study utilized a cross-sectional survey design to analyze and interpret the data using frequency count, percentage distribution, and weighted mean. For the major findings, the local revenue generation of the Municipality has increased by Php 4,465,394.21, roughly 73.52%, from the years 2018 to 2020. Administrative activities help the Municipality cope with development, namely, the issuance of ordinances, personnel augmentation, and collection strategies. Moreover, respondents were undecided about whether revenue generation contributed to infrastructures and purchases of assets. The majority of the respondents agreed that the municipality’s local revenue generation contributes to the social welfare of its constituents. Also, the respondents disagreed that locally generated revenue augments the 20% development fund. The study revealed that there is a big difference between the 2018 and 2020 Real Property Tax (RPT) collection. No committee was created to monitor and supervise the municipal revenue generation system. The Municipality, through a partnership with TESDA, provides skilled-job opportunity to its constituents and participants

Keywords: Local Revenue Generation: Its Contribution To The Development Of The Municipality Of Bacolod, Lanao Del Sur

Procedia PDF Downloads 74
19773 Determinants Affecting to Adoption of Climate Smart Agriculture Technologies in the Northern Bangladesh

Authors: Md. Rezaul Karim, Andreas Thiel

Abstract:

Bangladesh is known as one of the most climate vulnerable countries in the world. Innovative technologies are always the key responses to the management of climate impacts. The objectives of this study are to determine the farmer’s perception of climate variability, to compare farmers’ perceptions with metrological data, and to explore the determinants that affect the likelihood of adoption of the selected Climate Smart Agricultural (CSA) technologies. Data regarding climate change perception, determinants and adoption were collected based on the household survey from stratified and randomly selected 365 farmers of the Biral sub-district under Dinajpur district in drought-prone northern Bangladesh. The likelihood of adoption of CSA technologies was analyzed following a multivariate probit model. The findings show that about 82.5% of the farmers perceived increasing temperature, and 75.1 % of farmers perceived decreasing dry season rainfall over the years, which is similarly relevant to metrological data. About 76.4.7% and 80.85% of farmers were aware of the drought tolerance crops and vermicompost, respectively; more than half of the farmers adopted these practices. Around 70.7% of farmers were aware of perching for insect control, but 46.3% of farmers adopted this practice. Although two-thirds of farmers were aware of crop diversification and pheromone trap, adoption was lower compared to the other three CSAs. Results also indicate that the likelihood of adoption of the selected CSAs is significantly influenced by different factors such as socio-economic characteristics, institutional factors and perceived technological or innovation attributes. The likelihood of adopting drought tolerance crops is affected by 11, while crop diversification and perching method by 7, pheromone trap by 9 and vermicompost by 8 determining factors. Lack of information and unavailability of input appear to be major obstacles to the non-adoption of CSA technologies. This study suggests that policy implications are necessary to promote extension services and overcome the obstacles to the non-adoption of individual CSA technologies. It further recommends that the research study should be conducted in a diverse context, nationally or globally.

Keywords: determinants, adoption, climate smart agriculture, northern Bangladesh

Procedia PDF Downloads 67
19772 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques

Authors: Joseph Wolff, Jeffrey Eilbott

Abstract:

Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.

Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences

Procedia PDF Downloads 209
19771 A Data-Driven Optimal Control Model for the Dynamics of Monkeypox in a Variable Population with a Comprehensive Cost-Effectiveness Analysis

Authors: Martins Onyekwelu Onuorah, Jnr Dahiru Usman

Abstract:

Introduction: In the realm of public health, the threat posed by Monkeypox continues to elicit concern, prompting rigorous studies to understand its dynamics and devise effective containment strategies. Particularly significant is its recurrence in variable populations, such as the observed outbreak in Nigeria in 2022. In light of this, our study undertakes a meticulous analysis, employing a data-driven approach to explore, validate, and propose optimized intervention strategies tailored to the distinct dynamics of Monkeypox within varying demographic structures. Utilizing a deterministic mathematical model, we delved into the intricate dynamics of Monkeypox, with a particular focus on a variable population context. Our qualitative analysis provided insights into the disease-free equilibrium, revealing its stability when R0 is less than one and discounting the possibility of backward bifurcation, as substantiated by the presence of a single stable endemic equilibrium. The model was rigorously validated using real-time data from the Nigerian 2022 recorded cases for Epi weeks 1 – 52. Transitioning from qualitative to quantitative, we augmented our deterministic model with optimal control, introducing three time-dependent interventions to scrutinize their efficacy and influence on the epidemic's trajectory. Numerical simulations unveiled a pronounced impact of the interventions, offering a data-supported blueprint for informed decision-making in containing the disease. A comprehensive cost-effectiveness analysis employing the Infection Averted Ratio (IAR), Average Cost-Effectiveness Ratio (ACER), and Incremental Cost-Effectiveness Ratio (ICER) facilitated a balanced evaluation of the interventions’ economic and health impacts. In essence, our study epitomizes a holistic approach to understanding and mitigating Monkeypox, intertwining rigorous mathematical modeling, empirical validation, and economic evaluation. The insights derived not only bolster our comprehension of Monkeypox's intricate dynamics but also unveil optimized, cost-effective interventions. This integration of methodologies and findings underscores a pivotal stride towards aligning public health imperatives with economic sustainability, marking a significant contribution to global efforts in combating infectious diseases.

Keywords: monkeypox, equilibrium states, stability, bifurcation, optimal control, cost-effectiveness

Procedia PDF Downloads 86
19770 The Career Success for Female Managers: A Case Study of The Primary Education Department, Thailand

Authors: Nipon Sasithornsaowapa

Abstract:

The purposes of this research was to study the female management career success of the primary education department of Thailand. The independent variable was human capital which included three factors: family status, personality, and knowledge-skill-experience, while the important dependent variable was the career success. The population of this study included 2,179 female management officials in the department of primary education. A total of 400 female managers were interviewed and utilized as a sample group. A questionnaire was developed and used as a main tool for collecting data. Content analysis was performed to get the quantitative data. Descriptive statistics in this research was done by SPSS program. The findings revealed that family and personality factors had a high influence on the human capital and, in turn, influenced the career success of female managers. On the other hand, knowledge-skill-experience had an insignificant influence to the human capital and the female career success. In addition, the findings from the in-depth interview revealed that the majority of respondents defined career success as the satisfaction in job duties, not money and position.

Keywords: career, female managers, primary education

Procedia PDF Downloads 300
19769 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes

Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales

Abstract:

In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.

Keywords: calibration, data modeling, industrial processes, machine learning

Procedia PDF Downloads 299
19768 Analysis of Vibration and Shock Levels during Transport and Handling of Bananas within the Post-Harvest Supply Chain in Australia

Authors: Indika Fernando, Jiangang Fei, Roger Stanley, Hossein Enshaei

Abstract:

Delicate produce such as fresh fruits are increasingly susceptible to physiological damage during the essential post-harvest operations such as transport and handling. Vibration and shock during the distribution are identified factors for produce damage within post-harvest supply chains. Mechanical damages caused during transit may significantly diminish the quality of fresh produce which may also result in a substantial wastage. Bananas are one of the staple fruit crops and the most sold supermarket produce in Australia. It is also the largest horticultural industry in the state of Queensland where 95% of the total production of bananas are cultivated. This results in significantly lengthy interstate supply chains where fruits are exposed to prolonged vibration and shocks. This paper is focused on determining the shock and vibration levels experienced by packaged bananas during transit from the farm gate to the retail market. Tri-axis acceleration data were captured by custom made accelerometer based data loggers which were set to a predetermined sampling rate of 400 Hz. The devices recorded data continuously for 96 Hours in the interstate journey of nearly 3000 Km from the growing fields in far north Queensland to the central distribution centre in Melbourne in Victoria. After the bananas were ripened at the ripening facility in Melbourne, the data loggers were used to capture the transport and handling conditions from the central distribution centre to three retail outlets within the outskirts of Melbourne. The quality of bananas were assessed before and after transport at each location along the supply chain. Time series vibration and shock data were used to determine the frequency and the severity of the transient shocks experienced by the packages. Frequency spectrogram was generated to determine the dominant frequencies within each segment of the post-harvest supply chain. Root Mean Square (RMS) acceleration levels were calculated to characterise the vibration intensity during transport. Data were further analysed by Fast Fourier Transform (FFT) and the Power Spectral Density (PSD) profiles were generated to determine the critical frequency ranges. It revealed the frequency range in which the escalated energy levels were transferred to the packages. It was found that the vertical vibration was the highest and the acceleration levels mostly oscillated between ± 1g during transport. Several shock responses were recorded exceeding this range which were mostly attributed to package handling. These detrimental high impact shocks may eventually lead to mechanical damages in bananas such as impact bruising, compression bruising and neck injuries which affect their freshness and visual quality. It was revealed that the frequency range between 0-5 Hz and 15-20 Hz exert an escalated level of vibration energy to the packaged bananas which may result in abrasion damages such as scuffing, fruit rub and blackened rub. Further research is indicated specially in the identified critical frequency ranges to minimise exposure of fruits to the harmful effects of vibration. Improving the handling conditions and also further study on package failure mechanisms when exposed to transient shock excitation will be crucial to improve the visual quality of bananas within the post-harvest supply chain in Australia.

Keywords: bananas, handling, post-harvest, supply chain, shocks, transport, vibration

Procedia PDF Downloads 190
19767 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering

Procedia PDF Downloads 354
19766 Interconnected Market Hypothesis: A Conceptual Model of Individualistic, Information-Based Interconnectedness

Authors: James Kinsella

Abstract:

There is currently very little understanding of how the interaction between in- vestors, consumers, the firms (agents) affect a) the transmission of information, and b) the creation and transfer of value and wealth between these two groups. Employing scholarly ideas from multiple research areas (behavioural finance, emotional finance, econo-biology, and game theory) we develop a conceptual the- oretic model (the ‘bow-tie’ model) as a framework for considering this interaction. Our bow-tie model views information transfer, value and wealth creation, and transfer through the lens of “investor-consumer connection facilitated through the communicative medium of the ‘firm’ (agents)”. We confront our bow-tie model with theoretical and practical examples. Next, we utilise consumer and business confidence data alongside index data, to conduct quantitative analy- sis, to support our bow-tie concept, and to introduce the concept of “investor- consumer connection”. We highlight the importance of information persuasiveness, knowledge, and emotional categorization of characteristics in facilitating a communicative relationship between investors, consumers, and the firm (agents), forming academic and practical applications of the conceptual bow-tie model, alongside applications to wider instances, such as those seen within the Covid-19 pandemic.

Keywords: behavioral finance, emotional finance, economy-biology, social mood

Procedia PDF Downloads 127
19765 A Methodological Approach to Digital Engineering Adoption and Implementation for Organizations

Authors: Sadia H. Syeda, Zain H. Malik

Abstract:

As systems continue to become more complex and the interdependencies of processes and sub-systems continue to grow and transform, the need for a comprehensive method of tracking and linking the lifecycle of the systems in a digital form becomes ever more critical. Digital Engineering (DE) provides an approach to managing an authoritative data source that links, tracks, and updates system data as it evolves and grows throughout the system development lifecycle. DE enables the developing, tracking, and sharing system data, models, and other related artifacts in a digital environment accessible to all necessary stakeholders. The DE environment provides an integrated electronic repository that enables traceability between design, engineering, and sustainment artifacts. The DE activities' primary objective is to develop a set of integrated, coherent, and consistent system models for the program. It is envisioned to provide a collaborative information-sharing environment for various stakeholders, including operational users, acquisition personnel, engineering personnel, and logistics and sustainment personnel. Examining the processes that DE can support in the systems engineering life cycle (SELC) is a primary step in the DE adoption and implementation journey. Through an analysis of the U.S Department of Defense’s (DoD) Office of the Secretary of Defense (OSD’s) Digital Engineering Strategy and their implementation, examples of DE implementation by the industry and technical organizations, this paper will provide descriptions of the current DE processes and best practices of implementing DE across an enterprise. This will help identify the capabilities, environment, and infrastructure needed to develop a potential roadmap for implementing DE practices consistent with its business strategy. A capability maturity matrix will be provided to assess the organization’s DE maturity emphasizing how all the SELC elements interlink to form a cohesive ecosystem. If implemented, DE can increase efficiency and improve the systems engineering processes' quality and outcomes.

Keywords: digital engineering, digital environment, digital maturity model, single source of truth, systems engineering life-cycle

Procedia PDF Downloads 93
19764 A Review on Climate Change and Sustainable Agriculture in Southeast Nigeria

Authors: Jane O. Munonye

Abstract:

Climate change has both negative and positive effects in agricultural production. For agriculture to be sustainable in adverse climate change condition, some natural measures are needed. The issue is to produce more food with available natural resources and reduce the contribution of agriculture to climate change. The study reviewed climate change and sustainable agriculture in southeast Nigeria. Data from the study were from secondary sources. Ten scientific papers were consulted and data for the review were collected from three. The objectives of the paper were as follows: to review the effect of climate change on one major arable crop in southeast Nigeria (yam; Dioscorea rotundata); evident of climate change impact and methods for sustainable agricultural production in adverse weather condition. Some climatic parameter as sunshine, relative humidity and rainfall have negative relationship with yam production and significant at 10% probability. Crop production was predicted to decline by 25% per hectare by 2060 while livestock production has increased the incidence of diseases and pathogens as the major effect to agriculture. Methods for sustainable agriculture and damage of natural resources by climate change were highlighted. Agriculture needs to be transformed as climate changes to enable the sector to be sustainable. There should be a policy in place to facilitate the integration of sustainability in Nigeria agriculture.

Keywords: agriculture, climate change, sustainability, yam

Procedia PDF Downloads 326
19763 Scope of Implmenting Building Information Modeling in (Aec) Industry Firms in India

Authors: Padmini Raman

Abstract:

The architecture, engineering, and construction (AEC) industry is facing enormous technological and institutional changes and challenges including the information technology and appropriate application of sustainable practices. The engineer and architect must be able to handle with a rapid pace of technological change. BIM is a unique process of producing and managing a building by exploring a digital module before the actual project is constructed and later during its construction, facility operation and maintenance. BIM has been Adopted by construction contractors and architects in the western country mostly in US and UK to improve the planning and management of construction projects. In India, BIM is a basic stage of adoption only, several issues about data acquisition and management comes during the design formation and planning of a construction project due to the complexity, ambiguity, and fragmented nature of the Indian construction industry. This paper tells about the view a strategy for India’s AEC firms to successfully implement BIM in their current working processes. By surveying and collecting data about problems faced by these architectural firms, it will be analysed how to avoid those situations from rising and, thus, introducing BIM Capabilities in such firms in the most effective way. while this application is widely accepted throughout the industry in many countries for managing project information for cost control and facilities management.

Keywords: AEC industry, building information module, Indian industry, new technology, BIM implementation in India

Procedia PDF Downloads 445
19762 Predictive Power of Achievement Motivation on Student Engagement and Collaborative Problem Solving Skills

Authors: Theresa Marie Miller, Ma. Nympha Joaquin

Abstract:

The aim of this study was to check the predictive power of social-oriented and individual-oriented achievement motivation on student engagement and collaborative problem-solving skills in mathematics. A sample of 277 fourth year high school students from the Philippines were selected. Surveys and videos of collaborative problem solving activity were used to collect data from respondents. The mathematics teachers of the participants were interviewed to provide qualitative support on the data. Systemaitc correlation and regression analysis were employed. Results of the study showed that achievement motivations−SOAM and IOAM− linearly predicted student engagement but was not significantly associated to the collaborative problem-solving skills in mathematics. Student engagement correlated positively with collaborative problem-solving skills in mathematics. The results contribute to theorizing about the predictive power of achievement motivations, SOAM and IOAM on the realm of academic behaviors and outcomes as well as extend the understanding of collaborative problem-solving skills of 21st century learners.

Keywords: achievement motivation, collaborative problem-solving skills, individual-oriented achievement motivation, social-oriented achievement motivation, student engagement

Procedia PDF Downloads 314
19761 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 79
19760 The Use of Actoprotectors by Professional Athletes

Authors: Kalin Ivanov, Stanislava Ivanova

Abstract:

Actoprotectors are substances with hight performance enchasing potential and hight antioxidant activity. Most of these drugs have been developed in USSR for military medicine purposes. Based on their chemical composition actoprotectors could be classified into three categories: benzimidazole derivatives (ethomersol, bemitil); adamantane derivatives (bromantane), other chemical classes. First data for intake of actoprotectors from professional athletes is from 1980. The daily intake of actoprotectors demonstrate many benefits for athletes like: positive effect on the efficiency of physical work, antihypoxic effects, antioxidant effects, nootropic effects, rapid recovery. Since 1997, bromantane is considered as doping. This is a result of Summer Olympic Games in Athlanta (1996) when several Russian athletes tested positive for bramantane. Even the drug is safe for athletes health its use is considered as violation of anti- doping rules. More than 37 years bemetil has been used by professional athletes with no risk but currently it is included in WADA monitoring programme for 2018. Current perspectives are that most used actoprotectors would be considered as doping. Many clinical studies have confirmed that intake of bemitil and bromantan demonstrate positive influence on the physical work capacity but data for other actoprotectors like chlodantane, ademol, ethomersol is limited.

Keywords: actoprotector, sport, doping, bemitil

Procedia PDF Downloads 322
19759 Hunger and Health: The Acceptability and Development of Health Coaching in the Food Pantry Environment

Authors: Kelsey Fortin, Susan Harvey

Abstract:

The intersection between hunger and health outcomes is beginning to gain traction among the research community. With new interventions focusing on collaborations between the medical and social service sectors, this study aimed to understand the acceptability and approach of a health coaching intervention within a county-wide Midwest food pantry. Through formative research, the study used mixed methods to review secondary data and conduct surveys and semi-structured interviews with food pantry clients (n=30), staff (n=7), and volunteers (n=10). Supplemental secondary data collected and provided by pantry staff were reviewed to understand the broader pantry context of clientele health and health behaviors, annual food donations, and current pantry programming. Results from secondary data showed that the broader pantry client population reported high rates of chronic disease, low consumption of fruits and vegetables, and poor self-reported health, while annual donation data showed increases in produce availability on pantry shelves. This disconnect between produce availability, client health status, and behaviors was supported in the current study, with pantry staff and volunteers reporting lack of knowledge in produce selection and preparation being amongst the most common client inquiries and barriers to healthy food selection. Additional supports to secondary data came from pantry clients in the current study through self-reported high rates of both individual (60%, n=18) and household (43%, n=13 ) disease diagnosis, low consumption of fruits and vegetables averaging zero to one servings of vegetables (67%, n=20) and fruits (47%, n=14) per day, and low levels of physical activity averaging zero to 120 minutes per week (67%, n=20). Further, pantry clients provided health coaching programmatic recommendations through interviews with feedback such as non-judgmental coaching, accountability measures, and providing participant incentives as considerations for future program design and approach. Volunteers and staff reported the need for client education in food preparation, basic nutrition and physical activity, and the need for additional health expertise to educate and respond to diet related nutrition recommendations. All three stakeholder groups supported hosting a health coach within the pantry to focused on nutrition, physical activity, and health programming, with one client stating, 'I am hoping it really works out [the health coaching program]. I think it would be great for something like this to be offered for someone that isn’t knowledgeable like me.' In conclusion, high rates of chronic disease, partnered with low food, nutrition, and physical activity literacy among pantry clients, demonstrates the need to address health behaviors. With all three stakeholder groups showing acceptability of a health coaching program, partnered with existing literature showing health coaching success as a behavior change intervention, further research should be conducted to pilot the design and implementation of such a program in the pantry setting.

Keywords: food insecurity, formative research, food pantries, health coaching, hunger and health

Procedia PDF Downloads 129
19758 The Effectiveness of Group Counseling of Mindfulness-Based Cognitive Therapy on Cognitive Emotion Regulation in High School Students

Authors: Hossein Ilanloo, Sedigheh Ahmadi, Kianoosh Zahrakar

Abstract:

The present study aims at investigating the effectiveness of group counseling of mindfulness-based cognitive therapy on cognitive emotion regulation in high school students. The research design was quasi-experimental and pre-test-post-test type and a two-month follow-up with a control group. The statistical population of the study consisted of all-male high school students in Takestan city in the Academic Year 2020-2021. The sample comprised 30 high school male students selected through the convenience sampling method and randomly assigned to experimental (n=15) and control (n=15) groups. The experimental group then received ten sessions of 90-minute group counseling of mindfulness-based cognitive therapy, and the control group did not receive any intervention. In order to collect data, the author used the Cognitive Emotion Regulation Questionnaire (CERQ). The researcher also used multivariate analysis of covariance, repeated measures, LSD post hoc test, and SPSS-26 software for data analysis.

Keywords: mindfulness-based cognitive therapy, cognitive emotion regulation, students, high schools

Procedia PDF Downloads 123
19757 Network Based Molecular Profiling of Intracranial Ependymoma over Spinal Ependymoma

Authors: Hyeon Su Kim, Sungjin Park, Hae Ryung Chang, Hae Rim Jung, Young Zoo Ahn, Yon Hui Kim, Seungyoon Nam

Abstract:

Ependymoma, one of the most common parenchymal spinal cord tumor, represents 3-6% of all CNS tumor. Especially intracranial ependymomas, which are more frequent in childhood, have a more poor prognosis and more malignant than spinal ependymomas. Although there are growing needs to understand pathogenesis, detailed molecular understanding of pathogenesis remains to be explored. A cancer cell is composed of complex signaling pathway networks, and identifying interaction between genes and/or proteins are crucial for understanding these pathways. Therefore, we explored each ependymoma in terms of differential expressed genes and signaling networks. We used Microsoft Excel™ to manipulate microarray data gathered from NCBI’s GEO Database. To analyze and visualize signaling network, we used web-based PATHOME algorithm and Cytoscape. We show HOX family and NEFL are down-regulated but SCL family is up-regulated in cerebrum and posterior fossa cancers over a spinal cancer, and JAK/STAT signaling pathway and Chemokine signaling pathway are significantly different in the both intracranial ependymoma comparing to spinal ependymoma. We are considering there may be an age-dependent mechanism under different histological pathogenesis. We annotated mutation data of each gene subsequently in order to find potential target genes.

Keywords: systems biology, ependymoma, deg, network analysis

Procedia PDF Downloads 298
19756 A Sports-Specific Physiotherapy Center Treats Sports Injuries

Authors: Andrew Anis Fakhrey Mosaad

Abstract:

Introduction: Sports- and physical activity-related injuries may be more likely if there is a genetic predisposition, improper coaching and/or training, and no follow-up care from sports medicine. Goal: To evaluate the frequency of injuries among athletes receiving care at a sportsfocused physical therapy clinic. Methods: The survey of injuries in athletes' treatment records over a period of eight years of activity was done to obtain data. The data collected included: the patient's features, the sport, the type of injury, the injury's characteristics, and the body portion injured. Results: The athletes were drawn from 1090 patient/athlete records, had an average age of 25, participated in 44 different sports, and were 75% men on average. Joint injuries were the most frequent type of injury, then damage to the muscles and bones. The most prevalent type of injury was chronic (47%), while the knee, ankle, and shoulder were the most frequently damaged body parts. The most injured athletes were seen in soccer, futsal, and track and field, respectively, out of all the sports. Conclusion: The most popular sport among injured players was soccer, and the most common injury type was joint damage, with the knee being the most often damaged body area. The majority of the injuries were chronic.

Keywords: sports injuries, athletes, joint injuries, injured players

Procedia PDF Downloads 73
19755 An As-Is Analysis and Approach for Updating Building Information Models and Laser Scans

Authors: Rene Hellmuth

Abstract:

Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring of the factory building is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A building information model (BIM) is the planning basis for rebuilding measures and becomes an indispensable data repository to be able to react quickly to changes. Use as a planning basis for restructuring measures in factories only succeeds if the BIM model has adequate data quality. Under this aspect and the industrial requirement, three data quality factors are particularly important for this paper regarding the BIM model: up-to-dateness, completeness, and correctness. The research question is: how can a BIM model be kept up to date with required data quality and which visualization techniques can be applied in a short period of time on the construction site during conversion measures? An as-is analysis is made of how BIM models and digital factory models (including laser scans) are currently being kept up to date. Industrial companies are interviewed, and expert interviews are conducted. Subsequently, the results are evaluated, and a procedure conceived how cost-effective and timesaving updating processes can be carried out. The availability of low-cost hardware and the simplicity of the process are of importance to enable service personnel from facility mnagement to keep digital factory models (BIM models and laser scans) up to date. The approach includes the detection of changes to the building, the recording of the changing area, and the insertion into the overall digital twin. Finally, an overview of the possibilities for visualizations suitable for construction sites is compiled. An augmented reality application is created based on an updated BIM model of a factory and installed on a tablet. Conversion scenarios with costs and time expenditure are displayed. A user interface is designed in such a way that all relevant conversion information is available at a glance for the respective conversion scenario. A total of three essential research results are achieved: As-is analysis of current update processes for BIM models and laser scans, development of a time-saving and cost-effective update process and the conception and implementation of an augmented reality solution for BIM models suitable for construction sites.

Keywords: building information modeling, digital factory model, factory planning, restructuring

Procedia PDF Downloads 114
19754 Middle School as a Developmental Context for Emergent Citizenship

Authors: Casta Guillaume, Robert Jagers, Deborah Rivas-Drake

Abstract:

Civically engaged youth are critical to maintaining and/or improving the functioning of local, national and global communities and their institutions. The present study investigated how school climate and academic beliefs (academic self-efficacy and school belonging) may inform emergent civic behaviors (emergent citizenship) among self-identified middle school youth of color (African American, Multiracial or Mixed, Latino, Asian American or Pacific Islander, Native American, and other). Study aims: 1) Understand whether and how school climate is associated with civic engagement behaviors, directly and indirectly, by fostering a positive sense of connection to the school and/or engendering feelings of self-efficacy in the academic domain. Accordingly, we examined 2) The association of youths’ sense of school connection and academic self-efficacy with their personally responsible and participatory civic behaviors in school and community contexts—both concurrently and longitudinally. Data from two subsamples of a larger study of social/emotional development among middle school students were used for longitudinal and cross sectional analysis. The cross-sectional sample included 324 6th-8th grade students, of which 43% identified as African American, 20% identified as Multiracial or Mixed, 18% identified as Latino, 12% identified as Asian American or Pacific Islander, 6% identified as Other, and 1% identified as Native American. The age of the sample ranged from 11 – 15 (M = 12.33, SD = .97). For the longitudinal test of our mediation model, we drew on data from the 6th and 7th grade cohorts only (n =232); the ethnic and racial diversity of this longitudinal subsample was virtually identical to that of the cross-sectional sample. For both the cross-sectional and longitudinal analyses, full information maximum likelihood was used to deal with missing data. Fit indices were inspected to determine if they met the recommended thresholds of RMSEA below .05 and CFI and TLI values of at least .90. To determine if particular mediation pathways were significant, the bias-corrected bootstrap confidence intervals for each indirect pathway were inspected. Fit indices for the latent variable mediation model using the cross-sectional data suggest that the hypothesized model fit the observed data well (CFI = .93; TLI =. 92; RMSEA = .05, 90% CI = [.04, .06]). In the model, students’ perceptions of school climate were significantly and positively associated with greater feelings of school connectedness, which were in turn significantly and positively associated with civic engagement. In addition, school climate was significantly and positively associated with greater academic self-efficacy, but academic self-efficacy was not significantly associated with civic engagement. Tests of mediation indicated there was one significant indirect pathway between school climate and civic engagement behavior. There was an indirect association between school climate and civic engagement via its association with sense of school connectedness, indirect association estimate = .17 [95% CI: .08, .32]. The aforementioned indirect association via school connectedness accounted for 50% (.17/.34) of the total effect. Partial support was found for the prediction that students’ perceptions of a positive school climate are linked to civic engagement in part through their role in students’ sense of connection to school.

Keywords: civic engagement, early adolescence, school climate, school belonging, developmental niche

Procedia PDF Downloads 370
19753 Integrating Wound Location Data with Deep Learning for Improved Wound Classification

Authors: Mouli Banga, Chaya Ravindra

Abstract:

Wound classification is a crucial step in wound diagnosis. An effective classifier can aid wound specialists in identifying wound types with reduced financial and time investments, facilitating the determination of optimal treatment procedures. This study presents a deep neural network-based classifier that leverages wound images and their corresponding locations to categorize wounds into various classes, such as diabetic, pressure, surgical, and venous ulcers. By incorporating a developed body map, the process of tagging wound locations is significantly enhanced, providing healthcare specialists with a more efficient tool for wound analysis. We conducted a comparative analysis between two prominent convolutional neural network models, ResNet50 and MobileNetV2, utilizing a dataset of 730 images. Our findings reveal that the RestNet50 outperforms MovileNetV2, achieving an accuracy of approximately 90%, compared to MobileNetV2’s 83%. This disparity highlights the superior capability of ResNet50 in the context of this dataset. The results underscore the potential of integrating deep learning with spatial data to improve the precision and efficiency of wound diagnosis, ultimately contributing to better patient outcomes and reducing healthcare costs.

Keywords: wound classification, MobileNetV2, ResNet50, multimodel

Procedia PDF Downloads 32
19752 Body Composition Analysis of University Students by Anthropometry and Bioelectrical Impedance Analysis

Authors: Vinti Davar

Abstract:

Background: Worldwide, at least 2.8 million people die each year as a result of being overweight or obese, and 35.8 million (2.3%) of global DALYs are caused by overweight or obesity. Obesity is acknowledged as one of the burning public health problems reducing life expectancy and quality of life. The body composition analysis of the university population is essential in assessing the nutritional status, as well as the risk of developing diseases associated with abnormal body fat content so as to make nutritional recommendations. Objectives: The main aim was to determine the prevalence of obesity and overweight in University students using Anthropometric analysis and BIA methods Material and Methods: In this cross-sectional study, 283 university students participated. The body composition analysis was undertaken by using mainly: i) Anthropometric Measurement: Height, Weight, BMI, waist circumference, hip circumference and skin fold thickness, ii) Bio-electrical impedance was used for analysis of body fat mass, fat percent and visceral fat which was measured by Tanita SC-330P Professional Body Composition Analyzer. The data so collected were compiled in MS Excel and analyzed for males and females using SPSS 16.Results and Discussion: The mean age of the male (n= 153) studied subjects was 25.37 ±2.39 year and females (n=130) was 22.53 ±2.31. The data of BIA revealed very high mean fat per cent of the female subjects i.e. 30.3±6.5 per cent whereas mean fat per cent of the male subjects was 15.60±6.02 per cent indicating a normal body fat range. The findings showed high visceral fat of both males (12.92±3.02) and females (16.86±4.98). BMI, BF% and WHR were higher among females, and BMI was higher among males. The most evident correlation was verified between BF% and WHR for female students (r=0.902; p<0.001). The correlation of BFM and BF% with thickness of triceps, sub scapular and abdominal skin folds and BMI was significant (P<0.001). Conclusion: The studied data made it obvious that there is a need to initiate lifestyle changing strategies especially for adult females and encourage them to improve their dietary intake to prevent incidence of non communicable diseases due to obesity and high fat percentage.

Keywords: anthropometry, bioelectrical impedance, body fat percentage, obesity

Procedia PDF Downloads 380
19751 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence

Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej

Abstract:

In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.

Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction

Procedia PDF Downloads 105
19750 Interactive Effects of Organizational Learning and Market Orientation on New Product Performance

Authors: Qura-tul-aain Khair

Abstract:

Purpose- The purpose of this paper is to empirically examining the strength of association of responsive market orientation and proactive market orientation with new product performance and exploring the possible moderating role of organizational learning based on contingency theory. Design/methodology/approach- Data for this study was collected from FMCG manufacturing industry and services industry, where customers are in contact frequently and responses are recorded on continuous basis. Sample was collected through convenience sampling. The data collected from different marketing department and sales personnel were analysed using SPSS 16 version. Findings- The paper finds that responsive market orientation is more strongly associated with new product performance. The moderator, organizational learning, plays it significant role on the relationship between responsive market orientation and new product performance. Research limitations/implications- this paper has taken sample from just FMCG industry and service industry, more work can be done regarding how different-markets require different market orientation behaviours. Originality/value- This paper will be useful for foreign business looking for investing and expanding in Pakistan, they can find opportunity to get sustained competitive advantage through exploring the proactive side of market orientation and importance of organizational learning.

Keywords: organizational learning, proactive market orientation, responsive market orientation, new product performance

Procedia PDF Downloads 382
19749 Strategic Evaluation of Existing Drainage System in Apalit, Pampanga

Authors: Jennifer de Jesus, Ares Baron Talusan, Steven Valerio

Abstract:

This paper aims to conduct an evaluation of the drainage system in a specific village in Apalit, Pampanga using the geographic information system to easily identify inadequate drainage lines that needs rehabilitation to aid in flooding problem in the area. The researchers will be utilizing two methods and software to be able to strategically assess each drainage line in the village– the two methods were the rational method and the Manning's Formula for Open Channel Flow and compared it to each other, and the software to be used was Google Earth Pro by 2020 Google LLC. The results must satisfy the statement QManning > QRational to be able to see if the specific line and section is adequate; otherwise, it is inadequate; dimensions needed to be recomputed until it became adequate. The use of the software is the visualization of data collected from the computations to clearly see in which areas the drainage lines were adequate or not. The researchers were then able to conclude that the drainage system should be considered inadequate, seeing as most of the lines are unable to accommodate certain intensities of rainfall. The researchers have also concluded that line rehabilitation is a must to proceed.

Keywords: strategic evaluation, drainage system, as-built plans, inadequacy, rainfall intensity-duration-frequency data, rational method, manning’s equation for open channel flow

Procedia PDF Downloads 128
19748 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures

Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat

Abstract:

In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.

Keywords: association rules, clustering, similarity measure, statistical approaches

Procedia PDF Downloads 320
19747 Interrogation of the Role of First Year Student Experiences in Student Success at a University of Technology in South Africa

Authors: Livingstone Makondo

Abstract:

This ongoing research explores what could be the components of a comprehensive First-Year Student Experience (FYSE) at the Durban University of Technology (DUT) and the preferred implementation modalities. In light of the Siyaphumelela project, this interrogation is premised on the need to glean data for the institution that could be used to ascertain the role of FYSE towards enhancing student success. The research proceeds by examining prevalent models from other South African Universities and beyond in its quest to get at pragmatic comprehensive FYSE programme for DUT. As DUT is a student centered institution and amidst the ever shrinking economy, this research would aid higher education practitioners to ascertain if the hard earned finances are being channelled to a worthy academic venture. This research seeks to get inputs from a) students who participated in FYSE and are now in second and third years at DUT b) students who are currently participating in FYSE c) former and present Tutors d) departmental coordinators e) academics and support staff working with the participating students. This exploratory approach is preferred since 2010 DUT has grappled with how to implement an integrated institution-wide FYSE. This findings of this research could provide the much-needed data to ascertain if the current FYSE package is pivotal towards attainment of DUT Strategic Focus Area 1: Building sustainable student communities of living and learning. The ideal is to have DUT FYSE programme become an institution-wide programme that lays the foundation for consolidated and focused student development programmes for subsequent undergraduate and postgraduate levels of study. Also, armed with data from this research, DUT could develop the capacity and systems to ensure that all students get diverse on-time support to enhance their retention and academic success in their tertiary studies. In essence, the preferred FYSE curriculum woven around DUT graduate attributes should contribute towards the reduction in the first-year students’ dropout rates and subsequently in undergraduate studies. Therefore, this on-going research will feed into Siyaphumelela project and would help position 2018-2020 FYSE initiatives at DUT.

Keywords: challenges, comprehensive, dropout, transition

Procedia PDF Downloads 161
19746 The Effects of Relationship Banking on the Financial Performance of SMEs in Kenya

Authors: Abraham Rotich

Abstract:

The purpose of this study was to determine the effects of relationship banking on the financial performance of SMEs. The paper attempted to establish the link between the constructs of relationship banking and SME performance. The study was guided by relationship lending, relationship monitoring, relationship risk sharing and bundle of products as independent variables while financial performance will be the dependent variable. The study used a quasi experimental design with population being the 620 SMEs who have a relationship banking arrangement with banks in Nairobi. The study used stratified sampling to pick a sample of 235. The population of interest will be the CEOs of the respective companies. The basis of stratification is the sectors in which the SMEs operate in. The study will use a questionnaire to collect data. The questionnaire will have both open and close ended questions. A pilot study will be conducted to test reliability and validity of questionnaire. The data was analyzed using descriptive statistics. Regression analysis was employed to test if there is a relationship between the dependent and the independent variable. The study found evidence that relationship banking positively impacts on financial performance of SMEs. Specifically, the study established that each component of relationship banking in this study i.e relationship lending, monitoring, bundle of products and risk sharing positively affects financial performance.

Keywords: relationship banking, SMEs, financial performance, entrepreneurial orientation

Procedia PDF Downloads 323
19745 Assessing Teachers’ Interaction with Children in Early Childhood Education (ECE). Cambodian Preschool Teachers’ Beliefs and Intensions

Authors: Shahid Karim, Alfredo Bautista, Kerry Lee

Abstract:

The association between teachers’ beliefs and practices has been extensively studied across the levels of education. Yet, there is a lack of context-specific evidence on the relationship between teachers’ beliefs and intentions regarding their interaction with children in early childhood education settings. Given the critical role of teachers’ beliefs in their practices, the present study examined Cambodian preschool teachers’ beliefs and intentions related to their interaction with children and what factors affect the relationship. Data was collected through a self-reported Beliefs and Intentions Questionnaire (BTQ) from preschool teachers teaching at different types of preschools in Cambodia. Four hundred nine preschool teachers teaching in public, private and community schools participated in the study through an online survey administered on Qualtrics. The quantitative analysis of the data revealed that teachers’ beliefs predict their intentions in preschool. Teachers’ teaching experience, level of education and professional training moderated the relationship between their beliefs and intentions. Differences existed between the groups of teachers teaching in different types of preschools and genders. Implications of the findings related to policy and preschool teachers’ professional development are discussed.

Keywords: teacher-child interaction, teaching beliefs, teaching intentions, preschool teaching accreditations, Cambodia

Procedia PDF Downloads 93