Search results for: gallocyanine electroactive material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6688

Search results for: gallocyanine electroactive material

1138 Study of Water Cluster-Amorphous Silica Collisions in the Extreme Space Environment Using the ReaxFF Reactive Force Field Molecular Dynamics Simulation Method

Authors: Ali Rahnamoun, Adri van Duin

Abstract:

The concept of high velocity particle impact on the spacecraft surface materials has been one of the important issues in the design of such materials. Among these particles, water clusters might be the most abundant and the most important particles to be studied. The importance of water clusters is that upon impact on the surface of the materials, they can cause damage to the material and also if they are sub-cooled water clusters, they can attach to the surface of the materials and cause ice accumulation on the surface which is very problematic in spacecraft and also aircraft operations. The dynamics of the collisions between amorphous silica structures and water clusters with impact velocities of 1 km/s to 10 km/s are studied using the ReaxFF reactive molecular dynamics simulation method. The initial water clusters include 150 water molecules and the water clusters are collided on the surface of amorphous fully oxidized and suboxide silica structures. These simulations show that the most abundant molecules observed on the silica surfaces, other than reflecting water molecules, are H3O+ and OH- for the water cluster impacts on suboxide and fully oxidized silica structures, respectively. The effect of impact velocity on the change of silica mass is studied. At high impact velocities the water molecules attach to the silica surface through a chemisorption process meaning that water molecule dissociates through the interaction with silica surface. However, at low impact velocities, physisorbed water molecules are also observed, which means water molecule attaches and accumulates on the silica surface. The amount of physisorbed waters molecules at low velocities is higher on the suboxide silica surfaces. The evolution of the temperatures of the water clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting water clusters increase to about 2000K, with individual molecules oocasionally reaching temperatures of over 8000K and thus will be prudent to consider the concept of electron excitation at these higher impact velocities which goes beyond the current ReaxFF ability.

Keywords: spacecraft materials, hypervelocity impact, reactive molecular dynamics simulation, amorphous silica

Procedia PDF Downloads 419
1137 Kirigami Designs for Enhancing the Electromechanical Performance of E-Textiles

Authors: Braden M. Li, Inhwan Kim, Jesse S. Jur

Abstract:

One of the fundamental challenges in the electronic textile (e-textile) industry is the mismatch in compliance between the rigid electronic components integrated onto soft textile platforms. To address these problems, various printing technologies using conductive inks have been explored in an effort to improve the electromechanical performance without sacrificing the innate properties of the printed textile. However, current printing methods deposit densely layered coatings onto textile surfaces with low through-plane wetting resulting in poor electromechanical properties. This work presents an inkjet printing technique in conjunction with unique Kirigami cut designs to address these issues for printed smart textiles. By utilizing particle free reactive silver inks, our inkjet process produces conformal and micron thick silver coatings that surround individual fibers of the printed smart textile. This results in a highly conductive (0.63 Ω sq-1) printed e-textile while also maintaining the innate properties of the textile material including stretchability, flexibility, breathability and fabric hand. Kirigami is the Japanese art of paper cutting. By utilizing periodic cut designs, Kirigami imparts enhanced flexibility and delocalization of stress concentrations. Kirigami cut design parameters (i.e., cut spacing and length) were correlated to both the mechanical and electromechanical properties of the printed textiles. We demonstrate that designs using a higher cut-out ratio exponentially softens the textile substrate. Thus, our designs achieve a 30x improvement in the overall stretchability, 1000x decrease in elastic modulus, and minimal resistance change over strain regimes of 100-200% when compared to uncut designs. We also show minimal resistance change of our Kirigami inspired printed devices after being stretched to 100% for 1000 cycles. Lastly, we demonstrate a Kirigami-inspired electrocardiogram (ECG) monitoring system that improves stretchability without sacrificing signal acquisition performance. Overall this study suggests fundamental parameters affecting the performance of e-textiles and their scalability in the wearable technology industry

Keywords: kirigami, inkjet printing, flexible electronics, reactive silver ink

Procedia PDF Downloads 143
1136 Copper Phthalocyanine Nanostructures: A Potential Material for Field Emission Display

Authors: Uttam Kumar Ghorai, Madhupriya Samanta, Subhajit Saha, Swati Das, Nilesh Mazumder, Kalyan Kumar Chattopadhyay

Abstract:

Organic semiconductors have gained potential interest in the last few decades for their significant contributions in the various fields such as solar cell, non-volatile memory devices, field effect transistors and light emitting diodes etc. The most important advantages of using organic materials are mechanically flexible, light weight and low temperature depositing techniques. Recently with the advancement of nanoscience and technology, one dimensional organic and inorganic nanostructures such as nanowires, nanorods, nanotubes have gained tremendous interests due to their very high aspect ratio and large surface area for electron transport etc. Among them, self-assembled organic nanostructures like Copper, Zinc Phthalocyanine have shown good transport property and thermal stability due to their π conjugated bonds and π-π stacking respectively. Field emission properties of inorganic and carbon based nanostructures are reported in literatures mostly. But there are few reports in case of cold cathode emission characteristics of organic semiconductor nanostructures. In this work, the authors report the field emission characteristics of chemically and physically synthesized Copper Phthalocyanine (CuPc) nanostructures such as nanowires, nanotubes and nanotips. The as prepared samples were characterized by X-Ray diffraction (XRD), Ultra Violet Visible Spectrometer (UV-Vis), Fourier Transform Infra-red Spectroscopy (FTIR), and Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). The field emission characteristics were measured in our home designed field emission set up. The registered turn-on field and local field enhancement factor are found to be less than 5 V/μm and greater than 1000 respectively. The field emission behaviour is also stable for 200 minute. The experimental results are further verified by theoretically using by a finite displacement method as implemented in ANSYS Maxwell simulation package. The obtained results strongly indicate CuPc nanostructures to be the potential candidate as an electron emitter for field emission based display device applications.

Keywords: organic semiconductor, phthalocyanine, nanowires, nanotubes, field emission

Procedia PDF Downloads 501
1135 Hardness map of Human Tarsals, Meta Tarsals and Phalanges of Toes

Authors: Irfan Anjum Manarvi, Zahid Ali kaimkhani

Abstract:

Predicting location of the fracture in human bones has been a keen area of research for the past few decades. A variety of tests for hardness, deformation, and strain field measurement have been conducted in the past; but considered insufficient due to various limitations. Researchers, therefore, have proposed further studies due to inaccuracies in measurement methods, testing machines, and experimental errors. Advancement and availability of hardware, measuring instrumentation, and testing machines can now provide remedies to these limitations. The human foot is a critical part of the body exposed to various forces throughout its life. A number of products are developed for using it for protection and care, which many times do not provide sufficient protection and may itself become a source of stress due to non-consideration of the delicacy of bones in the feet. A continuous strain or overloading on feet may occur resulting to discomfort and even fracture. Mechanical properties of Tarsals, Metatarsals, and phalanges are, therefore, the primary area of consideration for all such design applications. Hardness is one of the mechanical properties which are considered very important to establish the mechanical resistance behavior of a material against applied loads. Past researchers have worked in the areas of investigating mechanical properties of these bones. However, their results were based on a limited number of experiments and taking average values of hardness due to either limitation of samples or testing instruments. Therefore, they proposed further studies in this area. The present research has been carried out to develop a hardness map of the human foot by measuring micro hardness at various locations of these bones. Results are compiled in the form of distance from a reference point on a bone and the hardness values for each surface. The number of test results is far more than previous studies and are spread over a typical bone to give a complete hardness map of these bones. These results could also be used to establish other properties such as stress and strain distribution in the bones. Also, industrial engineers could use it for design and development of various accessories for human feet health care and comfort and further research in the same areas.

Keywords: tarsals, metatarsals, phalanges, hardness testing, biomechanics of human foot

Procedia PDF Downloads 421
1134 Cellulose Enhancement in Wood Used in Pulp Production by Overexpression of Korrigan and Sucrose Synthase Genes

Authors: Anil Kumar, Diwakar Aggarwal, M. Sudhakara Reddy

Abstract:

The wood of Eucalyptus, Populus and bamboos are some important species used as raw material for the manufacture of pulp. However, higher levels of lignin pose a problem during Kraft pulping and yield of pulp is also lower. In order to increase the yield of pulp per unit wood and reduce the use of chemicals during kraft pulping it is important to reduce the lignin content and/or increase cellulose content in wood. Cellulose biosynthesis in wood takes place by the coordinated action of many enzymes. The two important enzymes are KORRIGAN and SUCROSE SYNTHASE. KORRIGAN (Endo-1,4--glucanase) is implicated in the process of editing growing cellulose chains and improvement of the crystallinity of produced cellulose, whereas SUCROSE SYNTHASE is involved in providing substrate (UDP-glucose) for growing cellulose chains. The present study was aimed at the cloning, characterization and overexpression of these genes in Eucalyptus and Populus. An efficient shoot organogenesis protocol from leaf explants taken from micro shoots of the species has been developed. Agrobacterium mediated genetic transformation using Agrobacterium tumefaciens strain EHA105 and LBA4404 harboring binary vector pBI121 was achieved. Both the genes were cloned from cDNA library of Populus deltoides. These were subsequently characterized using various bioinformatics tools. The cloned genes were then inserted into pBI121 under the CaMV35S promotors replacing GUS gene. The constructs were then mobilized into above strains of Agrobacterium and used for the transformation work. Subsequently, genetic transformation of these clones with target genes following already developed protocol is in progress. Four transgenic lines of Eucalyptus tereticornis overexpressing Korrigan gene under the strong constitutive promoters CaMV35S have been developed, which are being further evaluated. Work on development of more transgenic lines overexpressing these genes in Populus and Eucalyptus is also in progress. This presentation will focus on important developments in this direction.

Keywords: Eucalyptus tereticornis, genetic transformation, Kraft pulping Populus deltoides

Procedia PDF Downloads 139
1133 Development of Novel Amphiphilic Block Copolymer of Renewable ε-Decalactone for Drug Delivery Application

Authors: Deepak Kakde, Steve Howdle, Derek Irvine, Cameron Alexander

Abstract:

The poor aqueous solubility is one of the major obstacles in the formulation development of many drugs. Around 70% of drugs are poorly soluble in aqueous media. In the last few decades, micelles have emerged as one of the major tools for solubilization of hydrophobic drugs. Micelles are nanosized structures (10-100nm) obtained by self-assembly of amphiphilic molecules into the water. The hydrophobic part of the micelle forms core which is surrounded by a hydrophilic outer shell called corona. These core-shell structures have been used as a drug delivery vehicle for many years. Although, the utility of micelles have been reduced due to the lack of sustainable materials. In the present study, a novel methoxy poly(ethylene glycol)-b-poly(ε-decalactone) (mPEG-b-PεDL) copolymer was synthesized by ring opening polymerization (ROP) of renewable ε-decalactone (ε-DL) monomers on methoxy poly(ethylene glycol) (mPEG) initiator using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a organocatalyst. All the reactions were conducted in bulk to avoid the use of toxic organic solvents. The copolymer was characterized by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).The mPEG-b-PεDL block copolymeric micelles containing indomethacin (IND) were prepared by nanoprecipitation method and evaluated as drug delivery vehicle. The size of the micelles was less than 40nm with narrow polydispersity pattern. TEM image showed uniform distribution of spherical micelles defined by clear surface boundary. The indomethacin loading was 7.4% for copolymer with molecular weight of 13000 and drug/polymer weight ratio of 4/50. The higher drug/polymer ratio decreased the drug loading. The drug release study in PBS (pH7.4) showed a sustained release of drug over a period of 24hr. In conclusion, we have developed a new sustainable polymeric material for IND delivery by combining the green synthetic approach with the use of renewable monomer for sustainable development of polymeric nanomedicine.

Keywords: dopolymer, ε-decalactone, indomethacin, micelles

Procedia PDF Downloads 295
1132 Cyclic Stress and Masing Behaviour of Modified 9Cr-1Mo at RT and 300 °C

Authors: Preeti Verma, P. Chellapandi, N.C. Santhi Srinivas, Vakil Singh

Abstract:

Modified 9Cr-1Mo steel is widely used for structural components like heat exchangers, pressure vessels and steam generator in the nuclear reactors. It is also found to be a candidate material for future metallic fuel sodium cooled fast breeder reactor because of its high thermal conductivity, lower thermal expansion coefficient, micro structural stability, high irradiation void swelling resistance and higher resistance to stress corrosion cracking in water-steam systems compared to austenitic stainless steels. The components of steam generators that operate at elevated temperatures are often subjected to repeated thermal stresses as a result of temperature gradients which occur on heating and cooling during start-ups and shutdowns or during variations in operating conditions of a reactor. These transient thermal stresses give rise to LCF damage. In the present investigation strain controlled low cycle fatigue tests were conducted at room temperature and 300 °C in normalized and tempered condition using total strain amplitudes in the range from ±0.25% to ±0.5% at strain rate of 10-2 s-1. Cyclic Stress response at high strain amplitudes (±0.31% to ±0.5%) showed initial softening followed by hardening upto a few cycles and subsequent softening till failure. The extent of softening increased with increase in strain amplitude and temperature. Depends on the strain amplitude of the test the stress strain hysteresis loops displayed Masing behaviour at higher strain amplitudes and non-Masing at lower strain amplitudes at both the temperatures. It is quite opposite to the usual Masing and Non-Masing behaviour reported earlier for different materials. Low cycle fatigue damage was evaluated in terms of plastic strain and plastic strain energy approach at room temperature and 300 °C. It was observed that the plastic strain energy approach was found to be more closely matches with the experimental fatigue lives particularly, at 300 °C where dynamic strain aging was observed.

Keywords: Modified 9Cr-mo steel, low cycle fatigue, Masing behavior, cyclic softening

Procedia PDF Downloads 443
1131 The Knowledge and Experiences of Pregnant Women Regarding Physical Activity during Pregnancy

Authors: Katarzyna Kwiatkowska, Izabela Walasik, Katarzyna Kosińska-Kaczyńska, Olga Płaza, Kinga Żebrowska

Abstract:

Introduction Adequate physical activity of a pregnant woman has been proven to decrease the risk of pregnancy complications. The knowledge of women regarding physical exercise in pregnancy is a part of conscious motherhood, while a lack of it may lead to not taking up any form of physical activity during pregnancy. Aim: The aim of the study was to assess the knowledge and experience of women regarding physical activity during their latest pregnancy. Material and methodology: An anonymous questionnaire, consisting of 57 questions, was completed electronically in 2018 by women who gave birth at least once. The respondents were qualified as 'physically active during pregnancy' if they performed physical exercises such as regular walks, marching, jogging, working out at a gym, swimming, yoga, pilates, fitness, exercise-ball workouts or home gymnastics. Results: The study group consisted of 9345 women. 52% of them performed exercises during pregnancy. The main reasons for the lack of physical activity were: lack of interest in physical activity (45%), lack of energy (40%), lack of knowledge regarding proper exercise during pregnancy (34%), lack of time (27%) and medical contraindications (25%). Non-active respondents suffered from gestational hypertension (6,7% vs 9,2%; p<00,1) and gave birth prematurely (11% vs 15%; p < 001) to newborns with a lower birth weight significantly more often ( < 2500g vs > 2500g; p < 0,001). Physically active women reported suffering from pregnancy-related ailments such as fatigue, back pain or constipation significantly less often. 22% of all respondents were unable to identify reliable sources of information regarding exercise during pregnancy. A majority of the exercising women used the Internet to obtain gain information on physical activity during pregnancy (69,1%). 4% of women thought that exercising during pregnancy is forbidden, while 20% thought it is not allowed in the 3rd trimester. Physically active women had vaginal delivery more often (61% vs 55%; p < 0,05). Episiotomy was performed most often on non-active primiparous respondents (77,5% vs 71% active primiparous, p < 0,001). 13% of women felt discriminated due to their physical activity during pregnancy. 22% of respondents’ physical activity was not accepted by their environment. 39,1% of the women were told by others to stop physical exercise because it was bad for the baby’s health. Conclusion: The knowledge of Polish women regarding proper physical activity during pregnancy is insufficient, which may influence a lack of will to initiate such activity among pregnant women. Physical activity of a pregnant woman may have an impact on the course of pregnancy and birth.

Keywords: childbirth, discrimination, physical activity, pregnancy

Procedia PDF Downloads 162
1130 Peat Soil Stabilization by Using Sugarcane Bagasse Ash (SCBA)

Authors: Mohd. Khaidir Abu Talib, Noriyuki Yasufuku, Ryohei Ishikura

Abstract:

It is well recognized that peat can impede the proper hydration of cement because of high organic content, presence of humic acid and less solid particles. That means the large amount of cement is required in order to neutralize the acids or otherwise the process of the peat stabilization remains retarded. Nevertheless, adding a great quantity of cement into the peat is absolutely an unfriendly and uneconomical solution. Sugarcane production is world number one commodities and produced a lot of bagasse. Bagasse is burnt to generate power required for diverse activities in the factory and leave bagasse ash as a waste. Increasing concern of disposal of bagasse residual creates interest to explore the potential application of this material. The objective of this study is to develop alternative binders that are environment friendly and contribute towards sustainable management by utilizing sugarcane bagasse ash (SCBA) in the stabilization of peat soil. Alongside SCBA, Ordinary Portland Cement (OPC), calcium chloride (CaCl2) and silica sand (K7) were used as additives to stabilize the peat that sampled from Hokkaido, Japan. In obtaining the optimal mix design, specimens of stabilized peat were tested in unconfined compression. It was found that stabilized peat comprising 20% and 5% (PCB1-20 and PCB2-5) partial replacement of OPC with SCBA 1 and SCBA 2 attain the maximum unconfined compressive strength (UCS) and discovered greater than untreated soil (P) and UCS of peat-cement (PC) specimen. At the optimal mix design, the UCS of the stabilized peat specimens increased with increasing of curing time, preloading during curing, OPC dosage and K7 dosage. For PCB1-20 mixture, inclusion of a minimum OPC dosage of 300 kg/m3 and K7 dosage of 500 kg/m3 along with curing under 20kPa pressure is recommendable for the peat stabilization to be effective. However for PCB2-5 mixture, it suggested to use more OPC and K7 dosage or alternatively increase the preloading during curing to 40kPa in order to achieve minimum strength target. It can be concluded that SCBA 1 has better quality than SCBA 2 in peat stabilization especially the contribution made by its fine particle size.

Keywords: peat stabilization, sugarcane bagasse ash utilization, partial cement replacement, unconfined strength

Procedia PDF Downloads 535
1129 Task-Based Teaching for Developing Communication Skills in Second Language Learners

Authors: Geeta Goyal

Abstract:

Teaching-learning of English as a second language is a challenge for the learner as well as the teacher. Whereas a student may find it hard and get demotivated while communicating in a language other than mother tongue, a teacher, too, finds it difficult to integrate necessary teaching material in lesson plans to maximize the outcome. Studies reveal that task-based teaching can be useful in diverse contexts in a second language classroom as it helps in creating opportunities for language exposure as per learners' interest and capability levels, which boosts their confidence and learning efficiency. The present study has analysed the impact of various activities carried out in a heterogenous group of second language learners at tertiary level in a semi-urban area in Haryana state of India. Language tasks were specifically planned with a focus on engaging groups of twenty-five students for a period of three weeks. These included language games such as spell-well, cross-naught besides other communicative and interactive tasks like mock-interviews, role plays, sharing experiences, storytelling, simulations, scene-enact, video-clipping, etc. Tools in form of handouts and cue cards were also used as per requirement. This experiment was conducted for ten groups of students taking bachelor’s courses in different streams of humanities, commerce, and sciences. Participants were continuously supervised, monitored, and guided by the respective teacher. Feedback was collected from the students through classroom observations, interviews, and questionnaires. Students' responses revealed that they felt comfortable and got plenty of opportunities to communicate freely without being afraid of making mistakes. It was observed that even slow/timid/shy learners got involved by getting an experience of English language usage in friendly environment. Moreover, it helped the teacher in establishing a trusting relationship with students and encouraged them to do the same with their classmates. The analysis of the data revealed that majority of students demonstrated improvement in their interest and enthusiasm in the class. The study revealed that task-based teaching was an effective method to improve the teaching-learning process under the given conditions.

Keywords: communication skills, English, second language, task-based teaching

Procedia PDF Downloads 87
1128 Efficacy Of Tranexamic Acid On Blood Loss After Primary Total Hip Replacement : A Case-control Study In 154 Patients

Authors: Fedili Benamar, Belloulou Mohamed Lamine, Ouahes Hassane, Ghattas Samir

Abstract:

Introduction: Perioperative blood loss is a frequent cause of complications in total hip replacement (THR). The present prospective study assessed the efficacy of tranexamic acid (Exacyl(®)) in reducing blood loss in primary THR. Hypothesis: Tranexamic acid reduces blood loss in THR. Material and method: -This is a prospective randomized study on the effectiveness of Exacyl (tranexamic acid) in total hip replacement surgery performed on a standardized technique between 2019 and September 2022. -It involved 154 patients, of which 84 received a single injection of Exacyl (group 1) at a dosage of 10 mg/kg over 20 minutes during the perioperative period. -All patients received postoperative thromboprophylaxis with enoxaparin 0.4 ml subcutaneously. -All patients were admitted to the post-interventional intensive care unit for a duration of 24 hours for monitoring and pain management as per the service protocol. Results: 154 patients, of which 84 received a single injection of Exacyl (group 1) and 70 patients patients who did not receive Exacyl perioperatively : (Group 2 ) The average age is 57 +/- 15 years The distribution by gender was nearly equal with 56% male and 44% female; "The distribution according to the ASA score was as follows: 20.2% ASA1, 82.3% ASA2, and 17.5% ASA3. "There was a significant difference in the average volume of intraoperative and postoperative bleeding during the 48 hours." The average bleeding volume for group 1 (received Exacyl) was 614 ml +/- 228, while the average bleeding volume for group 2 was 729 +/- 300, with a chi-square test of 6.35 and a p-value < 0.01, which is highly significant. The ANOVA test showed an F-statistic of 7.11 and a p-value of 0.008. A Bartlett test revealed a chi-square of 6.35 and a p-value < 0.01." "In Group 1 (patients who received Exacyl), 73% had bleeding less than 750 ml (Group A), and 26% had bleeding exceeding 750 ml (Group B). In Group 2 (patients who did not receive Exacyl perioperatively), 52% had bleeding less than 750 ml (Group A), and 47% had bleeding exceeding 750 ml (Group B). "Thus, the use of Exacyl reduced perioperative bleeding and specifically decreased the risk of severe bleeding exceeding 750 ml by 43% with a relative risk (RR) of 1.37 and a p-value < 0.01. The transfusion rate was 1.19% in the population of Group 1 (Exacyl), whereas it was 10% in the population of Group 2 (no Exacyl). It can be stated that the use of Exacyl resulted in a reduction in perioperative blood transfusion with an RR of 0.1 and a p-value of 0.02. Conclusions: The use of Exacyl significantly reduced perioperative bleeding in this type of surgery.

Keywords: acid tranexamic, blood loss, anesthesia, total hip replacement, surgery

Procedia PDF Downloads 77
1127 Art History as Inspiration for Chefs. An Autoethnographic Research About Art History Education in a Restaurant

Authors: Marta Merkl

Abstract:

The ongoing project what the paper will present is about how the author introduces chefs to the history of art through a selected piece of art. The author is originally an art historian, but since 2019 she has been working on her PhD research topic related to designing dining experiences in the restaurant context, including the role of sensory experiences and storytelling. Due to a scholarship, she can participate in the re-design of a fine dining restaurant called Onyx in Budapest, which was awarded two Michelin stars before the pandemic caused by COVID-19. The management of the restaurant wants to broaden the chefs' horizons and develop their creativity by introducing them to each chapter of the visual arts. There is a kind of polyphony in the mass of information about what should a chef, a food designer, or anybody who make food in everyday basis use as a source of inspiration for inventing and preparing new dishes: nostalgia, raw material, cookbooks, etc. In today's world of fine dining, nature is the main inspiration for outstanding achievements, as exemplified by the Slovenian restaurant Hiša Franko** and its chef Ana Roš. The starting point for the project and the research was the idea of using art history as an inspiration for gastronomy. The research relies on data collection via interviews, ethnography, and autoethnography. In this case, the reflective introspection of the researcher is also relevant because the researcher is an important part of the process (GOULD, 1995). The paper overviews the findings of the autoethnography literature relevant to our topic. In the literature review, it will be also pointed out that sustainability, eating as an experience, and the world of art can be linked. As ERDMANN and co-authors (1999) argues that the health dimension of sustainability has a component called 'joy of eating,' which implies strong ties to the experiential nature of eating. Therefore, it is worth to compare with PINE and GILMORE's (1998) theory of experience economy and with CSÍKSZENTMIHÁLYI's (1999) concept of flow, which give examples of gastronomy and art. The aim of the research is to map experiences of the pilot project, the discourse between the art world and the gastronomy actors. Another noteworthy aspect is whether the chefs are willing to use art history as an inspiration.

Keywords: art history, autoethnography, chef, education, experience, food preparation, inspiration, sustainability

Procedia PDF Downloads 143
1126 Evaluating the Process of Biofuel Generation from Grass

Authors: Karan Bhandari

Abstract:

Almost quarter region of Indian terrain is covered by grasslands. Grass being a low maintenance perennial crop is in abundance. Farmers are well acquainted with its nature, yield and storage. The aim of this paper is to study and identify the applicability of grass as a source of bio fuel. Anaerobic break down is a well-recognized technology. This process is vital for harnessing bio fuel from grass. Grass is a lignocellulosic material which is fibrous and can readily cause problems with parts in motion. Further, it also has a tendency to float. This paper also deals with the ideal digester configuration for biogas generation from grass. Intensive analysis of the literature is studied on the optimum production of grass storage in accordance with bio digester specifications. Subsequent to this two different digester systems were designed, fabricated, analyzed. The first setup was a double stage wet continuous arrangement usually known as a Continuously Stirred Tank Reactor (CSTR). The next was a double stage, double phase system implementing Sequentially Fed Leach Beds using an Upflow Anaerobic Sludge Blanket (SLBR-UASB). The above methodologies were carried for the same feedstock acquired from the same field. Examination of grass silage was undertaken using Biomethane Potential values. The outcomes portrayed that the Continuously Stirred Tank Reactor system produced about 450 liters of methane per Kg of volatile solids, at a detention period of 48 days. The second method involving Leach Beds produced about 340 liters of methane per Kg of volatile solids with a detention period of 28 days. The results showcased that CSTR when designed exclusively for grass proved to be extremely efficient in methane production. The SLBR-UASB has significant potential to allow for lower detention times with significant levels of methane production. This technology has immense future for research and development in India in terms utilizing of grass crop as a non-conventional source of fuel.

Keywords: biomethane potential values, bio digester specifications, continuously stirred tank reactor, upflow anaerobic sludge blanket

Procedia PDF Downloads 246
1125 Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser

Authors: K. Anas, M. Selvakumar, Samson David, R. R. Babu, S. Chattopadhyay

Abstract:

The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature.

Keywords: damping ratio, natural frequency, crosslinking density, segmental motion, surface activity, dissipative, polymeric chain friction

Procedia PDF Downloads 295
1124 Quantum Chemical Calculations on Molecular Structure, Spectroscopy and Non-Linear Optical Properties of Some Chalcone Derivatives

Authors: Archana Gupta, Rajesh Kumar

Abstract:

The chemistry of chalcones has generated intensive scientific studies throughout the world. Especially, interest has been focused on the synthesis and biodynamic activities of chalcones. The blue light transmittance, excellent crystallizability and the two planar rings connected through a conjugated double bond show that chalcone derivatives are superior nonlinear organic compounds. 3-(2-Chloro-6-fluoro¬phen¬yl)-1-(2-thien¬yl) prop-2-en-1-one, 3-(2, 4- Dichlorophenyl) – 1 - (4-methylphenyl) – prop -2-en-1-one, (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one are some chalcone derivatives exhibiting non linear optical (NLO) properties. NLO materials have been extensively investigated in recent years as they are the key elements for photonic technologies of optical communication, optical interconnect oscillator, amplifier, frequency converter etc. Due to their high molecular hyperpolarizabilities, organic materials display a number of significant NLO properties. Experimental measurements and theoretical calculations on molecular hyperpolarizability β have become one of the key factors in the design of second order NLO materials. Theoretical determination of hyperpolarizability is quite useful both in understanding the relationship between the molecular structure and NLO properties. It also provides a guideline to experimentalists for the design and synthesis of organic NLO materials. Quantum-chemical calculations have made an important contribution to the understanding of the electronic polarization underlying the molecular NLO processes and the establishment of structure–property relationships. In the present investigation, the detailed vibrational analysis of some chalcone derivatives is taken up to understand the correlation of the charge transfer interaction and the NLO activity of the molecules based on density functional theory calculations. The vibrational modes contributing toward the NLO activity have been identified and analyzed. Rather large hyperpolarizability derived by theoretical calculations suggests the possible future use of these compounds for non-linear optical applications. The study suggests the importance of π - conjugated systems for non-linear optical properties and the possibility of charge transfer interactions. We hope that the results of the present study of chalcone derivatives are of assistance in development of new efficient materials for technological applications.

Keywords: hyperpolarizability, molecular structure, NLO material, quantum chemical calculations

Procedia PDF Downloads 234
1123 Cultivating Social-Ecological Resilience, Harvesting Biocultural Resistance in Southern Andes

Authors: Constanza Monterrubio-Solis, Jose Tomas Ibarra

Abstract:

The fertile interdependence of social-ecological systems reveals itself in the interactions between native forests and seeds, home gardens, kitchens, foraging activities, local knowledge, and food practices, creating particular flavors and food meanings as part of cultural identities within territories. Resilience in local-food systems, from a relational perspective, can be understood as the balance between persistence and adaptability to change. Food growing, preparation, and consumption are constantly changing and adapting as expressions of agency of female and male indigenous peoples and peasants. This paper explores local food systems’ expressions of resilience in the la Araucanía region of Chile, namely: diversity, redundancy, buffer capacity, modularity, self-organization, governance, learning, equity, and decision-making. Applying ethnographic research methods (participant observation, focus groups, and semi-structured interviews), this work reflects on the experience developed through work with Mapuche women cultivating home gardens in the region since 2012; it looks to material and symbolic elements of resilience in the local indigenous food systems. Local food systems show indeed indicators of social-ecological resilience. The biocultural memory is expressed in affection to particular flavors and recipes, the cultural importance of seeds and reciprocity networks, as well as an accurate knowledge about the indicators of the seasons and weather, which have allowed local food systems to thrive with a strong cultural foundation. Furthermore, these elements turn into biocultural resistance in the face of the current institutional pressures for rural specialization, processes of cultural assimilation such as agroecosystems and diet homogenization, as well as structural threats towards the diversity and freedom of native seeds. Thus, the resilience-resistance dynamic shown by the social-ecological systems of the southern Andes is daily expressed in the local food systems and flavors and is key for diverse and culturally sound social-ecological health.

Keywords: biocultural heritage, indigenous food systems, social-ecological resilience, southern Andes

Procedia PDF Downloads 136
1122 A Review: The Impact of Core Quality the Empirical Review of Critical Factors on the Causes of Delay in Road Constructions Projects in the GCC Countries

Authors: Sulaiman Al-Hinai, Setyawan Widyarto

Abstract:

The aim of this study is to identify the critically dominating factors on the delays of road constructions in the GCC countries and their effects on project delivery in Arab countries. Towards the achieved of the objectives the study used the empirical literature from the all relevant online sources and database as many as possible. The findings of this study have summarized and short listed of the success factors in the two categories such as internal and external factors have caused to be influenced to delay of road constructions in the Arab regions. However, in the category of internal factors, there are 63 factors short listed from seven group of factors which has revealed to effects on the delay of road constructions especially, the consultant related factors, the contractor related factors, designed related factors, client related factors, labor related factors, material related issues, equipment related issues respectively. Moreover, for external related factors are also considered to summarized especially natural disaster (flood, hurricanes and cyclone etc.), conflict, war, global financial crisis, compensation delay to affected property owner, price fluctuated, unexpected ground conditions (soil and high-water level), changing of government regulations and laws, delays in obtaining permission from municipality, loss of time by traffic control and restrictions at job site, problem with inhabitant of community, delays in providing service from utilities (water and electricity’s) and accident during constructions accordingly. The present study also concluded the effects of above factors which has delay road constructions through increasing of cost and overrun it, taken overtime, creating of disputes, going for lawsuits, finally happening of abandon of projects. Thus, the present study has given the following recommendations to overcome of above problems by increasing of detailed site investigations, ensure careful monitoring and regular meetings, effective site management, collaborative working and effective coordination’s, proper and comprehensive planning and scheduling and ensure full and intensive commitment from all parties accordingly.

Keywords: Arab GCC countries, critical success factors, road constructions delay, project management

Procedia PDF Downloads 127
1121 Role of Geohydrology in Groundwater Management-Case Study of Pachod Village, Maharashtra, India

Authors: Ashok Tejankar, Rohan K. Pathrikar

Abstract:

Maharashtra is covered by heterogeneous flows of Deccan basaltic terrains of upper cretaceous to lower Eocene age. It consist mainly different types of basalt flow, having heterogeneous Geohydrological characters. The study area Aurangabad dist. lies in the central part of Maharashtra. The study area is typically covered by Deccan traps formation mainly basalt type of igneous volcanic rock. The area is located in the survey of India toposheet No. 47M and laying between 19° to 20° north latitudes and 74° to 76° east longitudes. Groundwater is the primary source for fresh water in the study area. There has been a growing demand for fresh water in domestic & agriculture sectors. Due to over exploitation and rainfall failure has been created an irrecoverable stress on groundwater in study area. In an effort to maintain the water table condition in balance, artificial recharge is being implemented. The selection of site for artificial recharge is a very important task in recharge basalt. The present study aims at sitting artificial recharge structure at village Pachod in basaltic terrain of the Godavari-Purna river basin in Aurangabad district of Maharashtra, India. where the average annual rainfall is 650mm. In this investigation, integrated remote sensing and GIS techniques were used and various parameters like lithology, structure, etc. aspect of drainage basins, landforms and other parameters were extracted from visual interpretation of IRS P6 Satellite data and Survey of India (SIO) topographical sheets, aided by field checks by carrying well inventory survey. The depth of weathered material, water table conditions, and rainfall data were been considered. All the thematic information layers were digitized and analyzed in Arc-GIS environment and the composite maps produced show suitable site, depth of bed rock flows for successful artificial recharge in village Pachod to increase groundwater potential of low laying area.

Keywords: hard rock, artificial recharge, remote sensing, GIS

Procedia PDF Downloads 292
1120 ASEAN Limited Centrality in Connectivity: Managing the China-Japan Infrastructure Competition

Authors: Barbora Valockova

Abstract:

Scholars recommend the establishment of a multilateral coordination mechanism by ASEAN, such as an infrastructure forum, to contain the China-Japan infrastructure financing competition in the region. However, they do not systematically investigate the reasons for its absence. This paper aims to fill the gap by addressing the following question: Why has ASEAN been unable to set up any multilateral coordination mechanism to soften the China-Japan infrastructure financing competition? This paper argues that ASEAN has not been able to set up such a mechanism due to its limited centrality in connectivity. This limited centrality decreases ASEAN’s ability to manage the China-Japan competition in a more comprehensive and coordinated way. Rather, ASEAN acts as a scope setter in connectivity, although this is not completely ineffective. This paper is divided into four sections. The first section explores the key tenets of the concept of ASEAN centrality in connectivity, which is under-examined in the current literature. The second section examines the extent to which ASEAN limited centrality in connectivity is being respected by China and Japan. The third section analyses how various stakeholders, such as ASEAN member states, their leaders and bureaucracy, and foreign private companies prevent ASEAN from attaining stronger centrality. The last section concludes and offers recommendations. Data is gathered using primary sources (official ASEAN, Chinese, and Japanese documents, interviews, etc.) and secondary material. By providing a nuanced analysis of ASEAN centrality in connectivity and developing a new operationalization of the concept, this paper aims to contribute to the international relations literature on ASEAN centrality. Initial findings suggest that while ASEAN limited centrality in connectivity has some effectiveness, it is not sufficient for setting up a multilateral coordination mechanism. While it represents a solid departure point, any potential possessed by ASEAN to evolve beyond a scope setter in connectivity is hampered by stakeholders involved in infrastructure development. While these players and their interactions can have both positive and negative effects on the scope set by ASEAN, it is unlikely that they would allow ASEAN to become the real central player. There can be no stronger ASEAN centrality in connectivity without ASEAN unity and neutrality. However, the last two factors are difficult to attain in the context of infrastructure development since ASEAN member states and stakeholders all have their styles and preferences. All other things being equal, these circumstances favor a loose, vague, and quasi-prescriptive arrangement among the relevant stakeholders.

Keywords: ASEAN centrality, China-Japan infrastructure competition, connectivity, scope setter

Procedia PDF Downloads 197
1119 On a Determination of Residual Stresses and Wear Resistance of Thermally Sprayed Stainless Steel Coating

Authors: Merzak Laribi, Abdelmadjid Kasser

Abstract:

Thermal spraying processes are widely used to produce coatings on original constructions as well as in repair and maintenance of long standing structures. A lot of efforts forwarding to develop thermal spray coatings technology have been focused on improving mechanical characteristics, minimizing residual stress level and reducing porosity of the coatings. The specific aim of this paper is to determine either residual stresses distribution or wear resistance of stainless steel coating thermally sprayed on a carbon steel substrate. Internal stresses determination was performed using an extensometric method in combination with a simultaneous progressive electrolytic polishing. The procedure consists of measuring micro-deformations using a bi-directional extensometric gauges glued on the substrate side of the materials. Very thin layers of the deposits are removed by electrochemical polishing across the sample surface. Micro-deformations are instantaneously measured, leading to residual stresses calculation after each removal. Wear resistance of the coating has been determined using a ball-on-plate tribometer. Friction coefficient is instantaneously measured during the tribological test. Attention was particularly focused on the influence of a post-annealing at 850 °C for one hour in vacuum either on the residual stresses distribution or on the wear resistance behavior under specific wear and lubrication conditions. The obtained results showed that the microstructure of the obtained arc sprayed stainless steel coating is classical. It is homogeneous and contains un-melted particles, metallic oxides and also pores and micro-cracks. The internal stresses are in compression in the coating. They are more or less scattered between -50 and -270 MPa on the surface and decreased more at the interface. The value at the surface of the substrate is about –700 MPa, partially due to the molten particles impact with the substrate. The post annealing has reduced the residual stresses in both coating and surface of the steel substrate so that the hole material becomes more relaxed. Friction coefficient has an average value of 0.3 and 0.4 respectively for non annealed and annealed specimen. It is rather oil lubrication which is really benefit so that friction coefficient is decreased to about 0.06.

Keywords: residual stresses, wear resistance, stainless steel, coating, thermal spraying, annealing, lubrication

Procedia PDF Downloads 126
1118 An Examination of Factors Leading to Knowledge-Sharing Behavior of Sri Lankan Bankers

Authors: Eranga N. Somaratna, Pradeep Dharmadasa

Abstract:

In the current competitive environment, the factors leading to organization success are not limited to the investment of capital, labor, and raw material, but in the ability of knowledge innovation from all the members of an organization. However, knowledge on its own cannot provide organizations with its promised benefits unless it is shared, as organizations are increasingly experiencing unsuccessful knowledge sharing efforts. In such a backdrop and due to the dearth of research in this area in the South Asian context, the study set forth to develop an understanding of the factors that influence knowledge-sharing behavior within an organizational framework, using widely accepted social psychology theories. The purpose of the article is to discover the determinants of knowledge-sharing intention and actual knowledge sharing behaviors of bank employees in Sri Lanka using an aggregate model. Knowledge sharing intentions are widely discussed in literature through the application of Ajzen’s Theory of planned behavior (TPB) and Theory of Social Capital (SCT) separately. Both the theories are rich to explain knowledge sharing intention of workers with limitations. The study, therefore, combines the TPB with SCT in developing its conceptual model. Data were collected through a self-administrated paper-based questionnaire of 199 bank managers from 6 public and private banks of Sri Lanka and analyzed the suggested research model using Structural Equation Modelling (SEM). The study supported six of the nine hypotheses, where Attitudes toward Knowledge Sharing Behavior, Perceived Behavioral Control, Trust, Anticipated Reciprocal Relationships and Actual Knowledge Sharing Behavior were supported while Organizational Climate, Sense of Self-Worth and Anticipated Extrinsic Rewards were not, in determining knowledge sharing intentions. Furthermore, the study investigated the effect of demographic factors of bankers (age, gender, position, education, and experiences) to the actual knowledge sharing behavior. However, findings should be confirmed using a larger sample, as well as through cross-sectional studies. The results highlight the need for theoreticians to combined TPB and SCT in understanding knowledge workers’ intentions and actual behavior; and for practitioners to focus on the perceptions and needs of the individual knowledge worker and the need to cultivate a culture of sharing knowledge in the organization for their mutual benefit.

Keywords: banks, employees behavior, knowledge management, knowledge sharing

Procedia PDF Downloads 132
1117 Experimental Investigation on Strengthening of Timber Beam Using Glass Fibers and Steel Plates

Authors: Sisaynew Tesfaw Admassu

Abstract:

The strengthening of timber beams can be necessary for several reasons including the increase of live loads (possible in a historical building for a change of destination of use or upgrading to meet new requirements), the reduction of the resistant cross-sections following deterioration (attacks of biological agents such as fungi, and insects) or traumatic events (fires) and the excess of deflection in the members. The main purpose of strengthening an element is not merely to repair it, but also to prevent and minimize the appearance of future problems. This study did an experimental investigation on the behavior of reference and strengthened solid timber beams. The strengthening materials used in this study were CSM-450 glass fiber and steel materials for both flexural and shear strengthening techniques. Twenty-two solid timber beams of Juniperus procera (TID) species with the dimensions of 60 x 90 x 780 mm were used in the present study. The binding material to bond the strengthening materials with timber was general-purpose resin with Luperox® K10 MEKP catalyst. Three beams were used as control beams (unstrengthen beams) while the remaining nineteen beams were strengthened using the strengthening materials for flexure and shear. All the beams were tested for three points loading to failure by using a Universal Testing Machine, UTM-600kN machine. The experimental results showed that the strengthened beams performed better than the unstrengthen beams. The experimental result of flexural strengthened beams showed that the load-bearing capacity of strengthened beams increased between 16.34 – 42.55%. Four layers of Glass Fiber Reinforced polymer on the tension side of the beams was shown to be the most effective way to enhance load-bearing capacity. The strengthened beams also have an enhancement in their flexural stiffness. The stiffness of flexural strengthened beams was increased between 1.18 – 65.53% as compared to the control beams. The highest increment in stiffness has occurred on beams strengthened using 2x60 mm steel plates. The shear-strengthened beams showed a relatively small amount of performance as compared to flexural-strengthened beams; the reason is that the beams are sufficient for shear. The polyester resin used in the experimental work showed good performance in bonding agents between materials. The resin showed more effectiveness in GFRP materials than steel materials.

Keywords: heritage structures, strengthening, stiffness, adhesive, polyester resin, steel plates

Procedia PDF Downloads 73
1116 Evaluating the Success of an Intervention Course in a South African Engineering Programme

Authors: Alessandra Chiara Maraschin, Estelle Trengove

Abstract:

In South Africa, only 23% of engineering students attain their degrees in the minimum time of 4 years. This begs the question: Why is the 4-year throughput rate so low? Improving the throughput rate is crucial in assisting students to the shortest possible path to completion. The Electrical Engineering programme has a fixed curriculum and students must pass all courses in order to graduate. In South Africa, as is the case in several other countries, many students rely on external funding such as bursaries from companies in industry. If students fail a course, they often lose their bursaries, and most might not be able to fund their 'repeating year' fees. It is thus important to improve the throughput rate, since for many students, graduating from university is a way out of poverty for an entire family. In Electrical Engineering, it has been found that the Software Development I course (an introduction to C++ programming) is a significant hurdle course for students and has been found to have a low pass rate. It has been well-documented that students struggle with this type of course as it introduces a number of new threshold concepts that can be challenging to grasp in a short time frame. In an attempt to mitigate this situation, a part-time night-school for Software Development I was introduced in 2015 as an intervention measure. The course includes all the course material from the Software Development I module and allows students who failed the course in first semester a second chance by repeating the course through taking the night-school course. The purpose of this study is to determine whether the introduction of this intervention course could be considered a success. The success of the intervention is assessed in two ways. The study will first look at whether the night-school course contributed to improving the pass rate of the Software Development I course. Secondly, the study will examine whether the intervention contributed to improving the overall throughput from the 2nd year to the 3rd year of study at a South African University. Second year academic results for a sample of 1216 students have been collected from 2010-2017. Preliminary results show that the lowest pass rate for Software Development I was found to be in 2017 with a pass rate of 34.9%. Since the intervention course's inception, the pass rate for Software Development I has increased each year from 2015-2017 by 13.75%, 25.53% and 25.81% respectively. To conclude, the preliminary results show that the intervention course is a success in improving the pass rate of Software Development I.

Keywords: academic performance, electrical engineering, engineering education, intervention course, low pass rate, software development course, throughput

Procedia PDF Downloads 164
1115 Histological Study on the Effect of Bone Marrow Transplantation Combined with Curcumin on Pancreatic Regeneration in Streptozotocin Induced Diabetic Rats

Authors: Manal M. Shehata, Kawther M. Abdel-Hamid, Nashwa A. Mohamed, Marwa H. Bakr, Maged S. Mahmoud, Hala M. Elbadre

Abstract:

Introduction: The worldwide rapid increase in diabetes poses a significant challenge to current therapeutic approaches. Therapeutic utility of bone marrow transplantation in diabetes is an attractive approach. However, the oxidative stress generated by hyperglycemia may hinder β-cell regeneration. Curcumin, is a dietary spice with antioxidant activity. Aim of work: The present study was undertaken to investigate the therapeutic potential of curcumin, bone marrow transplantation, and their combined effects in the reversal of experimental diabetes. Material and Methods: Fifty adult male healthy albino rats were included in the present study.They were divided into two groups: Group І: (control group) included 10 rats. Group П: (diabetic group): included 40 rats. Diabetes was induced by single intraperitoneal injection of streptozotocin (STZ). Group II will be further subdivided into four groups (10 rats for each): Group II-a (diabetic control). Group II-b: rats were received single intraperitoneal injection of bone marrow suspension (un-fractionated bone marrow cells) prepared from rats of the same family. Group II-c: rats were treated with curcumin orally by gastric intubation for 6 weeks. Group II-d: rats were received a combination of single bone marrow transplantation and curcumin for 6 weeks. After 6 weeks, blood glucose, insulin levels were measured and the pancreas from all rats were processed for Histological, Immunohistochemical and morphometric examination. Results: Diabetic group, showed progressive histological changes in the pancreatic islets. Treatment with either curcumin or bone marrow transplantation improved the structure of the islets and reversed streptozotocin-induced hyperglycemia and hypoinsulinemia. Combination of curcumin and bone marrow transplantation elicited more profound alleviation of streptozotocin-induced changes including islet regeneration and insulin secretion. Conclusion: The use of natural antioxidants combined with bone marrow transplantation to induce pancreatic regeneration is a promising strategy in the management of diabetes.

Keywords: diabtes, panceatic islets, bone marrow transplantation, curcumin

Procedia PDF Downloads 386
1114 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 116
1113 Application of Heritage Clay Roof Tiles in Malaysia’s Government Buildings: Conservation Challenges

Authors: Mohd Sabere Sulaiman, Masyitah Abd Aziz, Norsiah Hassan, Jamilah Halina Abdul Halim, Mohd Saipul Asrafi Haron

Abstract:

The use of clay roof tiles was spread out through Asia and Europe, including Malaysia, since the early 17th Century. Most of the common type of clay roof tiles are used in a flat and rectangular shape, measurement, styles, and characteristics through each tradition and interest, including responsive to the climate. Various types of heritage clay roof tiles were used in Malaysia’s Government Buildings dated 1865, 1919, 1936, and so forth, which mostly were imported from India, France, and Italy. Until now, these heritage clay roof tiles are still found throughout Malaysia, including the ‘Interlocking’ clay roof tile type. This study is to investigate and overview the existence of heritage clay roof tiles used in Malaysia; the ‘interlocking’ type with ‘lip’ and ‘hooks’, through literature reviews as desktop study besides carried out a preliminary observation on various sites and interviews. From the literatures, the last production and used of the local heritage clay roof tiles in Malaysia dated in mid 1900s in Batu Arang, Selangor. The brick factory was abandoned since early 2000s. Although the modern ‘Interlocking’ type were produced to duplicate its form, pattern, and size of the original one, they still facing the problem to blend and merged, which end up dismantling the original version, or replacing one to one condition and even replaced overall with the modern materials. This is quite contradicting with the basic principles of building conservation and had become a challenge. Initial findings from the preliminary observation on site in various state in Malaysia shows some evidence that the heritage clay roof tiles are still intact and been used. Some of them might change to modern roof materials such as metal deck, probably due to easy maintenance and cheaper. Also, some are still struggling to maintain and retain its looks and authenticity of the roof while facing the increasing of material cost. Those improper alteration and changes made is due to lack of knowledge among the owner and end user. Various aspect needs to be considered in order to sustain its usage and its original looks by looking at the proper maintenance aspects of the heritage clay roof tiles to prolong the building life for future generation preferences.

Keywords: challenges, clay, interlocking, maintenance

Procedia PDF Downloads 96
1112 Radiation Protection and Licensing for an Experimental Fusion Facility: The Italian and European Approaches

Authors: S. Sandri, G. M. Contessa, C. Poggi

Abstract:

An experimental nuclear fusion device could be seen as a step toward the development of the future nuclear fusion power plant. If compared with other possible solutions to the energy problem, nuclear fusion has advantages that ensure sustainability and security. In particular considering the radioactivity and the radioactive waste produced, in a nuclear fusion plant the component materials could be selected in order to limit the decay period, making it possible the recycling in a new reactor after about 100 years from the beginning of the decommissioning. To achieve this and other pertinent goals many experimental machines have been developed and operated worldwide in the last decades, underlining that radiation protection and workers exposure are critical aspects of these facilities due to the high flux, high energy neutrons produced in the fusion reactions. Direct radiation, material activation, tritium diffusion and other related issues pose a real challenge to the demonstration that these devices are safer than the nuclear fission facilities. In Italy, a limited number of fusion facilities have been constructed and operated since 30 years ago, mainly at the ENEA Frascati Center, and the radiation protection approach, addressed by the national licensing requirements, shows that it is not always easy to respect the constraints for the workers' exposure to ionizing radiation. In the current analysis, the main radiation protection issues encountered in the Italian Fusion facilities are considered and discussed, and the technical and legal requirements are described. The licensing process for these kinds of devices is outlined and compared with that of other European countries. The following aspects are considered throughout the current study: i) description of the installation, plant and systems, ii) suitability of the area, buildings, and structures, iii) radioprotection structures and organization, iv) exposure of personnel, v) accident analysis and relevant radiological consequences, vi) radioactive wastes assessment and management. In conclusion, the analysis points out the needing of a special attention to the radiological exposure of the workers in order to demonstrate at least the same level of safety as that reached at the nuclear fission facilities.

Keywords: fusion facilities, high energy neutrons, licensing process, radiation protection

Procedia PDF Downloads 352
1111 Instrumental Characterization of Cyanobacteria as Polyhydroxybutyrate Producer

Authors: Eva Slaninova, Diana Cernayova, Zuzana Sedrlova, Katerina Mrazova, Petr Sedlacek, Jana Nebesarova, Stanislav Obruca

Abstract:

Cyanobacteria are gram-negative prokaryotes belonging to a group of photosynthetic bacteria. In comparison with heterotrophic microorganisms, cyanobacteria utilize atmospheric nitrogen and carbon dioxide without any additional substrates. This ability of these microorganisms could be employed in biotechnology for the production of bioplastics, concretely polyhydroxyalkanoates (PHAs) which are primarily accumulated as a storage material in cells in the form of intracellular granules. In this study, there two cyanobacterial cultures from genera Synechocystis were used, namely Synechocystic sp. PCC 6803 and Synechocystis salina CCALA 192. There were optimized and used several various approaches, including microscopic techniques such as cryo-scanning electron microscopy (Cryo-SEM) and transmission electron microscopy (TEM), and fluorescence lifetime imaging microscopy using Nile red as a fluorescent probe (FLIM). Due to these instrumental techniques, the morphology of intracellular space and surface of cells were characterized. The next group of methods which were employed was spectroscopic techniques such as UV-Vis spectroscopy measured in two modes (turbidimetry and integration sphere) and Fourier transform infrared spectroscopy (FTIR). All these diverse techniques were used for the detection and characterization of pigments (chlorophylls, carotenoids, phycocyanin, etc.) and PHAs, in our case poly (3-hydroxybutyrate) (P3HB). To verify results, gas chromatography (GC) was employed concretely for the determination of the amount of P3HB in biomass. Cyanobacteria were also characterized as polyhydroxybutyrate producers by flow cytometer, which could count cells and at the same time distinguish cells including P3HB and without due to fluorescent probe called BODIPY and live/dead fluorescent probe SYTO Blue. Based on results, P3HB content in cyanobacteria cells was determined, as also the overall fitness of the cells. Acknowledgment: Funding: This study was partly funded by the projectGA19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), project I 4082-B25.

Keywords: cyanobacteria, fluorescent probe, microscopic techniques, poly(3hydroxybutyrate), spectroscopy, chromatography

Procedia PDF Downloads 229
1110 Effect of Varying Zener-Hollomon Parameter (Temperature and Flow Stress) and Stress Relaxation on Creep Response of Hot Deformed AA3104 Can Body Stock

Authors: Oyindamola Kayode, Sarah George, Roberto Borrageiro, Mike Shirran

Abstract:

A phenomenon identified by our industrial partner has experienced sag on AA3104 can body stock (CBS) transfer bar during transportation of the slab from the breakdown mill to the finishing mill. Excessive sag results in bottom scuffing of the slab onto the roller table, resulting in surface defects on the final product. It has been found that increasing the strain rate on the breakdown mill final pass results in a slab resistant to sag. The creep response for materials hot deformed at different Zener–Holloman parameter values needs to be evaluated experimentally to gain better understanding of the operating mechanism. This study investigates this identified phenomenon through laboratory simulation of the breakdown mill conditions for various strain rates by utilizing the Gleeble at UCT Centre for Materials Engineering. The experiment will determine the creep response for a range of conditions as well as quantifying the associated material microstructure (sub-grain size, grain structure etc). The experimental matrices were determined based on experimental conditions approximate to industrial hot breakdown rolling and carried out on the Gleeble 3800 at the Centre for Materials Engineering, University of Cape Town. Plane strain compression samples were used for this series of tests at an applied load that allow for better contact and exaggerated creep displacement. A tantalum barrier layer was used for increased conductivity and decreased risk of anvil welding. One set of tests with no in-situ hold time was performed, where the samples were quenched after deformation. The samples were retained for microstructure analysis of the micrographs from the light microscopy (LM), quantitative data and images from scanning electron microscopy (SEM) and energy dispersive X-ray (EDX), sub-grain size and grain structure from electron back scattered diffraction (EBSD).

Keywords: aluminium alloy, can-body stock, hot rolling, creep response, Zener-Hollomon parameter

Procedia PDF Downloads 86
1109 Fuzzy Decision Making to the Construction Project Management: Glass Facade Selection

Authors: Katarina Rogulj, Ivana Racetin, Jelena Kilic

Abstract:

In this study, the fuzzy logic approach (FLA) was developed for construction project management (CPM) under uncertainty and duality. The focus was on decision making in selecting the type of the glass facade for a residential-commercial building in the main design. The adoption of fuzzy sets was capable of reflecting construction managers’ reliability level over subjective judgments, and thus the robustness of the system can be achieved. An α-cuts method was utilized for discretizing the fuzzy sets in FLA. This method can communicate all uncertain information in the optimization process, taking into account the values of this information. Furthermore, FLA provides in-depth analyses of diverse policy scenarios that are related to various levels of economic aspects when it comes to the construction projects' valid decision making. The developed approach is applied to CPM to demonstrate its applicability. Analyzing the materials of glass facades, variants were defined. The development of the FLA for the CPM included relevant construction projec'ts stakeholders that were involved in the criteria definition to evaluate each variant. Using fuzzy Decision-Making Trial and Evaluation Laboratory Method (DEMATEL) comparison of the glass facade was conducted. This way, a rank, according to the priorities for inclusion into the main design, of variants is obtained. The concept was tested on a residential-commercial building in the city of Rijeka, Croatia. The newly developed methodology was then compared with the existing one. The aim of the research was to define an approach that will improve current judgments and decisions when it comes to the material selection of buildings facade as one of the most important architectural and engineering tasks in the main design. The advantage of the new methodology compared to the old one is that it includes the subjective side of the managers’ decisions, as an inevitable factor in each decision making. The proposed approach can help construction projects managers to identify the desired type of glass facade according to their preference and practical conditions, as well as facilitate in-depth analyses of tradeoffs between economic efficiency and architectural design.

Keywords: construction projects management, DEMATEL, fuzzy logic approach, glass façade selection

Procedia PDF Downloads 137