Search results for: time delay neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22284

Search results for: time delay neural network

16764 An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery

Authors: Luisa Mesquita Oliveira Ribeiro, Alexei Manso Correa Machado

Abstract:

Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively.

Keywords: biometrics, deep learning, handwriting, signature forgery

Procedia PDF Downloads 83
16763 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 98
16762 Effects of Collection Time on Chemical Composition of Leaf Essential Oils of Hoslundia opposita

Authors: O. E. Ogunjinmi, N. O. Olawore, L. A. Usman, S. O. Ogunjinmi

Abstract:

An essential oil is any concentrated, hydrophobic liquid containing volatile aroma compounds produced by plants. It has been established that several factors affect the component of the plants such as the texture of the soil, relative humidity, wind, and collection time. This study is aimed at investigating the effect of collection time on the chemical composition of this essential oil. Pulverized leaves (500 g) of Hoslundia opposite harvested in the morning (7 am) and afternoon (2 pm) of the same day were separately hydrodistilled using Clevenger apparatus to obtain the essential oils from the leaves. The leaf oils collected in the morning (7 am) and afternoon (2 pm) harvests yielded 0.54 and 0.65 %w/w respectively. Analysis of the leaf oil obtained in the morning, using gas chromatography (GC) and gas chromatography combined mass spectrometry (GC-MS) revealed the presence of twenty-three (23) compounds which made up 81.8% of the total oil while nineteen (19) compounds (93.2%) were identified in the afternoon leaf essential oil. The most abundant components of the leaf oil collected in the morning (7 am) harvest were p-cymene (28.7%), sabinene (7.1%) and 1,8-cineole (6.6%) Meanwhile the major components of leaf oil in the afternoon (2 pm) harvest were p-cymene (26.4%), thymol (15.3%), 1,8-cineole (15.0%) and g-terpinene (10.4%). The composition pattern of leaf oil obtained in the morning and afternoon harvests of Hoslundia opposite revealed significant differences in qualitative and quantitative.

Keywords: essential oil, Hoslundia opposita, para cymene, 1, 8-cineole

Procedia PDF Downloads 392
16761 Optimization of Process Parameters for Copper Extraction from Wastewater Treatment Sludge by Sulfuric Acid

Authors: Usarat Thawornchaisit, Kamalasiri Juthaisong, Kasama Parsongjeen, Phonsiri Phoengchan

Abstract:

In this study, sludge samples that were collected from the wastewater treatment plant of a printed circuit board manufacturing industry in Thailand were subjected to acid extraction using sulfuric acid as the chemical extracting agent. The effects of sulfuric acid concentration (A), the ratio of a volume of acid to a quantity of sludge (B) and extraction time (C) on the efficiency of copper extraction were investigated with the aim of finding the optimal conditions for maximum removal of copper from the wastewater treatment sludge. Factorial experimental design was employed to model the copper extraction process. The results were analyzed statistically using analysis of variance to identify the process variables that were significantly affected the copper extraction efficiency. Results showed that all linear terms and an interaction term between volume of acid to quantity of sludge ratio and extraction time (BC), had statistically significant influence on the efficiency of copper extraction under tested conditions in which the most significant effect was ascribed to volume of acid to quantity of sludge ratio (B), followed by sulfuric acid concentration (A), extraction time (C) and interaction term of BC, respectively. The remaining two-way interaction terms, (AB, AC) and the three-way interaction term (ABC) is not statistically significant at the significance level of 0.05. The model equation was derived for the copper extraction process and the optimization of the process was performed using a multiple response method called desirability (D) function to optimize the extraction parameters by targeting maximum removal. The optimum extraction conditions of 99% of copper were found to be sulfuric acid concentration: 0.9 M, ratio of the volume of acid (mL) to the quantity of sludge (g) at 100:1 with an extraction time of 80 min. Experiments under the optimized conditions have been carried out to validate the accuracy of the Model.

Keywords: acid treatment, chemical extraction, sludge, waste management

Procedia PDF Downloads 198
16760 Determination of the Minimum Time and the Optimal Trajectory of a Moving Robot Using Picard's Method

Authors: Abbes Lounis, Kahina Louadj, Mohamed Aidene

Abstract:

This paper presents an optimal control problem applied to a robot; the problem is to determine a command which makes it possible to reach a final state from a given initial state in record time. The approach followed to solve this optimization problem with constraints on the control starts by presenting the equations of motion of the dynamic system then by applying Pontryagin's maximum principle (PMP) to determine the optimal control, and Picard's successive approximation method combined with the shooting method to solve the resulting differential system.

Keywords: robotics, Pontryagin's Maximum Principle, PMP, Picard's method, shooting method, non-linear differential systems

Procedia PDF Downloads 255
16759 A Connected Structure of All-Optical Logic Gate “NOT-AND”

Authors: Roumaissa Derdour, Lebbal Mohamed Redha

Abstract:

We present a study of the transmission of the all-optical logic gate using a structure connected with a triangular photonic crystal lattice that is improved. The proposed logic gate consists of a photonic crystal nano-resonator formed by changing the size of the air holes. In addition to the simplicity, the response time is very short, and the designed nano-resonator increases the bit rate of the logic gate. The two-dimensional finite difference time domain (2DFDTD) method is used to simulate the structure; the transmission obtained is about 98% with very negligible losses. The proposed photonic crystal AND logic gate is widely used in future integrated optical microelectronics.

Keywords: logic gates, photonic crystals, optical integrated circuits, resonant cavities

Procedia PDF Downloads 98
16758 Duplex Real-Time Loop-Mediated Isothermal Amplification Assay for Simultaneous Detection of Beef and Pork

Authors: Mi-Ju Kim, Hae-Yeong Kim

Abstract:

Product mislabeling and adulteration have been increasing the concerns in processed meat products. Relatively inexpensive pork meat compared to meat such as beef was adulterated for economic benefit. These food fraud incidents related to pork were concerned due to economic, religious and health reasons. In this study, a rapid on-site detection method using loop-mediated isothermal amplification (LAMP) was developed for the simultaneous identification of beef and pork. Each specific LAMP primer for beef and pork was designed targeting on mitochondrial D-loop region. The LAMP assay reaction was performed at 65 ℃ for 40 min. The specificity of each primer for beef and pork was evaluated using DNAs extracted from 13 animal species including beef and pork. The sensitivity of duplex LAMP assay was examined by serial dilution of beef and pork DNAs, and reference binary mixtures. This assay was applied to processed meat products including beef and pork meat for monitoring. Each set of primers amplified only the targeted species with no cross-reactivity with animal species. The limit of detection of duplex real-time LAMP was 1 pg for each DNA of beef and pork and 1% pork in a beef-meat mixture. Commercial meat products that declared the presence of beef and/or pork meat on the label showed positive results for those species. This method was successfully applied to detect simultaneous beef and pork meats in processed meat products. The optimized duplex LAMP assay can identify simultaneously beef and pork meat within less than 40 min. A portable real-time fluorescence device used in this study is applicable for on-site detection of beef and pork in processed meat products. Thus, this developed assay was considered to be an efficient tool for monitoring meat products.

Keywords: beef, duplex real-time LAMP, meat identification, pork

Procedia PDF Downloads 224
16757 Comparing UV-based and O₃-Based AOPs for Removal of Emerging Contaminants from Food Processing Digestate Sludge

Authors: N. Moradi, C. M. Lopez-Vazquez, H. Garcia Hernandez, F. Rubio Rincon, D. Brdanovic, Mark van Loosdrecht

Abstract:

Advanced oxidation processes have been widely used for disinfection, removal of residual organic material, and for the removal of emerging contaminants from drinking water and wastewater. Yet, the application of these technologies to sludge treatment processes has not gained enough attention, mostly, considering the complexity of the sludge matrix. In this research, ozone and UV/H₂O₂ treatment were applied for the removal of emerging contaminants from a digestate supernatant. The removal of the following compounds was assessed:(i) salicylic acid (SA) (a surrogate of non-stradiol anti-inflammatory drugs (NSAIDs)), and (ii) sulfamethoxazole (SMX), sulfamethazine (SMN), and tetracycline (TCN) (the most frequent human and animal antibiotics). The ozone treatment was carried out in a plexiglass bubble column reactor with a capacity of 2.7 L; the system was equipped with a stirrer and a gas diffuser. The UV and UV/H₂O₂ treatments were done using a LED set-up (PearlLab beam device) dosing H₂O₂. In the ozone treatment evaluations, 95 % of the three antibiotics were removed during the first 20 min of exposure time, while an SA removal of 91 % occurred after 8 hours of exposure time. In the UV treatment evaluations, when adding the optimum dose of hydrogen peroxide (H₂O₂:COD molar ratio of 0.634), 36% of SA, 82% of TCN, and more than 90 % of both SMX and SMN were removed after 8 hours of exposure time. This study concluded that O₃ was more effective than UV/H₂O₂ in removing emerging contaminants from the digestate supernatant.

Keywords: digestate sludge, emerging contaminants, ozone, UV-AOP

Procedia PDF Downloads 102
16756 A Method for Automated Planning of Fiber to the Home Access Network Infrastructures

Authors: Hammad Khalid

Abstract:

In this paper, a strategy for computerized arranging of Fiber to the Home (FTTH) get to systems is proposed. We presented an efficient methodology for arranging access organize framework. The GIS information and a lot of calculations were utilized to make the arranging procedure increasingly programmed. The technique clarifies various strides of the arranging process. Considering various situations, various designs can be produced by utilizing the technique. It was likewise conceivable to produce the designs in an extremely brief temporal contrast with the conventional arranging. A contextual investigation is considered to delineate the utilization and abilities of the arranging technique. The technique, be that as it may, doesn't completely robotize the arranging however, make the arranging procedure fundamentally quick. The outcomes and dialog are displayed and end is given at last.

Keywords: FTTH, GIS, robotize, plan

Procedia PDF Downloads 153
16755 A Cross-Sectional Study of Parents’ Knowledge, Attitude, and Health-Seeking Behaviour Towards Childhood Tuberculosis during COVID-19 Pandemic: Lessons Learned from Indonesia

Authors: Windy Rakhmawati, Suryani Suryani, Sri Hendrawati, Nenden Nur Asriyani Maryam

Abstract:

Tuberculosis (TB) is one of the leading causes of death in the world. Fear of COVID-19 has made people reluctant to visit health facilities, leading to disruptions to childhood TB control programs, which may increase household transmission and delay diagnosis and treatment. This study aimed to describe parents' knowledge, attitudes, and health-seeking behaviour towards childhood TB during the COVID-19 pandemic. This cross-sectional study was performed on 392 parents with TB children in three provinces with the highest proportion of TB cases in Indonesia. This study was conducted from February to December 2022. The inclusion criteria of respondents were parents with a child aged 0-14 years old with TB diagnosis who live with their parents. Data were collected using the Knowledge, Attitude, and Practice (KAP) survey guidelines from the World Health Organization and analyzed descriptively, as well as Spearman’s correlation. Overall, 392 parents of children with TB had poor knowledge (51.8%) including about causes, risk factors, transmission, symptoms, treatment, and prevention, which about 52.3%, 55.1%, 61.2%, 69.6%, 100%, 59.2%, respectively. Parents' health service-seeking behaviour towards Child TB was not normally distributed (P < 0.05) with knowledge test results (.000) and Seeking Health Services (.000). Health-seeking behaviour of parents in pediatric TB care was self-medication or self-treatment (86.2%), Traditional health seeking behaviour (4.8%), and modern health seeking behaviour (8.9%). The correlation between knowledge and seeking health services (Sig= .609) means there is no correlation between knowledge about TB and parents' health-seeking behaviour. Furthermore, 60.2% of the respondents would be shocked if their child had TB. More than half of the families in this study have poor knowledge and did self-medication or self-treatment regarding health-seeking behaviour for TB disease. Therefore, health workers, especially nurses, must provide TB-related education and health promotion and emphasize the importance of early detection. Health workers can also optimize their role in caring for and providing care to patients by increasing their trust in health workers, which will impact health-seeking behaviour in the future.

Keywords: attitude, child, health seeking behaviour, knowledge, tuberculosis

Procedia PDF Downloads 68
16754 Visualization-Based Feature Extraction for Classification in Real-Time Interaction

Authors: Ágoston Nagy

Abstract:

This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation.

Keywords: gesture recognition, machine learning, real-time interaction, visualization

Procedia PDF Downloads 354
16753 Accelerating Side Channel Analysis with Distributed and Parallelized Processing

Authors: Kyunghee Oh, Dooho Choi

Abstract:

Although there is no theoretical weakness in a cryptographic algorithm, Side Channel Analysis can find out some secret data from the physical implementation of a cryptosystem. The analysis is based on extra information such as timing information, power consumption, electromagnetic leaks or even sound which can be exploited to break the system. Differential Power Analysis is one of the most popular analyses, as computing the statistical correlations of the secret keys and power consumptions. It is usually necessary to calculate huge data and takes a long time. It may take several weeks for some devices with countermeasures. We suggest and evaluate the methods to shorten the time to analyze cryptosystems. Our methods include distributed computing and parallelized processing.

Keywords: DPA, distributed computing, parallelized processing, side channel analysis

Procedia PDF Downloads 428
16752 Multi-Agent Approach for Monitoring and Control of Biotechnological Processes

Authors: Ivanka Valova

Abstract:

This paper is aimed at using a multi-agent approach to monitor and diagnose a biotechnological system in order to validate certain control actions depending on the process development and the operating conditions. A multi-agent system is defined as a network of interacting software modules that collectively solve complex tasks. Remote monitoring and control of biotechnological processes is a necessity when automated and reliable systems operating with no interruption of certain activities are required. The advantage of our approach is in its flexibility, modularity and the possibility of improving by acquiring functionalities through the integration of artificial intelligence.

Keywords: multi-agent approach, artificial intelligence, biotechnological processes, anaerobic biodegradation

Procedia PDF Downloads 87
16751 Cultural Studies in the Immigration Movements: Memories and Social Collectives

Authors: María Eugenia Peltzer, María Estela Rodríguez

Abstract:

This work presents an approach to the cultural aspects of the Immigrants as part of the Cultural Intangible Heritage of Argentina. The intangible cultural heritage consists of the manifestations, practices, uses, representations, expressions, knowledge, techniques and cultural spaces that communities and groups recognize as an integral part of their cultural heritage. This heritage generates feelings of identity and establishes links with the collective memory, as well as being transmitted and recreated over time according to its environment, its interaction with nature and its history contributing to promote respect for cultural diversity and Human creativity. The Immigrants brings together those who came from other lands and their descendants, thus maintaining their traditions through time and linking the members of each cultural group with a strong sense of belonging through a communicative and effective process.

Keywords: cultural, immigration, memories, social

Procedia PDF Downloads 439
16750 Geo Spatial Database for Railway Assets Management

Authors: Muhammad Umar

Abstract:

Safety and Assets management is considering a backbone of every department. GIS in the Railway become very important to Manage Assets and Security through Digital Maps and Web based GIS Maps. It provides a complete frame of work to the organization for the management of assets. Pakistan Railway is the most common and safest mode of traveling in Pakistan. Due to ever-increasing demand of transporting huge amount of information generated from various sources and this information must be accurate. This creates problems for Passengers and Administration that causes finical and time loss. GIS Solve this problem by Digital Maps & Database. It provides you a real time Spatial and Statistical analysis that helps you to communicate and exchange the information in a sophisticated way to the users. GIS Based Web system provides a facility to different end user to make query at a time as per requirements. This GIS System provides an advancement in an organization for a complete Monitoring, Safety and Decision System for tracks, Stations and Junctions that further use for the Analysis of different areas i.e. analysis of tracks, junctions and Stations in case of reconstruction, Rescue for rail accidents and Natural disasters .This Research work helps to reduce the financial loss and reduce human mistakes helps you provide a complete security and Management system of assets.

Keywords: Geographical Information System (GIS) for assets management, geo spatial database, railway assets management, Pakistan

Procedia PDF Downloads 491
16749 Smart Textiles Integration for Monitoring Real-time Air Pollution

Authors: Akshay Dirisala

Abstract:

Humans had developed a highly organized and efficient civilization to live in by improving the basic needs of humans like housing, transportation, and utilities. These developments have made a huge impact on major environmental factors. Air pollution is one prominent environmental factor that needs to be addressed to maintain a sustainable and healthier lifestyle. Textiles have always been at the forefront of helping humans shield from environmental conditions. With the growth in the field of electronic textiles, we now have the capability of monitoring the atmosphere in real time to understand and analyze the environment that a particular person is mostly spending their time at. Integrating textiles with the particulate matter sensors that measure air quality and pollutants that have a direct impact on human health will help to understand what type of air we are breathing. This research idea aims to develop a textile product and a process of collecting the pollutants through particulate matter sensors, which are equipped inside a smart textile product and store the data to develop a machine learning model to analyze the health conditions of the person wearing the garment and periodically notifying them not only will help to be cautious of airborne diseases but will help to regulate the diseases and could also help to take care of skin conditions.

Keywords: air pollution, e-textiles, particulate matter sensors, environment, machine learning models

Procedia PDF Downloads 114
16748 Globally Attractive Mild Solutions for Non-Local in Time Subdiffusion Equations of Neutral Type

Authors: Jorge Gonzalez Camus, Carlos Lizama

Abstract:

In this work is proved the existence of at least one globally attractive mild solution to the Cauchy problem, for fractional evolution equation of neutral type, involving the fractional derivate in Caputo sense. An almost sectorial operator on a Banach space X and a kernel belonging to a large class appears in the equation, which covers many relevant cases from physics applications, in particular, the important case of time - fractional evolution equations of neutral type. The main tool used in this work was the Hausdorff measure of noncompactness and fixed point theorems, specifically Darbo-type. Initially, the equation is a Cauchy problem, involving a fractional derivate in Caputo sense. Then, is formulated the equivalent integral version, and defining a convenient functional, using the analytic integral resolvent operator, and verifying the hypothesis of the fixed point theorem of Darbo type, give us the existence of mild solution for the initial problem. Furthermore, each mild solution is globally attractive, a property that is desired in asymptotic behavior for that solution.

Keywords: attractive mild solutions, integral Volterra equations, neutral type equations, non-local in time equations

Procedia PDF Downloads 160
16747 Life Expansion: Autobiography, Ficctionalized Digital Diaries and Forged Narratives of Everyday Life on Instagram

Authors: Pablo M. S. Vallejos

Abstract:

The article aims to analyze the autobiographical practices of users on Instagram, observing the instrumentalization of image resources in the construction of visual narratives that make up that archive and digital diary. Through bibliographical review, discourse exploration and case studies, the research also aims to present a new theoretical perception about everyday records - edited with a collage of filters and aesthetic tools - that permeate that social network, understanding it as a platform fictionalizing and an expansion of life. In this way, therefore, the work reflects on possible futures in the elaboration of representations and identities in the context of digital spaces in the 21st century.

Keywords: visual culture, social media, autobiography, image

Procedia PDF Downloads 79
16746 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features

Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari

Abstract:

An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.

Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)

Procedia PDF Downloads 446
16745 Growth of Struvite Crystals in Synthetic Urine Using Magnesium Nitrate

Authors: Reneiloe Seodigeng, John Kabuba, Hilary Rutto, Tumisang Seodigeng

Abstract:

Urine diversion toilets have become popular as a means of solving the challenges in sanitation. As a result, the source-separated urine must be adequately treated so that it can be disposed of safely and valuable struvite can be extracted for use as fertilizer. In this study, synthetic urine was prepared, and struvite crystallisation experiments carried out using magnesium nitrate. The effect of residence time on crystal growth was studied. At residence time of 10, 30 and 60 minutes, mean particle sizes were 17, 34 and 53 µm showing that with higher residence times, larger crystal sizes can be achieved. SEM analysis of the crystal showed that the resultant crystals had the typical morphology of struvite crystals.

Keywords: struvite, magnesium nitrate, crystallisation, urine treatment

Procedia PDF Downloads 161
16744 Towards Computational Fluid Dynamics Based Methodology to Accelerate Bioprocess Scale Up and Scale Down

Authors: Vishal Kumar Singh

Abstract:

Bioprocess development is a time-constrained activity aimed at harnessing the full potential of culture performance in an ambience that is not natural to cells. Even with the use of chemically defined media and feeds, a significant amount of time is devoted in identifying the apt operating parameters. In addition, the scale-up of these processes is often accompanied by loss of antibody titer and product quality, which further delays the commercialization of the drug product. In such a scenario, the investigation of this disparity of culture performance is done by further experimentation at a smaller scale that is representative of at-scale production bioreactors. These scale-down model developments are also time-intensive. In this study, a computation fluid dynamics-based multi-objective scaling approach has been illustrated to speed up the process transfer. For the implementation of this approach, a transient multiphase water-air system has been studied in Ansys CFX to visualize the air bubble distribution and volumetric mass transfer coefficient (kLa) profiles, followed by the design of experiment based parametric optimization approach to define the operational space. The proposed approach is completely in silico and requires minimum experimentation, thereby rendering a high throughput to the overall process development.

Keywords: bioprocess development, scale up, scale down, computation fluid dynamics, multi-objective, Ansys CFX, design of experiment

Procedia PDF Downloads 82
16743 Finite Element Approximation of the Heat Equation under Axisymmetry Assumption

Authors: Raphael Zanella

Abstract:

This works deals with the finite element approximation of axisymmetric problems. The weak formulation of the heat equation under the axisymmetry assumption is established for continuous finite elements. The weak formulation is implemented in a C++ solver with implicit march-in-time. The code is verified by space and time convergence tests using a manufactured solution. The solving of an example problem with an axisymmetric formulation is compared to that with a full-3D formulation. Both formulations lead to the same result, but the code based on the axisymmetric formulation is much faster due to the lower number of degrees of freedom. This confirms the correctness of our approach and the interest in using an axisymmetric formulation when it is possible.

Keywords: axisymmetric problem, continuous finite elements, heat equation, weak formulation

Procedia PDF Downloads 203
16742 Critical Success Factors for Implementation of E-Supply Chain Management

Authors: Mehrnoosh Askarizadeh

Abstract:

Globalization of the economy, e-business, and introduction of new technologies pose new challenges to all organizations. In recent decades, globalization, outsourcing, and information technology have enabled many organizations to successfully operate collaborative supply networks in which each specialized business partner focuses on only a few key strategic activities For this industries supply network can be acknowledged as a new form of organization. We will study about critical success factors (CSFs) for implementation of SCM in companies. It is shown that in different circumstances e- supply chain management has a higher impact on performance.

Keywords: supply chain management, logistics management, critical success factors, information technology, top management support, human resource

Procedia PDF Downloads 409
16741 Design of a Rectifier with Enhanced Efficiency and a High-gain Antenna for Integrated and Compact-size Rectenna Circuit

Authors: Rawaa Maher, Ahmed Allam, Haruichi Kanaya, Adel B. Abdelrahman

Abstract:

In this paper, a compact, high-efficiency integrated rectenna is presented to operate in the 2.45 GHz band. A comparison between two rectifier topologies is performed to verify the benefits of removing the matching network from the rectifier. A rectifier high conversion efficiency of 74.1% is achieved. To complete the rectenna system, a novel omnidirectional antenna with high gain (3.72 dB) and compact size (25 mm * 29 mm) is designed and fabricated. The same antenna is used with a reflector for raising the gain to nearly 8.3 dB. The simulation and measurement results of the antenna are in good agreement.

Keywords: internet of things, integrated rectenna, rectenna, RF energy harvesting, wireless sensor networks(WSN)

Procedia PDF Downloads 182
16740 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph

Procedia PDF Downloads 16
16739 Analysis of Sweat Evaporation and Heat Transfer on Skin Surface: A Pointwise Numerical Study

Authors: Utsav Swarnkar, Rabi Pathak, Rina Maiti

Abstract:

This study aims to investigate the thermoregulatory role of sweating by comprehensively analyzing the evaporation process and its thermal cooling impact on local skin temperature at various time intervals. Traditional experimental methods struggle to fully capture these intricate phenomena. Therefore, numerical simulations play a crucial role in assessing sweat production rates and associated thermal cooling. This research utilizes transient computational fluid dynamics (CFD) to enhance our understanding of the evaporative cooling process on human skin. We conducted a simulation employing the k-w SST turbulence model. This simulation includes a scenario where sweat evaporation occurs over the skin surface, and at particular time intervals, temperatures at different locations have been observed and its effect explained. During this study, sweat evaporation was monitored on the skin surface following the commencement of the simulation. Subsequent to the simulation, various observations were made regarding temperature fluctuations at specific points over time intervals. It was noted that points situated closer to the periphery of the droplets exhibited higher levels of heat transfer and lower temperatures, whereas points within the droplets displayed contrasting trends.

Keywords: CFD, sweat, evaporation, multiphase flow, local heat loss

Procedia PDF Downloads 67
16738 3D Dentofacial Surgery Full Planning Procedures

Authors: Oliveira M., Gonçalves L., Francisco I., Caramelo F., Vale F., Sanz D., Domingues M., Lopes M., Moreia D., Lopes T., Santos T., Cardoso H.

Abstract:

The ARTHUR project consists of a platform that allows the virtual performance of maxillofacial surgeries, offering, in a photorealistic concept, the possibility for the patient to have an idea of the surgical changes before they are performed on their face. For this, the system brings together several image formats, dicoms and objs that, after loading, will generate the bone volume, soft tissues and hard tissues. The system also incorporates the patient's stereophotogrammetry, in addition to their data and clinical history. After loading and inserting data, the clinician can virtually perform the surgical operation and present the final result to the patient, generating a new facial surface that contemplates the changes made in the bone and tissues of the maxillary area. This tool acts in different situations that require facial reconstruction, however this project focuses specifically on two types of use cases: bone congenital disfigurement and acquired disfiguration such as oral cancer with bone attainment. Being developed a cloud based solution, with mobile support, the tool aims to reduce the decision time window of patient. Because the current simulations are not realistic or, if realistic, need time due to the need of building plaster models, patient rates on decision, rely on a long time window (1,2 months), because they don’t identify themselves with the presented surgical outcome. On the other hand, this planning was performed time based on average estimated values of the position of the maxilla and mandible. The team was based on averages of the facial measurements of the population, without specifying racial variability, so the proposed solution was not adjusted to the real individual physiognomic needs.

Keywords: 3D computing, image processing, image registry, image reconstruction

Procedia PDF Downloads 206
16737 Dams Operation Management Criteria during Floods: Case Study of Dez Dam in Southwest Iran

Authors: Ali Heidari

Abstract:

This paper presents the principles for improving flood mitigation operation in multipurpose dams and maximizing reservoir performance during flood occurrence with a focus on the real-time operation of gated spillways. The criteria of operation include the safety of dams during flood management, minimizing the downstream flood risk by decreasing the flood hazard and fulfilling water supply and other purposes of the dam operation in mid and long terms horizons. The parameters deemed to be important include flood inflow, outlet capacity restrictions, downstream flood inundation damages, economic revenue of dam operation, and environmental and sedimentation restrictions. A simulation model was used to determine the real-time release of the Dez dam located in the Dez rivers in southwest Iran, considering the gate regulation curves for the gated spillway. The results of the simulation model show that there is a possibility to improve the current procedures used in the real-time operation of the dams, particularly using gate regulation curves and early flood forecasting system results. The Dez dam operation data shows that in one of the best flood control records, % 17 of the total active volume and flood control pool of the reservoir have not been used in decreasing the downstream flood hazard despite the availability of a flood forecasting system.

Keywords: dam operation, flood control criteria, Dez dam, Iran

Procedia PDF Downloads 225
16736 Effects of Bed Type, Corm Weight and Lifting Time on Quantitative and Qualitative Criteria of Saffron (Crocus sativus L.)

Authors: A. Mollafilabi, A. Koocheki, P. Rezvani Moghaddam, M. Nassiri Mahalati

Abstract:

In order to study the effects of corm weights and times of corm lifting saffron in different planting beds, an experiment was conducted as Factorial layout based on a Randomized Complete Block Design with three replications at the Fadak Research Center of Agricultural Research in Food Science during 2010. Treatments were two corm weights (8-10, 10 < g), two planting beds (stone wool and peat moss) and five levels of lifting time (mi-June, early July, mid-July, early August and mid-August). No. of corms were 457 corms.m-2 and for 40 days and were stored for 90 days in incubation, 85% relative humidity and 25°C temperature in the darkness. Then, saffron corms were transferred to growth chamber with 17 °C in 8 hours light and 16 hours darkness. Characteristics were number of flower, fresh weight of flower, dry weight of flower, fresh and dry weight of stigma, fresh and dry weight of style, fresh and dry weight of stigma+style and Picrocrocin, Safronal and Crocin contents of saffron were measured. Results showed that the corm weight, bed type and time of corm lifting had significant effects on economical yield of saffron such as picked flowers, dry weight of stigma and fresh weight of flowers. The highest saffron economical yield was obtained in interaction of corm weight, 10 g, peat moss and lifting time in mid-June as much as 5.2 g.m-2. This yield is 11 fold of average yield of Iranian farms. Picrocrocin, Safranal and Crocin contents was graded as excellent thread in peat moss under controlled conditions compared with ISO Standard of 203.

Keywords: corm density, dry stigma, safranal-flowering, yield saffron

Procedia PDF Downloads 333
16735 Molecular Biomonitoring of Bacterial Pathogens in Wastewater

Authors: Desouky Abd El Haleem, Sahar Zaki

Abstract:

This work was conducted to develop a one-step multiplex PCR system for rapid, sensitive, and specific detection of three different bacterial pathogens, Escherichia coli, Pseudomonas aeruginosa, and Salmonella spp, directly in wastewater without prior isolation on selective media. As a molecular confirmatory test after isolation of the pathogens by classical microbiological methods, PCR-RFLP of their amplified 16S rDNA genes was performed. It was observed that the developed protocols have significance impact in the ability to detect sensitively, rapidly and specifically the three pathogens directly in water within short-time, represents a considerable advancement over more time-consuming and less-sensitive methods for identification and characterization of these kinds of pathogens.

Keywords: multiplex PCR, bacterial pathogens, Escherichia coli, Pseudomonas aeruginosa, Salmonella spp.

Procedia PDF Downloads 449