Search results for: quantum transport properties
5407 Teicoplanin Derivatives with Antiviral Activity: Synthesis and Biological Evaluation
Authors: Zsolt Szucs, Viktor Kelemen, Son Le Thai, Magdolna Csavas, Erzsebet Roth, Gyula Batta, Annelies Stevaert, Evelien Vanderlinden, Aniko Borbas, Lieve Naesens, Pal Herczegh
Abstract:
The approval of modern glycopeptide antibiotics such as dalbavancin and oritavancin which have excellent activity against Gram-positive bacteria, encouraged our research group to prepare semisynthetic compounds from several members of glycopeptides by various chemical methods. Derivatives from the aglycone of ristocetin, eremomycin, vancomycin and a pseudoaglycon of teicoplanin have been synthesized in a systematic manner. Interestingly, some of the aglycoristocetin derivatives displayed noteworthy anti-influenza activity. More recently our group has been focusing on the modifications of one of the pseudoaglycons of teicoplanin. The reaction of N-ethoxycarbonyl maleimide derivatives with the primary amino function, the copper-catalysed azide-alkyne click reaction and the sulfonylation of the N-terminus were utilized to obtain systematic series of compounds. All substituents provide a more lipophilic character to the new molecules compared to the parent antibiotics, which is known to be favourable for activity against resistant bacteria. Lipoglycopeptides are also known to have antiviral properties, which has been predominantly studied on HIV by others. The structure-activity relationship study of our compounds revealed the influence of a few structural elements on biological activity. In many cases, minimal changes in lipophilicity and structure produced great differences in efficacy and cytotoxicity. In vitro experiments showed that these compounds are not only active against glycopeptide resistant Gram-positive bacteria but in several cases they prevent the infection of cell cultures by different strains of influenza viruses. This is probably related to the inhibition of the viral entry into the host cell nucleus, of which the exact mechanism is unknown. In some instances, reasonably low concentrations were sufficient to observe this effect. Several derivatives were highly cytotoxic at the same time, but some of them displayed a good selectivity index. The antiviral properties of the compounds are not restricted to influenza viruses e.g., some of them showed good activity against Human Coronavirus 229E. This work could potentially lead to the development of antiviral drugs which possess the crucial structural motifs that are needed for antiviral activity, while missing those which contribute to the antibacterial effect.Keywords: antiviral, glycopeptide, semisynthetic, teicoplanin
Procedia PDF Downloads 1575406 Optimum Design of Dual-Purpose Outriggers in Tall Buildings
Authors: Jiwon Park, Jihae Hur, Kukjae Kim, Hansoo Kim
Abstract:
In this study, outriggers, which are horizontal structures connecting a building core to distant columns to increase the lateral stiffness of a tall building, are used to reduce differential axial shortening in a tall building. Therefore, the outriggers in tall buildings are used to serve the dual purposes of reducing the lateral displacement and reducing the differential axial shortening. Since the location of the outrigger greatly affects the effectiveness of the outrigger in terms of the lateral displacement at the top of the tall building and the maximum differential axial shortening, the optimum locations of the dual-purpose outriggers can be determined by an optimization method. Because the floors where the outriggers are installed are given as integer numbers, the conventional gradient-based optimization methods cannot be directly used. In this study, a piecewise quadratic interpolation method is used to resolve the integrality requirement posed by the optimum locations of the dual-purpose outriggers. The optimal solutions for the dual-purpose outriggers are searched by linear scalarization which is a popular method for multi-objective optimization problems. It was found that increasing the number of outriggers reduced the maximum lateral displacement and the maximum differential axial shortening. It was also noted that the optimum locations for reducing the lateral displacement and reducing the differential axial shortening were different. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (NRF-2017R1A2B4010043) and financially supported by Korea Ministry of Land, Infrastructure and Transport(MOLIT) as U-City Master and Doctor Course Grant Program.Keywords: concrete structure, optimization, outrigger, tall building
Procedia PDF Downloads 1775405 Use of Recycled Aggregates in Current Concretes
Authors: K. Krizova, R. Hela
Abstract:
The paper a summary of the results of concretes with partial substitution of natural aggregates with recycled concrete is solved. Design formulas of the concretes were characterised with 20, 40 and 60% substitution of natural 8-16 mm fraction aggregates with a selected recycled concrete of analogous coarse fractions. With the product samples an evaluation of coarse fraction aggregates influence on fresh concrete consistency and concrete strength in time was carried out. The results of concretes with aggregates substitution will be compared to reference formula containing only the fractions of natural aggregates.Keywords: recycled concrete, natural aggregates, fresh concrete, properties of concrete
Procedia PDF Downloads 3985404 Accessibility Assessment of School Facilities Using Geospatial Technologies: A Case Study of District Sheikhupura
Authors: Hira Jabbar
Abstract:
Education is vital for inclusive growth of an economy and a critical contributor for investment in human capital. Like other developing countries, Pakistan is facing enormous challenges regarding the provision of public facilities, improper infrastructure planning, accelerating rate of population and poor accessibility. The influence of the rapid advancement and innovations in GIS and RS techniques have proved to be a useful tool for better planning and decision making to encounter these challenges. Therefore present study incorporates GIS and RS techniques to investigate the spatial distribution of school facilities, identifies settlements with served and unserved population, finds potential areas for new schools based on population and develops an accessibility index to evaluate the higher accessibility for schools. For this purpose high-resolution worldview imagery was used to develop road network, settlements and school facilities and to generate school accessibility for each level. Landsat 8 imagery was utilized to extract built-up area by applying pre and post-processing models and Landscan 2015 was used to analyze population statistics. Service area analysis was performed using network analyst extension in ArcGIS 10.3v and results were evaluated for served and underserved areas and population. An accessibility tool was used to evaluate a set of potential destinations to determine which is the most accessible with the given population distribution. Findings of the study may contribute to facilitating the town planners and education authorities for understanding the existing patterns of school facilities. It is concluded that GIS and remote sensing can be effectively used in urban transport and facility planning.Keywords: accessibility, geographic information system, landscan, worldview
Procedia PDF Downloads 3255403 Compressive and Torsional Strength of Self-Compacting Concrete
Authors: Moosa Mazloom, Morteza Mehrvand
Abstract:
The goal of this study was to investigate the effects of silica fume and super plasticizer dosages on compressive and torsional properties of SCC. This work concentrated on concrete mixes having water/binder ratios of 0.45 and 0.35, which contained constant total binder contents of 400 kg/m3 and 500 kg/m3, respectively. The percentages of silica fume that replaced cement were 0 % and 10 %. The super plasticizer dosages utilized in the mixtures were 0.4%, 0.8%, 1.2 % and 1.6 % of the weight of cement. Prism dimensions used in this test were 10 × 10 × 40 cm3. The results of this research indicated that torsional strength of SCC prisms can be calculated using the equations presented in Canadian and American concrete building codes.Keywords: self-compacting concrete, rectangular prism, torsional strength
Procedia PDF Downloads 5175402 Half-Metallicity in a BiFeO3/La2/3Sr1/3MnO3 Superlattice: A First-Principles Study
Authors: Jiwuer Jilili, Ulrich Eckern, Udo Schwingenschlogl
Abstract:
We present first principles results for the electronic, magnetic, and optical properties of the BiFeO3 /La2/3Sr1/3MnO3 heterostructure as obtained by spin polarized calculations using density functional theory. The electronic states of the heterostructure are compared to those of the bulk compounds. Structural relaxation turns out to have only a minor impact on the chemical bonding, even though the oxygen octahedra in La2/3Sr1/3MnO3 develop some distortions due to the interface strain. While a small charge transfer affects the heterointerfaces, our results demonstrate that the half-metallic character of La2/3Sr1/3MnO3 is fully maintained.Keywords: BiFeO3, La2/3Sr1/3MnO3, superlattice, half-metallicity
Procedia PDF Downloads 2755401 Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations
Authors: Ogunrinde Roseline Bosede
Abstract:
This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.Keywords: differential equations, numerical, polynomial, initial value problem, differential equation
Procedia PDF Downloads 4475400 Detection of Fuel Theft and Vehicle Position Using Third Party Monitoring Software
Authors: P. Senthilraja, C. Rukumani Khandhan, M. Palaniappan, S. L. Rama, P. Sai Sushimitha, R. Madhan, J. Vinumathi, N. Vijayarangan
Abstract:
Nowadays, the logistics achieve a vast improvement in efficient delivery of goods. The technology improvement also helps to improve its development, but still the owners of transport vehicles face problems, i.e., fuel theft in vehicles by the drivers or by an unknown person. There is no proper solution to overcome the problems. This scheme is to determine the amount of fuel that has been stolen and also to determine the position of the vehicle at a particular time using the technologies like GPS, GSM, ultrasonic fuel level sensor and numeric lock system. The ultrasonic sensor uses the ultrasonic waves to calculate the height of the tank up to which the fuel is available. Based on height it is possible to calculate the amount of fuel. The Global Positioning System (GPS) is a satellite-based navigation system. The scientific community uses GPS for its precision timing capability and position information. The GSM provides the periodic information about the fuel level. A numeric lock system has been provided for fuel tank opening lever. A password is provided to access the fuel tank lever and this is authenticated only by the driver and the owner. Once the fuel tank is opened an alert is sent to owner through a SMS including the timing details. Third party monitoring software is a user interface that updates the information automatically into the database which helps to retrieve the data as and when required. Third party monitoring software provides vehicle’s information to the owner and also shows the status of the vehicle. The techniques that are to be proposed will provide an efficient output. This project helps to overcome the theft and hence to put forth fuel economy.Keywords: fuel theft, third party monitoring software, bioinformatics, biomedicine
Procedia PDF Downloads 3915399 Strengthening the Security of the Thai-Myanmar Border Trade of the People in the Mae Sot Customs Checkpoint Area, Tak Province
Authors: Sakapas Saengchai
Abstract:
A Study on Strengthening the Security of the Thai-Myanmar Border Trade Area of the people in the Mae Sot customs checkpoint area, Tak province, was designed as a qualitative research study. Its objectives were to study the principles of strengthening border trade security and enhancing people's participation. To develop a border trade model that enhances the spatial economy and improves people's quality of life by collecting data using a participant observation method. In-depth interview group chats border checkpoint administrators, Mae Sot customs checkpoint, Tak province, private entrepreneurs, community leaders, and the opening of a community forum to exchange opinions with people in the area. The results of the study found that 1. Security development is to promote crime reduction. Reduce drug trafficking problems Smuggling and human trafficking have been reduced. Including planning and preparation to protect people from terrorism, epidemics, and communicable diseases, including cooperation with Burma on border rules for people and workers, 2. Wealth development is to promote investment. Transport links value chain logistics Cross-border goods and services on the Thai-Myanmar border Both amending regulations and laws to promote fair trade. Emphasis on convenient and fast service as well as promoting the Thai border area to be a tourist attraction that can create prosperity and income for the community in the area By using balanced natural resources, with production and consumption that are environmentally friendly, and emphasizes the participation of the public sector, the private sector, and people from all sectors in the sustainable development of the Thai border.Keywords: security, border trade, customs, participation, people
Procedia PDF Downloads 1815398 Chemopreventive Properties of Cannabis sativa L. var. USO31 in Relation to Its Phenolic and Terpenoid Content
Authors: Antonella Di Sotto, Cinzia Ingallina, Caterina Fraschetti, Simone Circi, Marcello Locatelli, Simone Carradori, Gabriela Mazzanti, Luisa Mannina, Silvia Di Giacomo
Abstract:
Cannabis sativa L. is one of the oldest cultivated plant species known not only for its voluptuous use but also for the wide application in food, textile, and therapeutic industries. Recently, the progress of biotechnologies applied to medicinal plants has allowed to produce different hemp varieties with low content of psychotropic phytoconstituents (tetrahydrocannabinol < 0.2% w/v), thus leading to a renewed industrial and therapeutic interest for this plant. In this context, in order to discover new potential remedies of pharmaceutical and/or nutraceutical interest, the chemopreventive properties of different organic and hydroalcoholic extracts, obtained from the inflorescences of C. sativa L. var. USO31, collected in June and September harvesting, were assessed. Particularly, the antimutagenic activity towards the oxidative DNA-damage induced by tert-butyl hydroperoxide (t-BOOH) was evaluated, and the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) radical scavenging power of the samples were assessed as possible mechanisms of antimutagenicity. Furthermore, the ability of the extracts to inhibit the glucose-6-phosphate dehydrogenase (G6PD), whose overexpression has been found to play a critical role in neoplastic transformation and tumor progression, has been studied as a possible chemopreventive strategy. A careful phytochemical characterization of the extracts for phenolic and terpenoid composition has been obtained by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) methods. Under our experimental condition, all the extracts were found able to interfere with the tBOOH-induced mutagenicity in WP2uvrAR strain, although with different potency and effectiveness. The organic extracts from both the harvesting periods were found to be the main effective antimutagenic samples, reaching about a 55% inhibition of the tBOOH-mutagenicity at the highest concentration tested (250 μg/ml). All the extracts exhibited radical scavenger activity against DPPH and ABTS radicals, with a higher potency of the hydroalcoholic samples. The organic extracts were also able to inhibit the G6PD enzyme, being the samples from September harvesting the highly potent (about 50% inhibition respect to the vehicle). At the phytochemical analysis, all the extracts resulted to contain both polar and apolar phenolic compounds. The HPLC analysis revealed the presence of catechin and rutin as the major constituents of the hydroalcoholic extracts, with lower levels of quercetin and ferulic acid. The monoterpene carvacrol was found to be an ubiquitarian constituent. At GC-MS analysis, different terpenoids, among which caryophyllene sesquiterpenes, were identified. This evidence suggests a possible role of both polyphenols and terpenoids in the chemopreventive properties of the extracts from the inflorescences of C. sativa var. USO31. According to the literature, carvacrol and caryophyllene sesquiterpenes can contribute to the strong antimutagenicity although the role of all the hemp phytocomplex cannot be excluded. In conclusion, present results highlight a possible interest for the inflorescences of C. sativa var. USO31 as source of bioactive molecules and stimulate further studies in order to characterize its possible application for nutraceutical and pharmaceutical purposes.Keywords: antimutagenicity, glucose-6-phosphate dehydrogenase, hemp inflorescences, nutraceuticals, sesquiterpenes
Procedia PDF Downloads 1575397 Assessment of Petrophysical Parameters Using Well Log and Core Data
Authors: Khulud M. Rahuma, Ibrahim B. Younis
Abstract:
Assessment of petrophysical parameters are very essential for reservoir engineer. Three techniques can be used to predict reservoir properties: well logging, well testing, and core analysis. Cementation factor and saturation exponent are very required for calculation, and their values role a great effect on water saturation estimation. In this study a sensitive analysis was performed to investigate the influence of cementation factor and saturation exponent variation applying logs, and core analysis. Measurements of water saturation resulted in a maximum difference around fifteen percent.Keywords: porosity, cementation factor, saturation exponent, formation factor, water saturation
Procedia PDF Downloads 6935396 Properties and Microstructure of Scaled-Up MgO Concrete Blocks Incorporating Fly Ash or Ground Granulated Blast-Furnace Slag
Abstract:
MgO cements have the potential to sequester CO2 in construction products, and can be partial or complete replacement of PC in concrete. Construction block is a promising application for reactive MgO cements. Main advantages of blocks are: (i) suitability for sequestering CO2 due to their initially porous structure; (ii) lack of need for in-situ treatment as carbonation can take place during fabrication; and (iii) high potential for commercialization. Both strength gain and carbon sequestration of MgO cements depend on carbonation process. Fly ash and ground granulated blast-furnace slag (GGBS) are pozzolanic material and are proved to improve many of the performance characteristics of the concrete, such as strength, workability, permeability, durability and corrosion resistance. A very limited amount of work has been reported on the production of MgO blocks on a large scale so far. A much more extensive study, wherein blocks with different mix design is needed to verify the feasibility of commercial production. The changes in the performance of the samples were evaluated by compressive strength testing. The properties of the carbonation products were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/ field emission scanning electron microscopy (FESEM), and the degree of carbonation was obtained by thermogravimetric analysis (TGA), XRD and energy dispersive X-ray (EDX). The results of this study enabled the understanding the relationship between lab-scale samples and scale-up blocks based on their mechanical performance and microstructure. Results indicate that for both scaled-up and lab-scale samples, MgO samples always had the highest strength results, followed by MgO-fly ash samples and MgO-GGBS had relatively lowest strength. The lower strength of MgO with fly ash/GGBS samples at early stage is related to the relatively slow hydration process of pozzolanic materials. Lab-scale cubic samples were observed to have higher strength results than scaled-up samples. The large size of the scaled-up samples made it more difficult to let CO2 to reach inner part of the samples and less carbonation products formed. XRD, TGA and FESEM/EDX results indicate the existence of brucite and HMCs in MgO samples, M-S-H, hydrotalcite in the MgO-fly ash samples and C-S-H, hydrotalctie in the MgO-GGBS samples. Formation of hydration products (M-S-H, C-S-H, hydrotalcite) and carbonation products (hydromagnecite, dypingite) increased with curing duration, which is the reason of increasing strength. This study verifies the advantage of large-scale MgO blocks over common PC blocks and the feasibility of commercial production of MgO blocks.Keywords: reactive MgO, fly ash, ground granulated blast-furnace slag, carbonation, CO₂
Procedia PDF Downloads 1925395 A Modest Proposal for Deep-Sixing Propositions in the Philosophy of Language
Authors: Patrick Duffley
Abstract:
Hanks (2021) identifies three Frege-inspired commitments concerning propositions that are widely shared across the philosophy of language: (1) propositions are the primary, inherent bearers of representational properties and truth-conditions; (2) propositions are neutral representations possessing a ‘content’ that is devoid of ‘force; (3) propositions can be entertained or expressed without being asserted. Hanks then argues that the postulate of neutral content must be abandoned, and the primary bearers of truth-evaluable representation must be identified as the token acts of assertoric predication that people perform when they are thinking or speaking about the world. Propositions are ‘types of acts of predication, which derive their representational features from their tokens.’ Their role is that of ‘classificatory devices that we use for the purposes of identifying and individuating mental states and speech acts,’ so that ‘to say that Russell believes that Mont Blanc is over 4000 meters high is to classify Russell’s mental state under a certain type, and thereby distinguish that mental state from others that Russell might possess.’ It is argued in this paper that there is no need to classify an utterance of 'Russell believes that Mont Blanc is over 4000 meters high' as a token of some higher-order utterance-type in order to identify what Russell believes; the meanings of the words themselves and the syntactico-semantic relations between them are sufficient. In our view what Hanks has accomplished in effect is to build a convincing argument for dispensing with propositions completely in the philosophy of language. By divesting propositions of the role of being the primary bearers of representational properties and truth-conditions and fittingly transferring this role to the token acts of predication that people perform when they are thinking or speaking about the world, he has situated truth in its proper place and obviated any need for abstractions like propositions to explain how language can express things that are true. This leaves propositions with the extremely modest role of classifying mental states and speech acts for the purposes of identifying and individuating them. It is demonstrated here however that there is no need whatsoever to posit such abstract entities to explain how people identify and individuate such states/acts. We therefore make the modest proposal that the term ‘proposition’ be stricken from the vocabulary of philosophers of language.Keywords: propositions, truth-conditions, predication, Frege, truth-bearers
Procedia PDF Downloads 665394 A Differential Scanning Calorimetric Study of Frozen Liquid Egg Yolk Thawed by Different Thawing Methods
Authors: Karina I. Hidas, Csaba Németh, Anna Visy, Judit Csonka, László Friedrich, Ildikó Cs. Nyulas-Zeke
Abstract:
Egg yolk is a popular ingredient in the food industry due to its gelling, emulsifying, colouring, and coagulating properties. Because of the heat sensitivity of proteins, egg yolk can only be heat treated at low temperatures, so its shelf life, even with the addition of a preservative, is only a few weeks. Freezing can increase the shelf life of liquid egg yolk up to 1 year, but it undergoes gelling below -6 ° C, which is an irreversible phenomenon. The degree of gelation depends on the time and temperature of freezing and is influenced by the process of thawing. Therefore, in our experiment, we examined egg yolks thawed in different ways. In this study, unpasteurized, industrially broken, separated, and homogenized liquid egg yolk was used. Freshly produced samples were frozen in plastic containers at -18°C in a laboratory freezer. Frozen storage was performed for 90 days. Samples were analysed at day zero (unfrozen) and after frozen storage for 1, 7, 14, 30, 60 and 90 days. Samples were thawed in two ways (at 5°C for 24 hours and 30°C for 3 hours) before testing. Calorimetric properties were examined by differential scanning calorimetry, where heat flow curves were recorded. Denaturation enthalpy values were calculated by fitting a linear baseline, and denaturation temperature values were evaluated. Besides, dry matter content of samples was measured by the oven method with drying at 105°C to constant weight. For statistical analysis two-way ANOVA (α = 0.05) was employed, where thawing mode and freezing time were the fixed factors. Denaturation enthalpy values decreased from 1.1 to 0.47 at the end of the storage experiment, which represents a reduction of about 60%. The effect of freezing time was significant on these values, already the enthalpy of samples stored frozen for 1 day was significantly reduced. However, the mode of thawing did not significantly affect the denaturation enthalpy of the samples, and no interaction was seen between the two factors. The denaturation temperature and dry matter content did not change significantly either during the freezing period or during the defrosting mode. Results of our study show that slow freezing and frozen storage at -18°C greatly reduces the amount of protein that can be denatured in egg yolk, indicating that the proteins have been subjected to aggregation, denaturation or other protein conversions regardless of how they were thawed.Keywords: denaturation enthalpy, differential scanning calorimetry, liquid egg yolk, slow freezing
Procedia PDF Downloads 1295393 Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide
Authors: Mandana Amiri, Sima Nouhi, Yashar Azizan-Kalandaragh
Abstract:
Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H2O2. The presented electrode can be employed as sensing element for hydrogen peroxide.Keywords: electrochemical sensor, electrodeposition, hydrogen peroxide, silver nanostructures
Procedia PDF Downloads 5125392 Biopolymer Nanoparticles Loaded with Calcium as a Source of Fertilizer
Authors: Erwin San Juan Martinez, Miguel Angel Aguilar Mendez, Manuel Sandoval Villa, Libia Iris Trejo Tellez
Abstract:
Some nanomaterials may improve the vegetal growth in certain concentration intervals, and could be used as nanofertilizers in order to increase crops yield, and decreasing the environmental pollution due to non-controlled use of conventional fertilizers, therefore the present investigation’s objective was to synthetize and characterize gelatin nanoparticles loaded with calcium generated through pulverization technique and be used as nanofertilizers. To obtain these materials, a fractional factorial design 27-4 was used in order to evaluate the largest number of factors (concentration of Ca2+, temperature and agitation time of the solution and calcium concentration, drying temperature, and % spray) with a possible effect on the size, distribution and morphology of nanoparticles. For the formation of nanoparticles, a Nano Spray-Dryer B - 90® (Buchi, Flawil, Switzerland), equipped with a spray cap of 4 µm was used. Size and morphology of the obtained nanoparticles were evaluated using a scanning electron microscope (JOEL JSM-6390LV model; Tokyo, Japan) equipped with an energy dispersive x-ray X (EDS) detector. The total quantification of Ca2+ as well as its release by the nanoparticles was carried out in an equipment of induction atomic emission spectroscopy coupled plasma (ICP-ES 725, Agilent, Mulgrave, Australia). Of the seven factors evaluated, only the concentration of fertilizer, % spray and concentration of polymer presented a statistically significant effect on particle size. Micrographs of SEM from six of the eight conditions evaluated in this research showed particles separated and with a good degree of sphericity, while in the other two particles had amorphous morphology and aggregation. In all treatments, most of the particles showed smooth surfaces. The average size of smallest particle obtained was 492 nm, while EDS results showed an even distribution of Ca2+ in the polymer matrix. The largest concentration of Ca2+ in ICP was 10.5%, which agrees with the theoretical value calculated, while the release kinetics showed an upward trend within 24 h. Using the technique employed in this research, it was possible to obtain nanoparticles loaded with calcium, of good size, sphericity and with release controlled properties. The characteristics of nanoparticles resulted from manipulation of the conditions of synthesis which allow control of the size and shape of the particles, and provides the means to adapt the properties of the materials to an specific application.Keywords: calcium, controlled release, gelatin, nano spraydryer, nanofertilizer
Procedia PDF Downloads 1795391 Green-Synthesized β-Cyclodextrin Membranes for Humidity Sensors
Authors: Zeineb Baatout, Safa Teka, Nejmeddine Jaballah, Nawfel Sakly, Xiaonan Sun, Mustapha Majdoub
Abstract:
Currently, the economic interests linked to the development of bio-based materials make biomass one of the most interesting areas for science development. We are interested in the β-cyclodextrin (β-CD), one of the popular bio-sourced macromolecule, produced from the starch via enzymatic conversion. It is a cyclic oligosaccharide formed by the association of seven glucose units. It presents a rigid conical and amphiphilic structure with hydrophilic exterior, allowing it to be water-soluble. It has also a hydrophobic interior enabling the formation of inclusion complexes, which support its application for the elaboration of electrochemical and optical sensors. Nevertheless, the solubility of β-CD in water makes its use as sensitive layer limit and difficult due to their instability in aqueous media. To overcome this limitation, we chose to precede by modification of the hydroxyl groups to obtain hydrophobic derivatives which lead to water-stable sensing layers. Hence, a series of benzylated β-CDs were synthesized in basic aqueous media in one pot. This work reports the synthesis of a new family of substituted amphiphilic β-CDs using a green methodology. The obtained β-CDs showed different degree of substitution (DS) between 0.85 and 2.03. These organic macromolecular materials were soluble in common organic volatile solvents, and their structures were investigated by NMR, FT-IR and MALDI-TOF spectroscopies. Thermal analysis showed a correlation between the thermal properties of these derivatives and the benzylation degree. The surface properties of the thin films based on the benzylated β-CDs were characterized by contact angle measurements and atomic force microscopy (AFM). These organic materials were investigated as sensitive layers, deposited on quartz crystal microbalance (QCM) gravimetric transducer, for humidity sensor at room temperature. The results showed that the performances of the prepared sensors are greatly influenced by the benzylation degree of β-CD. The partially modified β-CD (DS=1) shows linear response with best sensitivity, good reproducibility, low hysteresis, fast response time (15s) and recovery time (17s) at higher relative humidity levels (RH) between 11% and 98% in room temperature.Keywords: β-cyclodextrin, green synthesis, humidity sensor, quartz crystal microbalance
Procedia PDF Downloads 2725390 A Dual Spark Ignition Timing Influence for the High Power Aircraft Radial Engine Using a CFD Transient Modeling
Authors: Tytus Tulwin, Ksenia Siadkowska, Rafał Sochaczewski
Abstract:
A high power radial reciprocating engine is characterized by a large displacement volume of a combustion chamber. Choosing the right moment for ignition is important for a high performance or high reliability and ignition certainty. This work shows methods of simulating ignition process and its impact on engine parameters. For given conditions a flame speed is limited when a deflagration combustion takes place. Therefore, a larger length scale of the combustion chamber compared to a standard size automotive engine makes combustion take longer time to propagate. In order to speed up the mixture burn-up time the second spark is introduced. The transient Computational Fluid Dynamics model capable of simulating multicycle engine processes was developed. The CFD model consists of ECFM-3Z combustion and species transport models. A relative ignition timing difference for the both spark sources is constant. The temperature distribution on engine walls was calculated in the separate conjugate heat transfer simulation. The in-cylinder pressure validation was performed for take-off power flight conditions. The influence of ignition timing on parameters like in-cylinder temperature or rate of heat release was analyzed. The most advantageous spark timing for the highest power output was chosen. The conditions around the spark plug locations for the pre-ignition period were analyzed. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: CFD, combustion, ignition, simulation, timing
Procedia PDF Downloads 2965389 Autonomous Flight Control for Multirotor by Alternative Input Output State Linearization with Nested Saturations
Authors: Yong Eun Yoon, Eric N. Johnson, Liling Ren
Abstract:
Multirotor is one of the most popular types of small unmanned aircraft systems and has already been used in many areas including transport, military, surveillance, and leisure. Together with its popularity, the needs for proper flight control is growing because in most applications it is required to conduct its missions autonomously, which is in many aspects based on autonomous flight control. There have been many studies about the flight control for multirotor, but there is still room for enhancements in terms of performance and efficiency. This paper presents an autonomous flight control method for multirotor based on alternative input output linearization coupled with nested saturations. With alternative choice of the output of the multirotor flight control system, we can reduce computational cost regarding Lie algebra, and the linearized system can be stabilized with the introduction of nested saturations with real poles of our own design. Stabilization of internal dynamics is also based on the nested saturations and accompanies the determination of part of desired states. In particular, outer control loops involving state variables which originally are not included in the output of the flight control system is naturally rendered through this internal dynamics stabilization. We can also observe that desired tilting angles are determined by error dynamics from outer loops. Simulation results show that in any tracking situations multirotor stabilizes itself with small time constants, preceded by tuning process for control parameters with relatively low degree of complexity. Future study includes control of piecewise linear behavior of multirotor with actuator saturations, and the optimal determination of desired states while tracking multiple waypoints.Keywords: automatic flight control, input output linearization, multirotor, nested saturations
Procedia PDF Downloads 2285388 Personal Perception of the Acoustic Properties of Three Different Rooms for Music Lessons
Authors: Natalia Ivanova, Konstantin Adamov
Abstract:
The importance of acoustics in music classes made us analyse three music rooms in a Bulgarian school. The same music piece was performed in every one of the classrooms. The recording was played to 2 groups of students. A survey was then taken among those students in order to determine their personal preferences and impressions of the acoustic. The results show differences in the preferences of older students compared to younger ones. Results of the survey show a correlation between older students’ preferences and the standard requirements. However, we discover that younger students’ classrooms should be further analysed and adapted to their needs and preferences.Keywords: acousic, building acoustic, sound quality, scool acoustic
Procedia PDF Downloads 1045387 Cadmium Contamination in Rice Cultivation in the City of Savadkooh in Iran
Authors: Ghazal Banitahmasb, Nazanin Khakipour
Abstract:
Potential contamination of rice by heavy metals such as Copper, Cobalt, Cadmium, Arsenic, Chromium, Mercury, Nickel, Lead and Magnesium in soil, water and pesticides affect the quality and nutritional properties of rice. The aim of this study was to evaluate the contamination of rice cultivated in the city of Savadkooh to Cadmium and its comparison with international standards. With the study on different areas of Savadkooh(a city in Mazanaran Province) 7 samples of rice with the soil in which they were grown was taken for sampling. According to the results of all rice grown in Savadkooh city there are some Cadmium but the amount measured is less than specified in the national standard, and is safe for consumers to use.Keywords: cadmium, heavy metals, rice, Savadkooh
Procedia PDF Downloads 3085386 Interactions between Residential Mobility, Car Ownership and Commute Mode: The Case for Melbourne
Authors: Solmaz Jahed Shiran, John Hearne, Tayebeh Saghapour
Abstract:
Daily travel behavior is strongly influenced by the location of the places of residence, education, and employment. Hence a change in those locations due to a move or changes in an occupation leads to a change in travel behavior. Given the interventions of housing mobility and travel behaviors, the hypothesis is that a mobile housing market allows households to move as a result of any change in their life course, allowing them to be closer to central services, public transport facilities and workplace and hence reducing the time spent by individuals on daily travel. Conversely, household’s immobility may lead to longer commutes of residents, for example, after a change of a job or a need for new services such as schools for children who have reached their school age. This paper aims to investigate the association between residential mobility and travel behavior. The Victorian Integrated Survey of Travel and Activity (VISTA) data is used for the empirical analysis. Car ownership and journey to work time and distance of employed people are used as indicators of travel behavior. Change of usual residence within the last five years used to identify movers and non-movers. Statistical analysis, including regression models, is used to compare the travel behavior of movers and non-movers. The results show travel time, and the distance does not differ for movers and non-movers. However, this is not the case when taking into account the residence tenure-type. In addition, car ownership rate and number found to be significantly higher for non-movers. It is hoped that the results from this study will contribute to a better understanding of factors other than common socioeconomic and built environment features influencing travel behavior.Keywords: journey to work, regression models, residential mobility, commute mode, car ownership
Procedia PDF Downloads 1345385 Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C
Authors: Matthias Walluch, José Alberto Rodríguez, Christopher Giehl, Gunther Arnold, Daniela Ehgartner
Abstract:
Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applicationsKeywords: dynamic mechanical analysis, oscillatory rheometry, Poisson's ratio, solid glass, viscoelasticity
Procedia PDF Downloads 835384 Modeling the Reliability of a Fuel Cell and the Influence of Mechanical Aspects on the Production of Electrical Energy
Authors: Raed Kouta
Abstract:
A fuel cell is a multi-physical system. Its electrical performance depends on chemical, electrochemical, fluid, and mechanical parameters. Many studies focus on physical and chemical aspects. Our study contributes to the evaluation of the influence of mechanical aspects on the performance of a fuel cell. This study is carried out as part of a reliability approach. Reliability modeling allows to consider the uncertainties of the incoming parameters and the probabilistic modeling of the outgoing parameters. The fuel cell studied is the one often used in land, sea, or air transport. This is the Low-Temperature Proton Exchange Membrane Fuel Cell (PEMFC). This battery can provide the required power level. One of the main scientific and technical challenges in mastering the design and production of a fuel cell is to know its behavior in its actual operating environment. The study proposes to highlight the influence on the production of electrical energy: Mechanical design and manufacturing parameters and their uncertainties (Young module, GDL porosity, permeability, etc.). The influence of the geometry of the bipolar plates is also considered. An experimental design is proposed with two types of materials as well as three geometric shapes for three joining pressures. Other experimental designs are also proposed for studying the influence of uncertainties of mechanical parameters on cell performance. - Mechanical (static, dynamic) and thermal (tightening - compression, vibrations (road rolling and tests on vibration-climatic bench, etc.) loads. This study is also carried out according to an experimental scheme on a fuel cell system for vibration loads recorded on a vehicle test track with three temperatures and three expected performance levels. The work will improve the coupling between mechanical, physical, and chemical phenomena.Keywords: fuel cell, mechanic, reliability, uncertainties
Procedia PDF Downloads 1885383 Study of Antibacterial Activity of Phenolic Compounds Extracted from Algerian Medicinal Plant
Authors: Khadri Sihem, Abbaci Nafissa, Zerari Labiba
Abstract:
In the context of the search for new bioactive natural products, we were interested in evaluating some antibacterial properties of two plant extracts: total phenols and flavonoids of Algerian medicinal plant. Our study occurs in two axes: The first concerns the extraction of phenolic compounds and flavonoids with methanol by liquid-liquid extraction, followed by quantification of the levels of these compounds in the end the analysis of the chemical composition of extracts. In the second axis, we studied the antibacterial power of the studied plant extracts.Keywords: antibacterial activity, flavonoids, medicinal plants, polyphenols
Procedia PDF Downloads 5545382 Reverse Engineering of a Secondary Structure of a Helicopter: A Study Case
Authors: Jose Daniel Giraldo Arias, Camilo Rojas Gomez, David Villegas Delgado, Gullermo Idarraga Alarcon, Juan Meza Meza
Abstract:
The reverse engineering processes are widely used in the industry with the main goal to determine the materials and the manufacture used to produce a component. There are a lot of characterization techniques and computational tools that are used in order to get this information. A study case of a reverse engineering applied to a secondary sandwich- hybrid type structure used in a helicopter is presented. The methodology used consists of five main steps, which can be applied to any other similar component: Collect information about the service conditions of the part, disassembly and dimensional characterization, functional characterization, material properties characterization and manufacturing processes characterization, allowing to obtain all the supports of the traceability of the materials and processes of the aeronautical products that ensure their airworthiness. A detailed explanation of each step is covered. Criticality and comprehend the functionalities of each part, information of the state of the art and information obtained from interviews with the technical groups of the helicopter’s operators were analyzed,3D optical scanning technique, standard and advanced materials characterization techniques and finite element simulation allow to obtain all the characteristics of the materials used in the manufacture of the component. It was found that most of the materials are quite common in the aeronautical industry, including Kevlar, carbon, and glass fibers, aluminum honeycomb core, epoxy resin and epoxy adhesive. The stacking sequence and volumetric fiber fraction are a critical issue for the mechanical behavior; a digestion acid method was used for this purpose. This also helps in the determination of the manufacture technique which for this case was Vacuum Bagging. Samples of the material were manufactured and submitted to mechanical and environmental tests. These results were compared with those obtained during reverse engineering, which allows concluding that the materials and manufacture were correctly determined. Tooling for the manufacture was designed and manufactured according to the geometry and manufacture process requisites. The part was manufactured and the mechanical, and environmental tests required were also performed. Finally, a geometric characterization and non-destructive techniques allow verifying the quality of the part.Keywords: reverse engineering, sandwich-structured composite parts, helicopter, mechanical properties, prototype
Procedia PDF Downloads 4185381 Subclass of Close-To-Convex Harmonic Mappings
Authors: Jugal K. Prajapat, Manivannan M.
Abstract:
In this article we have studied a class of sense preserving harmonic mappings in the unit disk D. Let B⁰H (α, β) denote the class of sense-preserving harmonic mappings f=h+g ̅ in the open unit disk D and satisfying the condition |z h״(z)+α (h׳(z)-1) | ≤ β - |z g″(z)+α g′(z)| (α > -1, β > 0). We have proved that B⁰H (α, β) is close-to-convex in D. We also prove that the functions in B⁰H (α, β) are stable harmonic univalent, stable harmonic starlike and stable harmonic convex in D for different values of its parameters. Further, the coefficient estimates, growth results, area theorem, boundary behavior, convolution and convex combination properties of the class B⁰H (α, β) of harmonic mapping are obtained.Keywords: analytic, univalent, starlike, convex and close-to-convex
Procedia PDF Downloads 1765380 The Creep and Fracture Behavior of Additively Manufactured Inconel 625
Authors: Michael Kassner
Abstract:
Elevated-temperature creep tests were performed on additively manufactured (AM) Inconel 625 over a relatively wide range of stress. The behavior was compared to conventional wrought alloy. It was found that the steady-state creep rates of the AM alloys were comparable, or even more favorable, than that of the wrought Inconel. However, the ductility of the AM alloy was significantly less than the wrought alloy. The ductility however was recovered with hot isostatic pressing (HIP) of the AM specimens. The basis for the loss and recovery of the ductility will be discussed in terms of the differences in the details of the microstructures. In summary, it appears that HIP AM Inconel 625, over the long-term testing of a year, has very favorable mechanical properties compared to the conventional alloy.Keywords: Inconel, creep, additive, manufacturing
Procedia PDF Downloads 1705379 Modelling of the Linear Operator in the Representation of the Function of Wave of a Micro Particle
Authors: Mohammedi Ferhate
Abstract:
This paper deals with the generalized the notion of the function of wave a micro particle moving free, the concept of the linear operator in the representation function delta of Dirac which is a generalization of the symbol of Kronecker to the case of a continuous variation of the sizes concerned with the condition of orthonormation of the Eigen functions the use of linear operators and their Eigen functions in connection with the solution of given differential equations, it is of interest to study the properties of the operators themselves and determine which of them follow purely from the nature of the operators, without reference to specific forms of Eigen functions. The models simulation examples are also presented.Keywords: function, operator, simulation, wave
Procedia PDF Downloads 1465378 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate
Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar
Abstract:
Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength and corrosion resistant. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).Keywords: hardness, RSM, sputtering, TiN XRD
Procedia PDF Downloads 321