Search results for: learning archives
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7286

Search results for: learning archives

1766 Effects of Bilingual Education in the Teaching and Learning Practices in the Continuous Improvement and Development of k12 Program

Authors: Miriam Sebastian

Abstract:

This research focused on the effects of bilingual education as medium of instruction to the academic performance of selected intermediate students of Miriam’s Academy of Valenzuela Inc. . An experimental design was used, with language of instruction as the independent variable and the different literacy skills as dependent variables. The sample consisted of experimental students comprises of 30 students were exposed to bilingual education (Filipino and English) . They were given pretests and were divided into three groups: Monolingual Filipino, Monolingual English, and Bilingual. They were taught different literacy skills for eight weeks and were then administered the posttests. Data was analyzed and evaluated in the light of the central processing and script-dependent hypotheses. Based on the data, it can be inferred that monolingual instruction in either Filipino or English had a stronger effect on the students’ literacy skills compared to bilingual instruction. Moreover, mother tongue-based instruction, as compared to second-language instruction, had stronger effect on the preschoolers’ literacy skills. Such results have implications not only for mother tongue-based (MTB) but also for English as a second language (ESL) instruction in the country

Keywords: bilingualism, effects, monolingual, function, multilingual, mother tongue

Procedia PDF Downloads 127
1765 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models

Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand

Abstract:

Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.

Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias

Procedia PDF Downloads 85
1764 Challenges to Developing a Trans-European Programme for Health Professionals to Recognize and Respond to Survivors of Domestic Violence and Abuse

Authors: June Keeling, Christina Athanasiades, Vaiva Hendrixson, Delyth Wyndham

Abstract:

Recognition and education in violence, abuse, and neglect for medical and healthcare practitioners (REVAMP) is a trans-European project aiming to introduce a training programme that has been specifically developed by partners across seven European countries to meet the needs of medical and healthcare practitioners. Amalgamating the knowledge and experience of clinicians, researchers, and educators from interdisciplinary and multi-professional backgrounds, REVAMP has tackled the under-resourced and underdeveloped area of domestic violence and abuse. The team designed an online training programme to support medical and healthcare practitioners to recognise and respond appropriately to survivors of domestic violence and abuse at their point of contact with a health provider. The REVAMP partner countries include Europe: France, Lithuania, Germany, Greece, Iceland, Norway, and the UK. The training is delivered through a series of interactive online modules, adapting evidence-based pedagogical approaches to learning. Capturing and addressing the complexities of the project impacted the methodological decisions and approaches to evaluation. The challenge was to find an evaluation methodology that captured valid data across all partner languages to demonstrate the extent of the change in knowledge and understanding. Co-development by all team members was a lengthy iterative process, challenged by a lack of consistency in terminology. A mixed methods approach enabled both qualitative and quantitative data to be collected, at the start, during, and at the conclusion of the training for the purposes of evaluation. The module content and evaluation instrument were accessible in each partner country's language. Collecting both types of data provided a high-level snapshot of attainment via the quantitative dataset and an in-depth understanding of the impact of the training from the qualitative dataset. The analysis was mixed methods, with integration at multiple interfaces. The primary focus of the analysis was to support the overall project evaluation for the funding agency. A key project outcome was identifying that the trans-European approach posed several challenges. Firstly, the project partners did not share a first language or a legal or professional approach to domestic abuse and neglect. This was negotiated through complex, systematic, and iterative interaction between team members so that consensus could be achieved. Secondly, the context of the data collection in several different cultural, educational, and healthcare systems across Europe challenged the development of a robust evaluation. The participants in the pilot evaluation shared that the training was contemporary, well-designed, and of great relevance to inform practice. Initial results from the evaluation indicated that the participants were drawn from more than eight partner countries due to the online nature of the training. The primary results indicated a high level of engagement with the content and achievement through the online assessment. The main finding was that the participants perceived the impact of domestic abuse and neglect in very different ways in their individual professional contexts. Most significantly, the participants recognised the need for the training and the gap that existed previously. It is notable that a mixed-methods evaluation of a trans-European project is unusual at this scale.

Keywords: domestic violence, e-learning, health professionals, trans-European

Procedia PDF Downloads 83
1763 Design of a Multidisciplinary Project-Oriented Capstone Course for Mechanical Engineering Education

Authors: Chi-Cheng Cheng, Che-Hsin Lin, Yu-Jen Wang, Chua-Chin Wang

Abstract:

The project-oriented capstone course has become a required element for most engineering educational units. It is not only because the capstone course is an important criterion for international accreditation of engineering degree programs under Washington Accord, but also the capstone course provides an opportunity for students to apply what they have learned in their school years to actual engineering problems. Nevertheless, most project-oriented capstone courses are conducted with one single project for all students or teams. In other words, students work to reach the same or similar goals by coming up with different layouts and approaches. It appears not suitable for a multidisciplinary engineering department. Therefore, a one-year multidisciplinary project-oriented capstone course was designed for the junior year of the undergraduate program. About one-half of faculty members in the department needs to be involved in generating as many projects as possible to meet different students' interests and specialties. Project achievement has to be displayed and demonstrated in the annual exposition and competition at the end of this course. Significant success in attracting attention and hardworking of students on projects was witnessed for the past two pilot years. Analysis of course evaluation demonstrates positive impact on all perspectives despite of slightly negative influence due to poor communication and collaboration between students and their project supervisors.

Keywords: Capstone course, CDIO, engineering education, project-oriented learning

Procedia PDF Downloads 452
1762 Architecture for Multi-Unmanned Aerial Vehicles Based Autonomous Precision Agriculture Systems

Authors: Ebasa Girma, Nathnael Minyelshowa, Lebsework Negash

Abstract:

The use of unmanned aerial vehicles (UAVs) in precision agriculture has seen a huge increase recently. As such, systems that aim to apply various algorithms on the field need a structured framework of abstractions. This paper defines the various tasks of the UAVs in precision agriculture and models them into an architectural framework. The presented architecture is built on the context that there will be minimal physical intervention to do the tasks defined with multiple coordinated and cooperative UAVs. Various tasks such as image processing, path planning, communication, data acquisition, and field mapping are employed in the architecture to provide an efficient system. Besides, different limitation for applying Multi-UAVs in precision agriculture has been considered in designing the architecture. The architecture provides an autonomous end-to-end solution, starting from mission planning, data acquisition, and image processing framework that is highly efficient and can enable farmers to comprehensively deploy UAVs onto their lands. Simulation and field tests show that the architecture offers a number of advantages that include fault-tolerance, robustness, developer, and user-friendliness.

Keywords: deep learning, multi-UAVs, precision agriculture, UAVs architecture

Procedia PDF Downloads 114
1761 Emotion Recognition Using Artificial Intelligence

Authors: Rahul Mohite, Lahcen Ouarbya

Abstract:

This paper focuses on the interplay between humans and computer systems and the ability of these systems to understand and respond to human emotions, including non-verbal communication. Current emotion recognition systems are based solely on either facial or verbal expressions. The limitation of these systems is that it requires large training data sets. The paper proposes a system for recognizing human emotions that combines both speech and emotion recognition. The system utilizes advanced techniques such as deep learning and image recognition to identify facial expressions and comprehend emotions. The results show that the proposed system, based on the combination of facial expression and speech, outperforms existing ones, which are based solely either on facial or verbal expressions. The proposed system detects human emotion with an accuracy of 86%, whereas the existing systems have an accuracy of 70% using verbal expression only and 76% using facial expression only. In this paper, the increasing significance and demand for facial recognition technology in emotion recognition are also discussed.

Keywords: facial reputation, expression reputation, deep gaining knowledge of, photo reputation, facial technology, sign processing, photo type

Procedia PDF Downloads 121
1760 Computer-Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: G. Anjan Babu, G. Sumana, M. Rajasekhar

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multi-layered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinanalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Furthermore, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: dialysis, hereditary, transplantation, polycystic, pathogenesis

Procedia PDF Downloads 380
1759 An Innovative Auditory Impulsed EEG and Neural Network Based Biometric Identification System

Authors: Ritesh Kumar, Gitanjali Chhetri, Mandira Bhatia, Mohit Mishra, Abhijith Bailur, Abhinav

Abstract:

The prevalence of the internet and technology in our day to day lives is creating more security issues than ever. The need for protecting and providing a secure access to private and business data has led to the development of many security systems. One of the potential solutions is to employ the bio-metric authentication technique. In this paper we present an innovative biometric authentication method that utilizes a person’s EEG signal, which is acquired in response to an auditory stimulus,and transferred wirelessly to a computer that has the necessary ANN algorithm-Multi layer perceptrol neural network because of is its ability to differentiate between information which is not linearly separable.In order to determine the weights of the hidden layer we use Gaussian random weight initialization. MLP utilizes a supervised learning technique called Back propagation for training the network. The complex algorithm used for EEG classification reduces the chances of intrusion into the protected public or private data.

Keywords: EEG signal, auditory evoked potential, biometrics, multilayer perceptron neural network, back propagation rule, Gaussian random weight initialization

Procedia PDF Downloads 409
1758 Reproductive Health Education (RHE) Toolkit for Science Teachers

Authors: Ivy Jeralyn T. Andres, Eva B. Macugay

Abstract:

Using a descriptive research design utilizing the Research and Development (R&D) methodology, this study focused on the development of Reproductive Health Education (RHE) Toolkit for Science Teachers that provides a guide in teaching reproductive health. Based on the findings, the teacher-respondents identified nine topics that can be included in the development of the RHE toolkit. The topics included are The Male Reproductive System, The Female Reproductive System, The Roles of Hormones in Male and Female Reproductive System, Menstrual Cycle, Fertilization, Pregnancy and Childbirth, Breastfeeding, Human Reproductive and Developmental Concerns and Reproductive Health Management and Diseases. The developed RHE Toolkit is remarked as very highly valid and very highly acceptable learning material. The validators and evaluators acknowledged the developed RHE toolkit as clear, creative, and academically useful supplemental material for educating reproductive health. Moreover, it follows the principles of SMART objectives, factual, timely, and relevant content for both learners and the community as a whole. Science teachers should employ the RHE Toolkit in teaching reproductive health education into their respective classes. It is also suggested that the developed RHE toolkit can be implemented to elementary pupils and the community, particularly in rural areas.

Keywords: reproductive health education, toolkit, science teachers, supplemental material

Procedia PDF Downloads 90
1757 Comparison of Student Grades in Dual-Enrollment Courses Taken Inside and Outside of Texas High Schools

Authors: Cynthia A. Gallardo, Kelly S. Hall, Kristopher Garza, Linda Challoo, Mais Nijim

Abstract:

Dual-enrollment programs have become more prevalent in college and high school settings. Also known as early college programs, dual-enrollment programs help students acquire a head start in earning college credit for post-secondary studies. The number and percentage of high school students who take college courses while in high school is growing. However, little is known about how dual-enrolled students fare. The classroom environment is important to learning. This study compares dually enrolled high school students who take courses that yield college credit either within their high school or at some other location. Mann-Whitney U was the statistical test used. Mean proportions were compared for each of the five standard letter grades earned across the state of Texas. Results indicated that students earn similar passing A, B, and C grades when they take dual-enrollment courses at their high school location but are more likely to fail if they take dual-enrollment courses at non-high school locations. Implications of results are that student success rate of dual-enrollment college courses may have a significant difference between the locations and student performance.

Keywords: educational leadership, dual-enrollment, student performance, college

Procedia PDF Downloads 99
1756 Protection System Mis-operations: Fundamental Concepts and Learning from Indian Power Sector

Authors: Pankaj Kumar Jha, Mahendra Singh Hada, Brijendra Singh

Abstract:

Protection system is an essential feature of the electrical system which helps in detection and removal of faults. Protection system consists of many subsystems like relays, circuit breakers, instrument transformers, auxiliary DC system, auxiliary relays etc. Although the fundamental protective and relay operating concepts are similar throughout the world, there are very significant differences in their implementation. These differences arise through different traditions, operating philosophies, experiences and national standards. Protection system mis-operation due to problem in one or more of its subsystem or inadequate knowledge of numerical relay settings and configuration are very common throughout the world. Protection system mis-operation leads to unstable and unreliable grid operation. In this paper we will discuss about the fundamental concepts of protective relaying and the reasons for protection system mis-operation due to one or more of its subsystems. Many real-world case studies of protection system mis-operation from Indian power sector are discussed in detail in this paper.

Keywords: auxiliary trip relays, bus zone, check zone, CT saturation, dead zone protection, DC ground faults, DMT, DR, end fault protection, instrument transformer, SOTF, STUB

Procedia PDF Downloads 76
1755 Smart Card Technology Adaption in a Hospital Setting

Authors: H. K. V. Narayan

Abstract:

This study was conducted at Tata Memorial Hospital (TMH), Mumbai, India. The study was to evaluate the impact of adapting Smart Card (SC) for clinical and business transactions in order to reduce Lead times and to enforce business rules of the hospital. The objective for implementing the Smart Card was to improve the patient perception of quality in terms of structures process and outcomes and also to improve the productivity of the Institution. The Smart Card was implemented in phases from 2011 and integrated with the Hospital Information System (HIS/EMR). The implementation was a learning curve for all the stake holders as software obviated the need to use hardcopies of transactions. The acceptability to the stake holders was challenge in change management. The study assessed the impact 3 years into the implementation and the observed trends have suggested that it has decreased the lead times for services and increased the no of transactions and thereby the productivity. Patients who used to complain of multiple queues and cumbersome transactions now compliment the administration for effective use of Information and Communication Technology.

Keywords: smart card, high availability of health care information, reduction in potential medical errors due to elimination of transcription errors, reduction in no of queues, increased transactions, augmentation of revenue

Procedia PDF Downloads 285
1754 Segmentation Using Multi-Thresholded Sobel Images: Application to the Separation of Stuck Pollen Grains

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Being able to identify biological particles such as spores, viruses, or pollens is important for health care professionals, as it allows for appropriate therapeutic management of patients. Optical microscopy is a technology widely used for the analysis of these types of microorganisms, because, compared to other types of microscopy, it is not expensive. The analysis of an optical microscope slide is a tedious and time-consuming task when done manually. However, using machine learning and computer vision, this process can be automated. The first step of an automated microscope slide image analysis process is segmentation. During this step, the biological particles are localized and extracted. Very often, the use of an automatic thresholding method is sufficient to locate and extract the particles. However, in some cases, the particles are not extracted individually because they are stuck to other biological elements. In this paper, we propose a stuck particles separation method based on the use of the Sobel operator and thresholding. We illustrate it by applying it to the separation of 813 images of adjacent pollen grains. The method correctly separated 95.4% of these images.

Keywords: image segmentation, stuck particles separation, Sobel operator, thresholding

Procedia PDF Downloads 130
1753 Relationship between Deliberate Practice of Dribbling and Self-Regulatory Behavior of Male Basketball Players

Authors: Daud Abdia, Aqsa Shamim, Farhan Tabassum

Abstract:

In order to achieve specific goals, basketball players have to use different skills to enhance their motivation, one such skill is deliberate practice. The aim of this study was to explore the relationship between deliberate practice of dribbling and self-regulatory behavior of male basketball players. For this purpose, a sample of 108 basketball players using stratified sampling was taken from public and private sector universities. Sample was divided into two groups that are experimental (n=54) and control group (n=54) using comparative experimental design. Experimental group was involved in the training of deliberate practice of dribbling for 5 weeks. Amounts of weekly practice activity and Self-Regulation of Learning Self-Report Scale (SRL-SRS) were used for self-regulatory behavior to collect data after the deliberate practice. The reliability of amounts of weekly practice activity was found to be 0.852, whereas SRL-SRS was found to be 0.890. The results of the study indicated a strong positive correlation between deliberate practice of dribbling and self-regulatory behavior (r=0.755, n=54, p=.000). Whereas, paired sample t-test; t(53)=1.37, p < 0.005 shows statistically significant improvement in the self-regulatory behavior after the training program of deliberate practice from 3.02 ± 0.64m to 3.21 ± 0.75m (p < 0.005). It was concluded that in order to enhance the self-regulatory behavior of basketball players we should work on the deliberate practice of the players.

Keywords: self-regulatory behavior, deliberate practice, dribbling, basketball

Procedia PDF Downloads 172
1752 Implementing a Neural Network on a Low-Power and Mobile Cluster to Aide Drivers with Predictive AI for Traffic Behavior

Authors: Christopher Lama, Alix Rieser, Aleksandra Molchanova, Charles Thangaraj

Abstract:

New technologies like Tesla’s Dojo have made high-performance embedded computing more available. Although automobile computing has developed and benefited enormously from these more recent technologies, the costs are still high, prohibitively high in some cases for broader adaptation, particularly for the after-market and enthusiast markets. This project aims to implement a Raspberry Pi-based low-power (under one hundred Watts) highly mobile computing cluster for a neural network. The computing cluster built from off-the-shelf components is more affordable and, therefore, makes wider adoption possible. The paper describes the design of the neural network, Raspberry Pi-based cluster, and applications the cluster will run. The neural network will use input data from sensors and cameras to project a live view of the road state as the user drives. The neural network will be trained to predict traffic behavior and generate warnings when potentially dangerous situations are predicted. The significant outcomes of this study will be two folds, firstly, to implement and test the low-cost cluster, and secondly, to ascertain the effectiveness of the predictive AI implemented on the cluster.

Keywords: CS pedagogy, student research, cluster computing, machine learning

Procedia PDF Downloads 102
1751 Urinalysis by Surface-Enhanced Raman Spectroscopy on Gold Nanoparticles for Different Disease

Authors: Leonardo C. Pacheco-Londoño, Nataly J. Galan-Freyle, Lisandro Pacheco-Lugo, Antonio Acosta, Elkin Navarro, Gustavo Aroca-Martínez, Karin Rondón-Payares, Samuel P. Hernández-Rivera

Abstract:

In our Life Science Research Center of the University Simon Bolivar (LSRC), one of the focuses is the diagnosis and prognosis of different diseases; we have been implementing the use of gold nanoparticles (Au-NPs) for various biomedical applications. In this case, Au-NPs were used for Surface-Enhanced Raman Spectroscopy (SERS) in different diseases' diagnostics, such as Lupus Nephritis (LN), hypertension (H), preeclampsia (PC), and others. This methodology is proposed for the diagnosis of each disease. First, good signals of the different metabolites by SERS were obtained through a mixture of urine samples and Au-NPs. Second, PLS-DA models based on SERS spectra to discriminate each disease were able to differentiate between sick and healthy patients with different diseases. Finally, the sensibility and specificity for the different models were determined in the order of 0.9. On the other hand, a second methodology was developed using machine learning models from all data of the different diseases, and, as a result, a discriminant spectral map of the diseases was generated. These studies were possible thanks to joint research between two university research centers and two health sector entities, and the patient samples were treated with ethical rigor and their consent.

Keywords: SERS, Raman, PLS-DA, diseases

Procedia PDF Downloads 141
1750 English 2A Students’ Oral Presentation Errors: Basis for English Policy Revision

Authors: Marylene N. Tizon

Abstract:

English instructors pay attention on errors committed by students as errors show whether they know or master their oral skills and what difficulties they may have in the process of learning the English language. This descriptive quantitative study aimed at identifying and categorizing the oral presentation errors of the purposively chosen 118 English 2A students enrolled during the first semester of school year 2013 – 2014. The analysis of the data for this study was undertaken using the errors committed by the students in their presentation. Marking and classifying of errors were made by first classifying them into linguistic grammatical errors then all errors were categorized further into Surface Structure Errors Taxonomy with the use of Frequency and Percentage distribution. From the analysis of the data, the researcher found out: Errors in tenses of the verbs (71 or 16%) and in addition 167 or 37% were most frequently uttered by the students. And Question and negation mistakes (12 or 3%) and misordering errors (28 or 7%) were least frequently enunciated by the students. Thus, the respondents in this study most frequently enunciated errors in tenses and in addition while they uttered least frequently the errors in question, negation, and misordering.

Keywords: grammatical error, oral presentation error, surface structure errors taxonomy, descriptive quantitative design, Philippines, Asia

Procedia PDF Downloads 392
1749 Criterion-Referenced Test Reliability through Threshold Loss Agreement: Fuzzy Logic Analysis Approach

Authors: Mohammad Ali Alavidoost, Hossein Bozorgian

Abstract:

Criterion-referenced tests (CRTs) are designed to measure student performance against a fixed set of predetermined criteria or learning standards. The reliability of such tests cannot be based on internal reliability. Threshold loss agreement is one way to calculate the reliability of CRTs. However, the selection of master and non-master in such agreement is determined by the threshold point. The problem is if the threshold point witnesses a minute change, the selection of master and non-master may have a drastic change, leading to the change in reliability results. Therefore, in this study, the Fuzzy logic approach is employed as a remedial procedure for data analysis to obviate the threshold point problem. Forty-one Iranian students were selected; the participants were all between 20 and 30 years old. A quantitative approach was used to address the research questions. In doing so, a quasi-experimental design was utilized since the selection of the participants was not randomized. Based on the Fuzzy logic approach, the threshold point would be more stable during the analysis, resulting in rather constant reliability results and more precise assessment.

Keywords: criterion-referenced tests, threshold loss agreement, threshold point, fuzzy logic approach

Procedia PDF Downloads 369
1748 Expanding Chance of Palm Oil Market into ASEAN Community: Case Study of Choomporn Palm Oil Cooperative

Authors: Pichamon Chansuchai

Abstract:

This paper studied the expanding market opportunity palm oil ASEAN community: case study of Choomporn Palm Oil Cooperative as qualitative research. The purpose is to study and analyze expanding and linking the liberalization of trade in palm oil products under the terms of cooperation and ASEAN countries. Collection data were collected using participatory observation, in-depth interviews, focus groups, government officials, palm oil cooperative, entrepreneurs and farmers to exchange opinions. The study found that of major competitors is Indonesia and Malaysia which as ASEAM members countries has the potential to produce over Thailand. Thailand government must have a policy to increase the competitiveness of the palm oil Thailand. Using grants from the Free Trade Area fund should add value to agricultural products, palm oil and the development of standard products to meet the needs of the member countries. And creating a learning center of the palm oil sector can transfer knowledge, development of palm species, solution process from planting to harvest care privatization process. And the development of palm oil in order to expand market opportunities for Thailand's palm oil has the potential to be competitive in the neighboring countries and the region.

Keywords: palm oil, market, cooperative, ASEAN

Procedia PDF Downloads 500
1747 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups

Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski

Abstract:

In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.

Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection

Procedia PDF Downloads 144
1746 The Convergence of IoT and Machine Learning: A Survey of Real-time Stress Detection System

Authors: Shreyas Gambhirrao, Aditya Vichare, Aniket Tembhurne, Shahuraj Bhosale

Abstract:

In today's rapidly evolving environment, stress has emerged as a significant health concern across different age groups. Stress that isn't controlled, whether it comes from job responsibilities, health issues, or the never-ending news cycle, can have a negative effect on our well-being. The problem is further aggravated by the ongoing connection to technology. In this high-tech age, identifying and controlling stress is vital. In order to solve this health issue, the study focuses on three key metrics for stress detection: body temperature, heart rate, and galvanic skin response (GSR). These parameters along with the Support Vector Machine classifier assist the system to categorize stress into three groups: 1) Stressed, 2) Not stressed, and 3) Moderate stress. Proposed training model, a NodeMCU combined with particular sensors collects data in real-time and rapidly categorizes individuals based on their stress levels. Real-time stress detection is made possible by this creative combination of hardware and software.

Keywords: real time stress detection, NodeMCU, sensors, heart-rate, body temperature, galvanic skin response (GSR), support vector machine

Procedia PDF Downloads 72
1745 The Exploration of Preschool Teachers' Understanding of the Role of Socio-Emotional Development in School Readiness

Authors: A. Pedro, T. Goldschmidt

Abstract:

Socio-emotional development is considered to be an essential prerequisite for school readiness. To our best knowledge, research on socio-emotional development specifically from the views of teachers in the South African context is limited. This study explored preschool teachers’ understanding of the role that socio-emotional development plays in preparing the child for school. Using the social learning theory, a qualitative approach with an exploratory design was used for the study. A total of 12 preschool teachers from both community-based and school-based preschools were purposively recruited. Upon receiving ethics clearance from the University of the Western Cape and the Western Cape Education Department, semi-structured interviews were conducted and analysed by utilizing Braun and Clarke’s (2006) six phases of thematic analysis. Participants’ rights, anonymity, and confidentiality were upheld throughout the research process. Findings reveal that preschool teachers emphasise the importance of holistic development for school readiness. Teachers deemed socio-emotional development as absolutely crucial for preparing children for school as it eases the transition to formal schooling and adaptation to the classroom environment.

Keywords: early childhood, preschool teachers, school readiness, socio-emotional development

Procedia PDF Downloads 141
1744 The Use of Hedging Devices in Studens’ Oral Presentation

Authors: Siti Navila

Abstract:

Hedging as a kind of pragmatic competence is an essential part in achieving the goal in communication, especially in academic discourse where the process of sharing knowledge among academic community takes place. Academic discourse demands an appropriateness and modesty of an author or speaker in stating arguments, to name but few, by considering the politeness, being cautious and tentative, and differentiating personal opinions and facts in which these aspects can be achieved through hedging. This study was conducted to find the hedging devices used by students as well as to analyze how they use them in their oral presentation. Some oral presentations from English Department students of the State University of Jakarta on their Academic Presentation course final test were recorded and explored formally and functionally. It was found that the most frequent hedging devices used by students were shields from all hedging devices that students commonly used when they showed suggestion, stated claims, showed opinion to provide possible but still valid answer, and offered the appropriate solution. The researcher suggests that hedging can be familiarized in learning, since potential conflicts that is likely to occur while delivering ideas in academic contexts such as disagreement, criticism, and personal judgment can be reduced with the use of hedging. It will also benefit students in achieving the academic competence with an ability to demonstrate their ideas appropriately and more acceptable in academic discourse.

Keywords: academic discourse, hedging, hedging devices, lexical hedges, Meyer classification

Procedia PDF Downloads 460
1743 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis

Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan

Abstract:

We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.

Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.

Procedia PDF Downloads 139
1742 A Corpus-Assisted Discourse Analysis of Adjectival Collocation of the Word 'Education' in the American Context

Authors: Ngan Nguyen

Abstract:

The study analyses adjectives collocating with the word ‘education’ in the American language of the Corpus of Global Web-based English using a combination of corpus linguistic and discourse analytical methods to examine not only language patterns but also social political ideologies around the topic. Significant conclusions are deduced: (1) there are a large number of adjectival collocates of the word education which have been identified and classified into four categories representing four different aspects of education: level, quality, forms and types of education; (2) education, as in combination with three first categories, carries the meaning as the act and process of teaching and learning while with the last category having the meaning of a particular kind of teaching or training; (3) higher education is the topic that gains most concerns from the American public; (4) five most significant ideologies are discovered from the corpus: higher education associates with financial affairs, higher education is an industry, monetary policy of the government on higher education, people require greater accessibility to higher education and people value higher education. The study contributes to the field of developing meanings of words through corpus analysis and the field of discourse analysis.

Keywords: adjectival collocation, American context, corpus linguistics, discourse analysis, education

Procedia PDF Downloads 346
1741 Text2Time: Transformer-Based Article Time Period Prediction

Authors: Karthick Prasad Gunasekaran, B. Chase Babrich, Saurabh Shirodkar, Hee Hwang

Abstract:

Construction preparation is crucial for the success of a construction project. By involving project participants early in the construction phase, project managers can plan ahead and resolve issues early, resulting in project success and satisfaction. This study uses quantitative data from construction management projects to determine the relationship between the pre-construction phase, construction schedule, and customer satisfaction. This study examined a total of 65 construction projects and 93 clients per job to (a) identify the relationship between the pre-construction phase and program reduction and (b) the pre-construction phase and customer retention. Based on a quantitative analysis, this study found a negative correlation between pre-construction status and project schedule in 65 construction projects. This finding means that the more preparatory work done on a particular project, the shorter the total construction time. The Net Promoter Score of 93 clients from 65 projects was then used to determine the relationship between construction preparation and client satisfaction. The pre-construction status and the projects were further analyzed, and a positive correlation between them was found. This shows that customers are happier with projects with a higher ready-to-build ratio than projects with less ready-to-build.

Keywords: NLP, BERT, LLM, deep learning, classification

Procedia PDF Downloads 104
1740 The Influence of Language and Background Culture on Speakers from the Viewpoint of Gender and Identity

Authors: Yuko Tomoto

Abstract:

The purpose of this research is to examine the assumption that female bilingual speakers more often change the way they talk or think depending on the language they use compared with male bilingual speakers. The author collected data through questionnaires on 241 bilingual speakers. Also, in-depth interview surveys were conducted with 13 Japanese/English bilingual speakers whose native language is Japanese and 16 English/Japanese bilingual speakers whose native language is English. The results indicate that both male and female bilingual speakers are more or less influenced consciously and unconsciously by the language they use, as well as by the background cultural values of each language. At the same time, it was found that female speakers are much more highly affected by the language they use, its background culture and also by the interlocutors they were talking to. This was probably due to the larger cultural expectations on women. Through conversations, speakers are not only conveying a message but also attempting to express who they are, and what they want to be like. In other words, they are constantly building up and updating their own identities by choosing the most appropriate language and descriptions to express themselves in the dialogues. It has been claimed that the images of ideal L2 self could strongly motivate learners. The author hopes to make the best use of the fact that bilingual speakers change their presence depending on the language they use, in order to motivate Japanese learners of English, especially female learners from the viewpoint of finding their new selves in English.

Keywords: cultural influence, gender expectation, language learning, L2 self

Procedia PDF Downloads 422
1739 Users and Non-Users of Social Media: An Exploratory Study of Rural Women in Eastern Uttar Pradesh

Authors: Neha Bhushan

Abstract:

For the purpose of this study a village of district Azamgarh has been selected which is a part of the most populous and backward state of the country, Uttar Pradesh. In the age of information, everyone has the right to acquire information and it becomes important to assess the acceptance and non-acceptance of social media among rural population. Rural women of the state are showing positive trends in the form of increased social media and mobile usage. This study is an effort to know the purpose of rural women for using social media. The study design is exploratory and qualitative in nature. Data collection primarily consisted of 25 semi-structured individual interviews having 10 open-ended specific questions in one of the villages of Azamgarh district of Eastern Uttar Pradesh. Sampling approach is flexible and situational. Data reveals that rural women have become active on social media since last six months to one year. Most of them are using Facebook, Whatsapp, and YouTube for the purpose of interaction, learning new skills, checking out recipes and latest fashion. This pilot study gives a bird eye view of the problem and opens door for exploring this least explored area.

Keywords: exploratory research, mobile usage, rural women, social media

Procedia PDF Downloads 145
1738 Cluster Randomized Trial of 'Ready to Learn': An After-School Literacy Program for Children Starting School

Authors: Geraldine Macdonald, Oliver Perra, Nina O’Neill, Laura Neeson, Kathryn Higgins

Abstract:

Background: Despite improvements in recent years, almost one in six children in Northern Ireland (NI) leaves primary school without achieving the expected level in English and Maths. By early adolescence, this ratio is one in five. In 2010-11, around 9000 pupils in NI had failed to achieve the required standard in literacy and numeracy by the time they left full-time education. This paper reports the findings of an experimental evaluation of a programmed designed to improve educational outcomes of a cohort of children starting primary school in areas of high social disadvantage in Northern Ireland. The intervention: ‘Ready to Learn’ comprised two key components: a literacy-rich After School programme (one hour after school, three days per week), and a range of activities and support to promote the engagement of parents with their children’s learning, in school and at home. The intervention was delivered between September 2010 and August 2013. Study aims and objectives: The primary aim was to assess whether, and to what extent, ‘Ready to Learn’ improved the literacy of socially disadvantaged children entering primary schools compared with children in schools without access to the programme. Secondary aims included assessing the programme’s impact on children’s social, emotional and behavioural regulation, and parents’ engagement with their children’s learning. In total, 505 children (almost all) participated in the baseline assessment for the study, with good retention over seven sweeps of data collection. Study design: The intervention was evaluated by means of a cluster randomized trial, with schools as the unit of randomization and analysis. It included a qualitative component designed to examine process and implementation, and to explore the concept of parental engagement. Sixteen schools participated, with nine randomized to the experimental group. As well as outcome data relating to children, 134 semi-structured interviews were conducted with parents over the three years of the study, together with 88 interviews with school staff. Results: Given the children’s ages, not all measures used were direct measures of reading. Findings point to a positive impact of “Ready to Learn” on children’s reading achievement (comprehension and fluency), as assessed by the York Assessment of Reading Comprehension (YARC) and decoding, assessed using the Word Recognition and Phonic Skills (WRaPS3). Effects were not large, but evidence suggests that it is unusual for an after school programme to clearly to demonstrate effects on reading skills. No differences were found on three other measures of literacy-related skills: British Picture Vocabulary Scale (BPVS-II), Naming Speed and Non-word Reading Tests from the Phonological Assessment Battery (PhAB) or Concepts about Print (CAP) – the last due to an age-related ceiling effect). No differences were found between the two groups on measures of social, emotional and behavioural regulation, and due to low levels of participation, it was not possible directly to assess the contribution of the parent component to children’s outcomes. The qualitative data highlighted conflicting concepts of engagement between parents and school staff. Ready to Learn is a promising intervention that merits further support and evaluation.

Keywords: after-school, education, literacy, parental engagement

Procedia PDF Downloads 379
1737 Business Entrepreneurs in the Making

Authors: Talha Sareshwala

Abstract:

The purpose of this research paper is to revise the skills of an entrepreneur in the making and to guide future Entrepreneurs into a promising future. The study presents a broader review of entrepreneurship, starting from its definition and antecedents. A well-developed original set of guidelines can help budding entrepreneurs and practitioners seeking an answer to being successful as an entrepreneur. It is a journey full of excitement, experiences, rewards, and learning. Dedication, work ethics and a never-say-die attitude will largely contribute to the success as a businessman and an entrepreneur. This paper is sharing an experience of how an entrepreneur can act as a catalyst for young minds while ensuring them that ethics and principles do pay in business when followed in true spirit and action. It is very important for an entrepreneur to enhance his product or services, marketing skills, and market share, along with providing customer satisfaction and opportunities for teams to improve their leadership qualities. To have strong employee loyalty and job satisfaction among its employees. Based on Research objectives, primarily in-depth interviews and focused group interviews were conducted as a qualitative research method. And to support this survey, questionnaires were used as a qualitative research method to explore how Indian Entrepreneurs face the challenge of the changing, volatile socio-political environment in India.

Keywords: entrepreneur, business ethics, sales, marketing

Procedia PDF Downloads 91