Search results for: asthma control test
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18321

Search results for: asthma control test

12831 Application of IoTs Based Multi-Level Air Quality Sensing for Advancing Environmental Monitoring in Pingtung County

Authors: Men An Pan, Hong Ren Chen, Chih Heng Shih, Hsing Yuan Yen

Abstract:

Pingtung County is located in the southernmost region of Taiwan. During the winter season, pollutants due to insufficient dispersion caused by the downwash of the northeast monsoon lead to the poor air quality of the County. Through the implementation of various control methods, including the application of permits of air pollution, fee collection of air pollution, control oil fume of catering sectors, smoke detection of diesel vehicles, regular inspection of locomotives, and subsidies for low-polluting vehicles. Moreover, to further mitigate the air pollution, additional alternative controlling strategies are also carried out, such as construction site control, prohibition of open-air agricultural waste burning, improvement of river dust, and strengthening of road cleaning operations. The combined efforts have significantly reduced air pollutants in the County. However, in order to effectively and promptly monitor the ambient air quality, the County has subsequently deployed micro-sensors, with a total of 400 IoTs (Internet of Things) micro-sensors for PM2.5 and VOC detection and 3 air quality monitoring stations of the Environmental Protection Agency (EPA), covering 33 townships of the County. The covered area has more than 1,300 listed factories and 5 major industrial parks; thus forming an Internet of Things (IoTs) based multi-level air quality monitoring system. The results demonstrate that the IoTs multi-level air quality sensors combined with other strategies such as “sand and gravel dredging area technology monitoring”, “banning open burning”, “intelligent management of construction sites”, “real-time notification of activation response”, “nighthawk early bird plan with micro-sensors”, “unmanned aircraft (UAV) combined with land and air to monitor abnormal emissions”, and “animal husbandry odour detection service” etc. The satisfaction improvement rate of air control, through a 2021 public survey, reached a high percentage of 81%, an increase of 46% as compared to 2018. For the air pollution complaints for the whole year of 2021, the total number was 4213 in contrast to 7088 in 2020, a reduction rate reached almost 41%. Because of the spatial-temporal features of the air quality monitoring IoTs system by the application of microsensors, the system does assist and strengthen the effectiveness of the existing air quality monitoring network of the EPA and can provide real-time control of the air quality. Therefore, the hot spots and potential pollution locations can be timely determined for law enforcement. Hence, remarkable results were obtained for the two years. That is, both reduction of public complaints and better air quality are successfully achieved through the implementation of the present IoTs system for real-time air quality monitoring throughout Pingtung County.

Keywords: IoT, PM, air quality sensor, air pollution, environmental monitoring

Procedia PDF Downloads 73
12830 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve

Authors: Y.J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 474
12829 Prevalence of Selected Cardiovascular Risk Factors Obesity among University of Venda Staff

Authors: Avhasei Dorothy Rasifudi, Josephine Mandizha

Abstract:

Cardiovascular risk factors continue to be the leading cause of death in the majority of developed and developing countries. In 2011, the World Health Organization reported that every year an estimated 17 million people globally die of CVD, representing 30% of all global deaths, particularly caused by heart attacks and strokes. The purpose of the study was to determine and describe the prevalence of selected cardiovascular risk factors among university of Venda staff. A cross-sectional study was conducted among 100 staff aged 20-65 years. The anthropometric measurements were conducted in accordance to and with standardized procedures advocated by the International Society for the Advanced Kinanthropometry. Weight, Height, waist circumference and hip circumference were measured for calculation of body mass index and waist-hip ratio. Blood pressure was measured using a Heine cuff and sphygmomanometer. Questionnaire was administered to gather demographic details and cardiovascular risk factors of hypertension and obesity. Data were analyzed using mean and standard deviation. The parameter t-test was applied to test significance level at p ≤ 0.05 between sexes. The statistical significance was set at p ≤ 0.05. The prevalence of hypertension was 23% with the highest prevalence amongst those aged 40 years and above. Factors found to be to be significantly associated with hypertension were gender, age, physical inactivity and family history. Prevalence of obesity was 43%, with the highest prevalence among those aged 40 years. The factors associated with obesity were diet, age and physical activity. The prevalence of hypertension and obesity in the study were high.

Keywords: cardiovascular, prevalence, risk factors, staff

Procedia PDF Downloads 295
12828 Analysis of the Accuracy of Earth Movement with Drone Surveys

Authors: Raúl Pereda García, Julio Manuel de Luis Ruiz, Elena Castillo López, Rubén Pérez Álvarez, Felipe Piña García

Abstract:

New technologies for the capture of point clouds have experienced a great advance in recent years. In this way, its use has been extended in geomatics, providing measurement solutions that have been popularized without there being, many times, a detailed study of its accuracy. This research focuses on the study of the viability of topographic works with drones incorporating different sensors sensitive to the visible spectrum. The fundamentals have been applied to a road, located in Cantabria (Spain), where a platform extension and the reform of a riprap were being constructed. A total of six flights were made during two months, all of them with GPS as part of the photogrammetric process, and the results were contrasted with those measured with total station. The obtained results show that the choice of the camera and the planning of the flight have an important impact on the accuracy. In fact, the representations with a level of detail corresponding to 1/1000 scale are admissible, depending on the existing vegetation, and obtaining better results in the area of the riprap. This set of techniques is, therefore, suitable for the control of earthworks in road works but with certain limitations which are exposed in this paper.

Keywords: drone, earth movement control, global position system, surveying technology.

Procedia PDF Downloads 184
12827 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression

Authors: Zhifeng Xu, Zhongfan Chen

Abstract:

A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.

Keywords: cold-formed steel, composite wall, foamed concrete, axial behavior test

Procedia PDF Downloads 337
12826 Cockpit Integration and Piloted Assessment of an Upset Detection and Recovery System

Authors: Hafid Smaili, Wilfred Rouwhorst, Paul Frost

Abstract:

The trend of recent accident and incident cases worldwide show that the state-of-the-art automation and operations, for current and future demanding operational environments, does not provide the desired level of operational safety under crew peak workload conditions, specifically in complex situations such as loss-of-control in-flight (LOC-I). Today, the short term focus is on preparing crews to recognise and handle LOC-I situations through upset recovery training. This paper describes the cockpit integration aspects and piloted assessment of both a manually assisted and automatic upset detection and recovery system that has been developed and demonstrated within the European Advanced Cockpit for Reduction Of StreSs and workload (ACROSS) programme. The proposed system is a function that continuously monitors and intervenes when the aircraft enters an upset and provides either manually pilot-assisted guidance or takes over full control of the aircraft to recover from an upset. In order to mitigate the highly physical and psychological impact during aircraft upset events, the system provides new cockpit functionalities to support the pilot in recovering from any upset both manually assisted and automatically. A piloted simulator assessment was made in Oct-Nov 2015 using ten pilots in a representative civil large transport fly-by-wire aircraft in terms of the preference of the tested upset detection and recovery system configurations to reduce pilot workload, increase situational awareness and safe interaction with the manually assisted or automated modes. The piloted simulator evaluation of the upset detection and recovery system showed that the functionalities of the system are able to support pilots during an upset. The experiment showed that pilots are willing to rely on the guidance provided by the system during an upset. Thereby, it is important for pilots to see and understand what the aircraft is doing and trying to do especially in automatic modes. Comparing the manually assisted and the automatic recovery modes, the pilot’s opinion was that an automatic recovery reduces the workload so that they could perform a proper screening of the primary flight display. The results further show that the manually assisted recoveries, with recovery guidance cues on the cockpit primary flight display, reduced workload for severe upsets compared to today’s situation. The level of situation awareness was improved for automatic upset recoveries where the pilot could monitor what the system was trying to accomplish compared to automatic recovery modes without any guidance. An improvement in situation awareness was also noticeable with the manually assisted upset recovery functionalities as compared to the current non-assisted recovery procedures. This study shows that automatic upset detection and recovery functionalities are likely to positively impact the operational safety by means of reduced workload, improved situation awareness and crew stress reduction. It is thus believed that future developments for upset recovery guidance and loss-of-control prevention should focus on automatic recovery solutions.

Keywords: aircraft accidents, automatic flight control, loss-of-control, upset recovery

Procedia PDF Downloads 210
12825 Effects of Cannabis and Cocaine on Driving Related Tasks of Perception, Cognition, and Action

Authors: Michelle V. Tomczak, Reyhaneh Bakhtiari, Aaron Granley, Anthony Singhal

Abstract:

Objective: Cannabis and cocaine are associated with a range of mental and physical effects that can impair aspects of human behavior. Driving is a complex cognitive behavior that is an essential part of everyday life and can be broken down into many subcomponents, each of which can uniquely impact road safety. With the growing movement of jurisdictions to legalize cannabis, there is an increased focus on impairment and driving. The purpose of this study was to identify driving-related cognitive-performance deficits that are impacted by recreational drug use. Design and Methods: With the assistance of law enforcement agencies, we recruited over 300 participants under the influence of various drugs including cannabis and cocaine. These individuals performed a battery of computer-based tasks scientifically proven to be re-lated to on-road driving performance and designed to test response-speed, memory processes, perceptual-motor skills, and decision making. Data from a control group with healthy non-drug using adults was collected as well. Results: Compared to controls, the drug group showed def-icits in all tasks. The data also showed clear differences between the cannabis and cocaine groups where cannabis users were faster, and performed better on some aspects of the decision-making and perceptual-motor tasks. Memory performance was better in the cocaine group for simple tasks but not more complex tasks. Finally, the participants who consumed both drugs performed most similarly to the cannabis group. Conclusions: Our results show distinct and combined effects of cannabis and cocaine on human performance relating to driving. These dif-ferential effects are likely related to the unique effects of each drug on the human brain and how they distinctly contribute to mental states. Our results have important implications for road safety associated with driver impairment.

Keywords: driving, cognitive impairment, recreational drug use, cannabis and cocaine

Procedia PDF Downloads 126
12824 Work Ability Index (WAI) and Its Health-Related Detriments among Iranian Farmers Working in the Small Farm Enterprises

Authors: Akbar Rostamabadi, Adel Mazloumi, Abbas Rahimi Foroushani

Abstract:

This study aimed to determine the Work Ability Index (WAI) and examine the influence of health dimensions and demographic variables on the work ability of Iranian farmers working in small farm enterprises. A cross-sectional study was conducted among 294 male farmers. The WAI and SF-36 questionnaires were used to determine work ability and health status. The effect of demographics variables on the work ability index was investigated with the independent samples t-test and one-way ANOVA. Also, multiple linear regression analysis was used to test the association between the mean WAI score and the SF-36 scales. The mean WAI score was 35.1 (SD=10.6). One-way ANOVA revealed a significant relationship between the mean WAI and age. Multiple linear regression analysis showed that work ability was more influenced by physical scales of the health dimensions, such as physical function, role-physical, and general health, whereas a lower association was found for mental scales such as mental health. The average WAI was at a moderate work ability level for the sample population of farmers in this study. Based on the WAI guidelines, improvement of work ability and identification of factors affecting it should be considered a priority in interventional programs. Given the influence of health dimensions on WAI, any intervention program for preservation and promotion work ability among the studied farmers should be based on balancing and optimizing the physical and psychosocial work environments, with a special focus on reducing physical work load.

Keywords: farmers, SF-36, Work Ability Index (WAI), Iran

Procedia PDF Downloads 440
12823 Aerodynamic Interference of Propellers Group with Adjustable Mutual Position

Authors: Michal Biały, Krzysztof Skiba, Zdzislaw Kaminski

Abstract:

The research results of the influence of the adjustable mutual position of the propellers for getting optimal lift force on a specially designed bench. The bench consists of frame with electric motors and with attached propellers. Engines were arranged in a matrix of two columns and three rows. The distance between the columns averages from 0 to 20”, while the engine was placed at a height of 8”, 15.5” and 23.6”. By adjusting the tilt of an electric motor, an angle of the propeller in the range of 0° to 60°, by 15° was controlled. Propellers with a diameter of 8" and pitch of 4.5” were driven by brushless model engines Roxxy BL-Outrunner 2827/26 with a power of 110W (each). Rotational speed control of electric motors were realized parallel for all propellers. The speed adjustment was realized using an aggregate of radio-controlled regulators. Electric power supplied to the engines from zero to maximum power, by the setting for every 14W, was controlled by radio system. Measurement system was placed on a laboratory scale. The lift was measured and recorded by an electronic scale. The lift force for different configurations of propellers arrangement was recorded during the test. All propellers were driven in one rotational direction and in different directions when they were in the same pairs. Propellers were driven concurrently and contra-concurrently along one of the columns and along the selected rows. During the tests, except the lift, parameters such as: rotational speed of propellers, voltage and current to the electric engines were recorded. The main aim of the research was to show the influence of aerodynamic interference between the propellers to receive lift force depending on the drive configuration of individual propellers. The research has shown that, this interference exists. The increase of the lift force for a distance between columns above 26.6” was noticed during the driving propellers in different directions. The optimum tilt angle of the propeller was 45°. Furthermore there has been also approx. 12% increase of the lift for propellers driven alternately in column and contra-concurrently in relation to the contra-rotating drive in the row.

Keywords: aerodynamic, interference, lift force, propeller, propulsion system

Procedia PDF Downloads 344
12822 Reduction of Biofilm Formation in Closed Circuit Cooling Towers

Authors: Irfan Turetgen

Abstract:

Closed-circuit cooling towers are cooling units that operate according to the indirect cooling principle. Unlike the open-loop cooling tower, the filler material includes a closed-loop water-operated heat exchanger. The main purpose of this heat exchanger is to prevent the cooled process water from contacting with the external environment. In order to ensure that the hot water is cooled, the water is cooled by the air flow and the circulation water of the tower as it passes through the pipe. They are now more commonly used than open loop cooling towers that provide cooling with plastic filling material. As with all surfaces in contact with water, there is a biofilm formation on the outer surface of the pipe. Although biofilm has been studied very well on plastic surfaces in open loop cooling towers, studies on biofilm layer formed on the heat exchangers of the closed circuit tower have not been found. In the recent study, natural biofilm formation was observed on the heat exchangers of the closed loop tower for 6 months. At the same time, nano-silica coating, which is known to reduce the formation of the biofilm layer, a comparison was made between the two different surfaces in terms of biofilm formation potential. Test surfaces were placed into biofilm reactor along with the untreated control coupons up to 6-months period for biofilm maturation. Natural bacterial communities were monitored to analyze the impact to mimic the real-life conditions. Surfaces were monthly analyzed in situ for their microbial load using epifluorescence microscopy. Wettability is known to play a key role in biofilm formation on surfaces, because characteristics of surface properties affect the bacterial adhesion. Results showed that surface-conditioning with nano-silica significantly reduce (up to 90%) biofilm formation. Easy coating process is a facile and low-cost method to prepare hydrophobic surface without any kinds of expensive compounds or methods.

Keywords: biofilms, cooling towers, fill material, nano silica

Procedia PDF Downloads 129
12821 Investigation of FoxM1 Gene Expression in Breast Cancer and Its Relationship with miR-216b-5p Expression Level

Authors: Neda Menbari, Ramin Mehdiabadi

Abstract:

Background: breast cancer remains a critical global health issue, constituting a leading cause of cancer-related mortality in women. MicroRNAs (miRs) are natural RNA molecules that play an important role in cellular processes and regulate post-transcriptional gene expression. MiR-216b-5p is a miR that acts as a tumor suppressor. The expression levels of FoxM1 and miR-216b-5p in malignant and control cells have been evaluated by quantitative polymerase chain reaction (qPCR) technique and flow cytometry. Results: the results of this study revealed a significant downregulation of miR-216b-5p in cancerous cells compared to the control MCF-10A cells (P=0.0004). Interestingly, the expression of miR-216b-5p exhibited an inverse relationship with key clinical indicators such as tumor size, grade, and lymph node invasion. Conclusion: The study's findings showed the prognostic value of miR-216b-5p levels in breast cancer, and its reduced expression correlates with unfavorable tumor characteristics. This research recommends performing more studies on the role of FoxM1 and miR-216b-5p in breast cancer pathology which potentially paving the way for targeted therapeutic interventions.

Keywords: breast cancer, gene expression, FOXM1, microRNA

Procedia PDF Downloads 53
12820 Strength of Soft Clay Reinforced with Polypropylene Column

Authors: Muzamir Hasan, Anas Bazirgan

Abstract:

Granular columns is a technique that has the properties of improving bearing capacity, accelerating the dissipation of excess pore water pressure and reducing settlement in a weak soft soil. This research aims to investigate the role of Polypropylene column in improving the shear strength and compressibility of soft reconstituted kaolin clay by determining the effects of area replacement ratio, height penetrating ratio and volume replacement ratio of a singular Polypropylene column on the strength characteristics. Reinforced kaolin samples were subjected to Unconfined Compression (UCT) and Unconsolidated Undrained (UU) triaxial tests. The kaolin samples were 50 mm in diameter and 100 mm in height. Using the PP column reinforcement, with an area replacement ratio of 0.8, 0.5 and 0.3, shear strength increased approximately 5.27%, 26.22% and 64.28%, and 37.14%, 42.33% and 51.17%, for area replacement ratios of 25% and 10.24%. Meanwhile, UU testing showed an increase in shear strength of 24.01%, 23.17% and 23.49% and 28.79%, 27.29 and 30.81% for the same ratios. Based on the UCT results, the undrained shear strength generally increased with the decrease in height penetration ratio. However, based on the UU test results Mohr-Coulomb failure criteria, the installation of Polypropylene columns did not show any significant difference in effective friction angle. However, there was an increase in the apparent cohesion and undrained shear strength of the kaolin clay. In conclusion, Polypropylene column greatly improved the shear strength; and could therefore be implemented in reducing the cost of soil improvement as a replacement for non-renewable materials.

Keywords: polypropylene, UCT, UU test, Kaolin S300, ground improvement

Procedia PDF Downloads 329
12819 Translation And Cultural Adaptation Of The Rivermead Behavioural Memory Test–3rd Edition Into the Arabic Language

Authors: Mai Alharthy, Agnes Shiel, Hynes Sinead

Abstract:

Objectives: The objectives of the study are to translate and culturally adapt the RBMT-3 to be appropriate for use within an Arabic-speaking population and to achieve maximum equivalency between the translated and original versions and to evaluate the psychometric properties of the Arabic version of the RBMT-3. Participants' numbers are 16 (10 females and 6 males). All participants are bilingual speakers of Arabic and English, above 18 years old and with no current nor past memory impairment. Methods: The study was conducted in two stages: Translation and cultural adaptation stage: Forward and backward translations were completed by professional translators. Five out of the 14 RBMT-3 subtests required cultural adaptations. Half of the faces in the face recognition subtests were replaced with Arabic faces by a professional photographer. Pictures that are irrelevant to the Arabic culture in the picture recognition subtests were replaced. Names, story and orientations subtests were also adapted to suit the Arabic culture. An expert committee was formed to compare the translated and original versions and to advise on further changes required for test materials. Validation of the Arabic RBMT-3- pilot: 16 Participants were tested on version 1 of the English version and the two versions of the Arabic RBMT-3 ( counterbalanced ). The assessment period was 6 weeks long, with two weeks gap between tests. All assessments took place in a quiet room in the National University of Ireland Galway. Two qualified occupational therapists completed the assessments. Results: Wilcox signed-rank test was used to compare between subtest scores. Significant differences were found in the story, orientation and names subtests between the English and Arabic versions. No significant differences were found in subtests from both Arabic versions except for the story subtest. Conclusion: The story and orientation subtests should be revised by the expert committee members to make further adaptations. The rest of the Arabic RBMT-3 subtests are equivalent to the subtests of the English version. The psychometric properties of the Arabic RBMT-3 will be investigated in a larger Arabic-speaking sample in Saudi Arabia. The outcome of this research is to provide clinicians and researchers with a reliable tool to assess memory problems in Arabic speaking population.

Keywords: memory impairment, neuropsychological assessment, cultural adaptation, cognitive assessment

Procedia PDF Downloads 256
12818 Analyzing Electromagnetic and Geometric Characterization of Building Insulation Materials Using the Transient Radar Method (TRM)

Authors: Ali Pourkazemi

Abstract:

The transient radar method (TRM) is one of the non-destructive methods that was introduced by authors a few years ago. The transient radar method can be classified as a wave-based non destructive testing (NDT) method that can be used in a wide frequency range. Nevertheless, it requires a narrow band, ranging from a few GHz to a few THz, depending on the application. As a time-of-flight and real-time method, TRM can measure the electromagnetic properties of the sample under test not only quickly and accurately, but also blindly. This means that it requires no prior knowledge of the sample under test. For multi-layer structures, TRM is not only able to detect changes related to any parameter within the multi-layer structure but can also measure the electromagnetic properties of each layer and its thickness individually. Although the temperature, humidity, and general environmental conditions may affect the sample under test, they do not affect the accuracy of the Blind TRM algorithm. In this paper, the electromagnetic properties as well as the thickness of the individual building insulation materials - as a single-layer structure - are measured experimentally. Finally, the correlation between the reflection coefficients and some other technical parameters such as sound insulation, thermal resistance, thermal conductivity, compressive strength, and density is investigated. The sample to be studied is 30 cm x 50 cm and the thickness of the samples varies from a few millimeters to 6 centimeters. This experiment is performed with both biostatic and differential hardware at 10 GHz. Since it is a narrow-band system, high-speed computation for analysis, free-space application, and real-time sensor, it has a wide range of potential applications, e.g., in the construction industry, rubber industry, piping industry, wind energy industry, automotive industry, biotechnology, food industry, pharmaceuticals, etc. Detection of metallic, plastic pipes wires, etc. through or behind the walls are specific applications for the construction industry.

Keywords: transient radar method, blind electromagnetic geometrical parameter extraction technique, ultrafast nondestructive multilayer dielectric structure characterization, electronic measurement systems, illumination, data acquisition performance, submillimeter depth resolution, time-dependent reflected electromagnetic signal blind analysis method, EM signal blind analysis method, time domain reflectometer, microwave, milimeter wave frequencies

Procedia PDF Downloads 69
12817 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti

Abstract:

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Keywords: cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material

Procedia PDF Downloads 130
12816 Comparative Transcriptome Profiling of Low Light Tolerant and Sensitive Rice Varieties Induced by Low Light Stress at Active Tillering Stage

Authors: Darshan Panda, Lambodar Behera, M. J. Baig, Sudhanshu Sekhar

Abstract:

Low light intensity is a significant limitation for grain yield and quality in rice. However, yield is not significantly reduced in low-light tolerant rice varieties. The work, therefore, planned for comparative transcriptome profiling under low light stress to decipher the genes involved and molecular mechanism of low light tolerance in rice. At the active tillering stage, 50% low light exposure for one day, three days, and five days were given to Swarnaprabha (low light tolerant) and IR8 (low light sensitive) rice varieties. Illumina (HiSeq) platform was used for transcriptome sequencing. A total of 6,652 and 12,042 genes were differentially expressed due to low light intensity in Swarnaprabha and IR8, respectively, as compared to control. CAB, LRP, SBPase, MT15, TF PCL1, and Photosystem I & II complex related gene expressions were mostly increased in Swarnaprabha upon the longer duration of low light exposure, which was not found in IR8 as compared to control. Their expressions were validated by qRT-PCR. The overall study suggested that the maintenance of grain yield in the tolerant variety under low light might be the result of accelerated expression of the genes, which enable the plant to keep the photosynthetic processes moving at the same pace even under low light.

Keywords: rice, low light, photosynthesis, yield

Procedia PDF Downloads 195
12815 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases

Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal

Abstract:

Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.

Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN

Procedia PDF Downloads 64
12814 Clinical and Analytical Performance of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase L1 Biomarkers for Traumatic Brain Injury in the Alinity Traumatic Brain Injury Test

Authors: Raj Chandran, Saul Datwyler, Jaime Marino, Daniel West, Karla Grasso, Adam Buss, Hina Syed, Zina Al Sahouri, Jennifer Yen, Krista Caudle, Beth McQuiston

Abstract:

The Alinity i TBI test is Therapeutic Goods Administration (TGA) registered and is a panel of in vitro diagnostic chemiluminescent microparticle immunoassays for the measurement of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) in plasma and serum. The Alinity i TBI performance was evaluated in a multi-center pivotal study to demonstrate the capability to assist in determining the need for a CT scan of the head in adult subjects (age 18+) presenting with suspected mild TBI (traumatic brain injury) with a Glasgow Coma Scale score of 13 to 15. TBI has been recognized as an important cause of death and disability and is a growing public health problem. An estimated 69 million people globally experience a TBI annually1. Blood-based biomarkers such as glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) have shown utility to predict acute traumatic intracranial injury on head CT scans after TBI. A pivotal study using prospectively collected archived (frozen) plasma specimens was conducted to establish the clinical performance of the TBI test on the Alinity i system. The specimens were originally collected in a prospective, multi-center clinical study. Testing of the specimens was performed at three clinical sites in the United States. Performance characteristics such as detection limits, imprecision, linearity, measuring interval, expected values, and interferences were established following Clinical and Laboratory Standards Institute (CLSI) guidance. Of the 1899 mild TBI subjects, 120 had positive head CT scan results; 116 of the 120 specimens had a positive TBI interpretation (Sensitivity 96.7%; 95% CI: 91.7%, 98.7%). Of the 1779 subjects with negative CT scan results, 713 had a negative TBI interpretation (Specificity 40.1%; 95% CI: 37.8, 42.4). The negative predictive value (NPV) of the test was 99.4% (713/717, 95% CI: 98.6%, 99.8%). The analytical measuring interval (AMI) extends from the limit of quantitation (LoQ) to the upper LoQ and is determined by the range that demonstrates acceptable performance for linearity, imprecision, and bias. The AMI is 6.1 to 42,000 pg/mL for GFAP and 26.3 to 25,000 pg/mL for UCH-L1. Overall, within-laboratory imprecision (20 day) ranged from 3.7 to 5.9% CV for GFAP and 3.0 to 6.0% CV for UCH-L1, when including lot and instrument variances. The Alinity i TBI clinical performance results demonstrated high sensitivity and high NPV, supporting the utility to assist in determining the need for a head CT scan in subjects presenting to the emergency department with suspected mild TBI. The GFAP and UCH-L1 assays show robust analytical performance across a broad concentration range of GFAP and UCH-L1 and may serve as a valuable tool to help evaluate TBI patients across the spectrum of mild to severe injury.

Keywords: biomarker, diagnostic, neurology, TBI

Procedia PDF Downloads 66
12813 Portuguese Guitar Strings Characterization and Comparison

Authors: P. Serrão, E. Costa, A. Ribeiro, V. Infante

Abstract:

The characteristic sonority of the Portuguese guitar is in great part what makes Fado so distinguishable from other traditional song styles. The Portuguese guitar is a pear-shaped plucked chordophone with six courses of double strings. This study compares the two types of plain strings available for Portuguese guitar and used by the musicians. One is stainless steel spring wire, the other is high carbon spring steel (music wire). Some musicians mention noticeable differences in sound quality between these two string materials, such as a little more brightness and sustain in the steel strings. Experimental tests were performed to characterize string tension at pitch; mechanical strength and tuning stability using the universal testing machine; dimensional control and chemical composition analysis using the scanning electron microscope. The string dynamical behaviour characterization experiments, including frequency response, inharmonicity, transient response, damping phenomena and were made in a monochord test set-up designed and built in-house. Damping factor was determined for the fundamental frequency. As musicians are able to detect very small damping differences, an accurate a characterization of the damping phenomena for all harmonics was necessary. With that purpose, another improved monochord was set and a new system identification methodology applied. Due to the complexity of this task several adjustments were necessary until obtaining good experimental data. In a few cases, dynamical tests were repeated to detect any evolution in damping parameters after break-in period when according to players experience a new string sounds gradually less dull until reaching the typically brilliant timbre. Finally, each set of strings was played on one guitar by a distinguished player and recorded. The recordings which include individual notes, scales, chords and a study piece, will be analysed to potentially characterize timbre variations.

Keywords: damping factor, music wire, portuguese guitar, string dynamics

Procedia PDF Downloads 553
12812 Metagenomic Assessment of the Effects of Genetically Modified Crops on Microbial Ecology and Physicochemical Properties of Soil

Authors: Falana Yetunde Olaitan, Ijah U. J. J, Solebo Shakirat O.

Abstract:

Genetically modified crops are already phenomenally successful and are grown worldwide in more than eighteen countries on more than 67 million hectares. Nigeria, in October 2018, approved Bacillus thuringiensis (Bt) cotton and maize; therefore, the need to carry out environmental risk assessment studies. A total of 15 4L octagonal ceramic pots were filled with 4kg of soil and placed on the bench in 2 rows of 10 pots each and the 3rd row of 5 pots, 1st-row pots were used to plant GM cotton seeds, while the 2nd-row pots were used for non-GM cotton seeds and the 3rd row of 5 pots served as control, all in the screen house. Soil samples for metagenomic DNA extraction were collected at random and at the monthly interval after planting at a distance of 2mm from the plant’s root and at a depth of 10cm using a sterile spatula. Soil samples for physicochemical analysis were collected before planting and after harvesting the GM and non-GM crops as well as from the control soil. The DNA was extracted, quantified and sequenced; Sample 1A (DNA from GM cotton Soil at 1st interval) gave the lowest sequence read with 0.853M while sample 2B (DNA from GM cotton Soil at 2nd interval) gave the highest with 5.785M, others gave between 1.8M and 4.7M. The samples treatment were grouped into four, Group 1 (GM cotton soil from 1 to 3 intervals) had between 800,000 and 5,700,000 strains of microbes (SOM), Group 2 (non GM cotton soil from 1 to 3 intervals) had between 1,400,600 and 4,200,000 SOM, Group 3 (control soil) had between 900,000 and 3,600,000 SOM and Group 4 (initial soil) had between 3,700,000 and 4,000,000 SOM. The microbes observed were predominantly bacteria (including archaea), fungi, dark matter alongside protists and phages. The predominant bacterial groups were the Terrabacteria (Bacillus funiculus, Bacillus sp.), the Proteobacteria (Microvirga massiliensis, sphingomonas sp.) and the Archaea (Nitrososphaera sp.), while the fungi were Aspergillus fischeri and Fusarium falciforme. The comparative analysis between groups was done using JACCARD PERMANOVA beta diversity analysis at P-value not more than 0.76 and there was no significant pair found. The pH for initial, GM cotton, non-GM cotton and control soil were 6.28, 6.26, 7.25, 8.26 and the percentage moisture was 0.63, 0.78, 0.89 and 0.82, respectively, while the percentage Nitrogen was observed to be 17.79, 1.14, 1.10 and 0.56 respectively. Other parameters include, varying concentrations of Potassium (0.46, 1,284.47, 1,785.48, 1,252.83 mg/kg) and Phosphorus (18.76, 17.76, 16.87, 15.23 mg/kg) were recorded for the four treatments respectively. The soil consisted mainly of silt (32.09 to 34.66%) and clay (58.89 to 60.23%), reflecting the soil texture as silty – clay. The results were then tested with ANOVA at less than 0.05 P-value and no pair was found to be significant as well. The results suggest that the GM crops have no significant effect on microbial ecology and physicochemical properties of the soil and, in turn, no direct or indirect effects on human health.

Keywords: genetically modified crop, microbial ecology, physicochemical properties, metagenomics, DNA, soil

Procedia PDF Downloads 145
12811 Effect of Particle Shape on Monotonic and Cyclic Biaxial Behaviour of Sand Using Discrete Element Method

Authors: Raj Banerjee, Y. M. Parulekar, Aniruddha Sengupta, J. Chattopadhyay

Abstract:

This study proposes a Discrete Element Method (DEM) simulation using a commercial software PFC 2D (2019) for quantitatively simulating the monotonic and cyclic behaviour of sand using irregular shapes of sand grains. A preliminary analysis of the number of particles for optimal Representative Element Volume (REV) simulation of dimension 35mm x 35mm x 70mm using the scaled Grain Size Distribution (GSD) of sand is carried out. Subsequently, the effect of particle shape on the performance of sand during monotonic and cyclic bi-axial tests is assessed using numerical simulation. The validation of the numerical simulation for one case is carried out using the test results from the literature. Further numerical studies are performed in which the particles in REV are simulated by mixing round discs with irregular clumps (100% round disc, 75% round disc 25% irregular clump, 50% round disc 50% irregular clump, 25% round disc 75% irregular clump, 100% irregular clump) in different proportions using Dry Deposition (DD) method. The macro response for monotonic loading shows that irregular sand has a higher strength than round particles and that the Mohr-Coulomb failure envelope depends on the shape of the grains. During cyclic loading, it is observed that the liquefaction resistance curve (Cyclic Stress Ratio (CSR)-Number of cycles (N)) of sand is dependent on the combination of particle shapes with different proportions.

Keywords: biaxial test, particle shape, monotonic, cyclic

Procedia PDF Downloads 72
12810 High Dissolution of ATC by pH Control and Its Enzymatic Conversion to L-Cysteine

Authors: Deokyeong Choe, Sung Hun Youn, Younggon Kim, Chul Soo Shin

Abstract:

L-Cysteine is extensively used as a supplement of pharmaceuticals, cosmetics, food and feed additives. It has obtained industrially by hydrolysis of human hair and poultry feathers. However, there are some problems such as the restriction of using materials from animals and the intractable waste pollution. The enzymatic conversion has been regarded as an environmental-friendly method. Currently, the biggest bottle-neck of enzymatic conversion is the low yield of L-cysteine due to the low substrate solubility. In this study, the method of enhancing the solubility of the substrate D,L-2-amino-Δ2-thiazoline-4-carboxylicacid (ATC) was developed and the enzymatic reaction at high concentration levels was performed. A large amount of substrate in aqueous solutions was dissolved by pH control using salts. As the pH of the solution increased, the solubility of ATC increased. It was thought that a shift of ATC from acid form (-COOH) to dissociated carboxylic group (-COO-) would improve its hydrophilicity leading to solubility increase. The highest solubility of ATC was 610 mM at pH 10.5, whereas the maximum reaction rate was obtained at pH 8.3. As a result, a high L-cysteine yield of 250 mM was achieved at pH 9.1, which was obtained from a combination of optimum pH conditions for ATC solubility and enzymatic conversion. This yield corresponds to approximately 18 times of that in previous reports.

Keywords: D, L-2-amino-Δ2-thiazoline-4-carboxylicacid, enzymatic conversion, high-substrate solubilization, L-Cysteine

Procedia PDF Downloads 429
12809 Monocular Depth Estimation Benchmarking with Thermal Dataset

Authors: Ali Akyar, Osman Serdar Gedik

Abstract:

Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.

Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers

Procedia PDF Downloads 32
12808 Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations

Authors: Vineeth G. Kuriakose, Joseph C. Chen, Ye Li

Abstract:

The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L9 Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability Cp and the process capability index Cpk were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness.

Keywords: surface roughness, Taguchi parameter design, CNC turning, CNC milling

Procedia PDF Downloads 155
12807 Method of False Alarm Rate Control for Cyclic Redundancy Check-Aided List Decoding of Polar Codes

Authors: Dmitry Dikarev, Ajit Nimbalker, Alexei Davydov

Abstract:

Polar coding is a novel example of error correcting codes, which can achieve Shannon limit at block length N→∞ with log-linear complexity. Active research is being carried to adopt this theoretical concept for using in practical applications such as 5th generation wireless communication systems. Cyclic redundancy check (CRC) error detection code is broadly used in conjunction with successive cancellation list (SCL) decoding algorithm to improve finite-length polar code performance. However, there are two issues: increase of code block payload overhead by CRC bits and decrease of CRC error-detection capability. This paper proposes a method to control CRC overhead and false alarm rate of polar decoding. As shown in the computer simulations results, the proposed method provides the ability to use any set of CRC polynomials with any list size while maintaining the desired level of false alarm rate. This level of flexibility allows using polar codes in 5G New Radio standard.

Keywords: 5G New Radio, channel coding, cyclic redundancy check, list decoding, polar codes

Procedia PDF Downloads 238
12806 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve

Authors: Y. J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 513
12805 Life Cycle-Based Analysis of Meat Production: Ecosystem Impacts

Authors: Michelle Zeyuan Ma, Hermann Heilmeier

Abstract:

Recently, meat production ecosystem impacts initiated many hot discussions and researchers, and it is a difficult implementation to reduce such impacts due to the demand of meat products. It calls for better management and control of ecosystem impacts from every aspects of meat production. This article analyzes the ecosystem impacts of meat production based on meat products life cycle. The analysis shows that considerable ecosystem impacts are caused by different meat production steps: initial establishment phase, animal raising, slaughterhouse processing, meat consumption, and wastes management. Based on this analysis, the impacts are summarized as: leading factor for biodiversity loss; water waste, land use waste and land degradation; greenhouse gases emissions; pollution to air, water, and soil; related major diseases. The article also provides a discussion on a solution-sustainable food system, which could help in reducing ecosystem impacts. The analysis method is based on the life cycle level, it provides a concept of the whole meat industry ecosystem impacts, and the analysis result could be useful to manage or control meat production ecosystem impacts from investor, producer and consumer sides.

Keywords: eutrophication, life cycle based analysis, sustainable food, waste management

Procedia PDF Downloads 220
12804 The Role of Flowering Pesticidal Plants for Sustainable Pest Management

Authors: Baltazar Ndakidemi

Abstract:

The resource-constrained farmers, especially those in sub-Saharan Africa, encounter significant challenges related to agriculture, notably diseases and pests. The sustainable means of pest management are not well known to farmers. As a result, some farmers use synthetic pesticides whose environmental impacts, ill health, and other negative impacts of synthetic pesticides on natural enemies have posed a great need for more sustainable means of pest management. Pesticidal plant resources can replace synthetic pesticides because their secondary metabolites can exhibit insecticidal activities such as deterrence, repellence, and pests' mortality. Additionally, the volatiles from these plants can have positive effects of attracting populations of natural enemies. Pesticidal plants can be grown as field margin plants or in strips for supporting natural enemies' populations. However, this is practically undetermined. Hence, there is a need to investigate the roles played by pesticidal plants in supporting natural enemies of pests and their applications in different cropping systems such as legumes. This study investigates different pesticidal plants with a high potential for pest control in agricultural fields. The information sheds light on potential plants that can be used for different crop pests.

Keywords: natural enemies, biological control, synthetic pesticides, pesticidal plants, predators, parasitoids

Procedia PDF Downloads 68
12803 Design and Test a Robust Bearing-Only Target Motion Analysis Algorithm Based on Modified Gain Extended Kalman Filter

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Passive sonar is a method for detecting acoustic signals in the ocean. It detects the acoustic signals emanating from external sources. With passive sonar, we can determine the bearing of the target only, no information about the range of the target. Target Motion Analysis (TMA) is a process to estimate the position and speed of a target using passive sonar information. Since bearing is the only available information, the TMA technique called Bearing-only TMA. Many TMA techniques have been developed. However, until now, there is not a very effective method that could be used to always track an unknown target and extract its moving trace. In this work, a design of effective Bearing-only TMA Algorithm is done. The measured bearing angles are very noisy. Moreover, for multi-beam sonar, the measurements is quantized due to the sonar beam width. To deal with this, modified gain extended Kalman filter algorithm is used. The algorithm is fine-tuned, and many modules are added to improve the performance. A special validation gate module is used to insure stability of the algorithm. Many indicators of the performance and confidence level measurement are designed and tested. A new method to detect if the target is maneuvering is proposed. Moreover, a reactive optimal observer maneuver based on bearing measurements is proposed, which insure converging to the right solution all of the times. To test the performance of the proposed TMA algorithm a simulation is done with a MATLAB program. The simulator program tries to model a discrete scenario for an observer and a target. The simulator takes into consideration all the practical aspects of the problem such as a smooth transition in the speed, a circular turn of the ship, noisy measurements, and a quantized bearing measurement come for multi-beam sonar. The tests are done for a lot of given test scenarios. For all the tests, full tracking is achieved within 10 minutes with very little error. The range estimation error was less than 5%, speed error less than 5% and heading error less than 2 degree. For the online performance estimator, it is mostly aligned with the real performance. The range estimation confidence level gives a value equal to 90% when the range error less than 10%. The experiments show that the proposed TMA algorithm is very robust and has low estimation error. However, the converging time of the algorithm is needed to be improved.

Keywords: target motion analysis, Kalman filter, passive sonar, bearing-only tracking

Procedia PDF Downloads 402
12802 Fatigue Test and Stress-Life Analysis of Nanocomposite-Based Bone Fixation Device

Authors: Jisoo Kim, Min Su Lee, Sunmook Lee

Abstract:

Durability assessment of nanocomposite-based bone fixation device was performed by flexural fatigue tests, for which the changes in the life cycles of nanocomposite samples synthesized by blending bioabsorbable polymer (PLGA) and ceramic nanoparticles (β-TCP) with different ratios were monitored. The nanocomposite samples were kept in a constant temperature/humidity chamber at 37°C/50%RH for varied incubation periods for the degradation of nanocomposite samples under the temperature/humidity stress. It was found that the life cycles were increasing as the incubation time in the chamber were increasing in the initial stage irrespective of sample compositions, which was due to the annealing effect of the polymer. However, the life cycle was getting shorter as the incubation time increased afterward, which was due to the overall degradation of nanocomposites. It was found that the life cycle of the nanocomposite sample with high ceramic content was shorter than the one with low ceramic content, which was attributed to the increased brittleness of the composite with high ceramic content. The changes in chemical properties were also monitored by FT-IR, which indicated that the degradation of the biodegradable polymer could be confirmed by the increased intensities of carboxyl groups and hydroxyl groups since the hydrolysis of ester bonds connecting two successive monomers yielded carboxyl end groups and hydroxyl groups.

Keywords: bioabsorbable polymer, bone fixation device, ceramic nanoparticles, durability assessment, fatigue test

Procedia PDF Downloads 402