Search results for: insurance firms and efficiency
2236 Enhance Engineering Learning Using Cognitive Simulator
Authors: Lior Davidovitch
Abstract:
Traditional training based on static models and case studies is the backbone of most teaching and training programs of engineering education. However, project management learning is characterized by dynamics models that requires new and enhanced learning method. The results of empirical experiments evaluating the effectiveness and efficiency of using cognitive simulator as a new training technique are reported. The empirical findings are focused on the impact of keeping and reviewing learning history in a dynamic and interactive simulation environment of engineering education. The cognitive simulator for engineering project management learning had two learning history keeping modes: manual (student-controlled), automatic (simulator-controlled) and a version with no history keeping. A group of industrial engineering students performed four simulation-runs divided into three identical simple scenarios and one complicated scenario. The performances of participants running the simulation with the manual history mode were significantly better than users running the simulation with the automatic history mode. Moreover, the effects of using the undo enhanced further the learning process. The findings indicate an enhancement of engineering students’ learning and decision making when they use the record functionality of the history during their engineering training process. Furthermore, the cognitive simulator as educational innovation improves students learning and training. The practical implications of using simulators in the field of engineering education are discussed.Keywords: cognitive simulator, decision making, engineering learning, project management
Procedia PDF Downloads 2492235 Horn Snail (Telescopium Telescopium) Shells Waste as an Alternative for Ceramic Tile Manufacturing
Authors: Patricia N. Baguio, Angel Amy M. Bunag, Paul Bryan E. Ornopia, John Paul C. Suel
Abstract:
This research investigates the viability and efficiency of employing ceramic tile additives derived from horn snail shell material, specifically calcium carbonate (CaCO₃). The study aims to evaluate the mechanical properties of ceramic tiles with Calcium Carbonate with varying amounts of CaCO₃, focusing on breaking and flexural strength. The research employs a comprehensive methodology, including material collection, slurry forming, shaping, drying, firing, and statistical analysis using paired sample T-tests. The result indicates a positive correlation between calcium carbonate (CaCO₃) application and ceramic tile strength, revealing increased breaking strength from 29.41 N (non-calcium Carbonate) to 46.02 N (70g CaCO3) and a substantial enhancement to 82.61 N with 150g CaCO₃. Comparative analyses show higher breaking and flexural strength in tiles with Calcium Carbonate with 150g CaCO₃ analysis (p = 0.011), indicating its feasibility for ceramic tile manufacturing, while 70g CaCO₃ shows no significant difference from non-calcium Carbonate tiles (p = 0.135). The addition of horn snail shells shows potential for improving ceramic tile quality and contributes positively to waste management in standard tile production processes.Keywords: Horn snail shell, calcium carbonate, breaking strength, flexural strength
Procedia PDF Downloads 662234 Horn Snail (Telescopium telescopium) Shells Waste as an Alternative for Ceramic Tile Manufacturing
Authors: Patricia N. Baguio, Angel Amy M. Buñag, Paul Bryan E. Ornopia, John Paul C. Suel
Abstract:
This research investigates the viability and efficiency of employing ceramic tile additives derived from horn snail shell material, specifically calcium carbonate (CaCO₃). The study aims to evaluate the mechanical properties of ceramic tiles with calcium carbonate with varying amounts of CaCO₃, focusing on breaking and flexural strength. The research employs a comprehensive methodology, including material collection, slurry forming, shaping, drying, firing, and statistical analysis using paired sample T-tests. The result indicates a positive correlation between calcium carbonate (CaCO₃) application and ceramic tile strength, revealing increased breaking strength from 29.41 N (non-calcium carbonate) to 46.02 N (70g CaCO₃) and a substantial enhancement to 82.61 N with 150g CaCO₃. Comparative analyses show higher breaking and flexural strength in tiles calcium carbonate with 150g CaCO₃ analysis (p = 0.011), indicating its feasibility for ceramic tile manufacturing, while 70g CaCO₃ shows no significant difference from non-calcium carbonate tiles (p = 0.135). The addition of horn snail shells shows potential for improving ceramic tile quality and contributes positively to waste management in standard tile production processes.Keywords: horn snail shell, calcium carbonate, breaking strength, flexural strength
Procedia PDF Downloads 682233 Applying And Connecting The Microgrid Of Artificial Intelligence In The Form Of A Spiral Model To Optimize Renewable Energy Sources
Authors: PR
Abstract:
Renewable energy is a sustainable substitute to fossil fuels, which are depleting and attributing to global warming as well as greenhouse gas emissions. Renewable energy innovations including solar, wind, and geothermal have grown significantly and play a critical role in meeting energy demands recently. Consequently, Artificial Intelligence (AI) could further enhance the benefits of renewable energy systems. The combination of renewable technologies and AI could facilitate the development of smart grids that can better manage energy distribution and storage. AI thus has the potential to optimize the efficiency and reliability of renewable energy systems, reduce costs, and improve their overall performance. The conventional methods of using smart micro-grids are to connect these micro-grids in series or parallel or a combination of series and parallel. Each of these methods has its advantages and disadvantages. In this study, the proposal of using the method of connecting microgrids in a spiral manner is investigated. One of the important reasons for choosing this type of structure is the two-way reinforcement and exchange of each inner layer with the outer and upstream layer. With this model, we have the ability to increase energy from a small amount to a significant amount based on exponential functions. The geometry used to close the smart microgrids is based on nature.This study provides an overview of the applications of algorithms and models of AI as well as its advantages and challenges in renewable energy systems.Keywords: artificial intelligence, renewable energy sources, spiral model, optimize
Procedia PDF Downloads 92232 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks
Authors: Shidrokh Goudarzi, Wan Haslina Hassan
Abstract:
Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms
Procedia PDF Downloads 3932231 Synthesis of Magnesium Oxide in Spinning Disk Reactor and Its Applications in Cycloaddition of Carbon Dioxide to Epoxides
Authors: Tzu-Wen Liu, Yi-Feng Lin, Yu-Shao Chen
Abstract:
CO_2 is believed to be partly responsible for changes to the global climates. Carbon capture and storage (CCS) is one way to reduce carbon dioxide emissions in the past. Recently, how to convert the captured CO_2 into fine chemicals gets lots of attention owing to reducing carbon dioxide emissions and providing greener feedstock for the chemicals industry. A variety of products can be manufactured from carbon dioxide and the most attractive products are cyclic carbonates. Therefore, the kind of catalyst plays an important role in cycloaddition of carbon dioxide to epoxides. Magnesium oxide can be an efficiency heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides because magnesium oxide has both acid and base active sites and can provide the adsorption of carbon dioxide, promoting ring-opening reaction. Spinning disk reactor (SDR) is one of the device of high-gravity technique and has successfully used for synthesis of nanoparticles by precipitation methods because of the high mass transfer rate. Synthesis of nanoparticles in SDR has advantages of low energy consumption and easy to scale up. The aim of this research is to synthesize magnesium hydroxide nanoparticles in SDR as precursors for magnesium oxide. Experimental results showed that the calcination temperature of magnesium hydroxide to magnesium oxide, and the pressure and temperature of cycloaddition reaction had significantly effect on the conversion and selectivity of the reaction.Keywords: magnesium oxide, catalyst, cycloaddition, spinning disk reactor, carbon dioxide
Procedia PDF Downloads 2962230 Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling
Authors: L. Khalfa, M. Bagane, M. L. Cervera, S. Najjar
Abstract:
The aim of this work is to present a low cost adsorbent for removing toxic heavy metals from aqueous solutions. Therefore, we are interested to investigate the efficiency of natural clay minerals collected from south Tunisia and their modified form using sulfuric acid in the removal of toxic metal ions: Zn(II) and Pb(II) from synthetic waste water solutions. The obtained results indicate that metal uptake is pH-dependent and maximum removal was detected to occur at pH 6. Adsorption equilibrium is very rapid and it was achieved after 90 min for both metal ions studied. The kinetics results show that the pseudo-second-order model describes the adsorption and the intraparticle diffusion models are the limiting step. The treatment of natural clay with sulfuric acid creates more active sites and increases the surface area, so it showed an increase of the adsorbed quantities of lead and zinc in single and binary systems. The competitive adsorption study showed that the uptake of lead was inhibited in the presence of 10 mg/L of zinc. An antagonistic binary adsorption mechanism was observed. These results revealed that clay is an effective natural material for removing lead and zinc in single and binary systems from aqueous solution.Keywords: heavy metal, activated clay, kinetic study, competitive adsorption, modeling
Procedia PDF Downloads 2232229 Development of capsaicin-loaded nanostructured lipid carriers for topical application
Authors: Kwanputtha Arunprasert, Chaiyakarn Pornpitchanarong, Praneet Opanasopit, , Prasopchai Patrojanasophon
Abstract:
Capsaicin, a recently FDA-approved drug for the topical treatment of neuropathic pain, is associated with several side effects like burning sensation and erythema leading to severe skin irritation and poor patient compliance. These unwanted side effects are due to the rapid penetration of capsaicin into the epidermis and low permeation to the dermis layer. The purpose of this study was to develop nanostructured lipid carriers (NLCs) that entrapped capsaicin for reducing dermal irritation. Solid lipid (glyceryl monostearate (GM), cetyl palmitate (CP), cetyl alcohol (COH), stearic acid (SA), and stearyl alcohol (SOH)) and surfactant (Tween®80, Tween®20, and Span®20) were varied to obtained optimal capsaicin-loaded NLCs. The formulation using CP as solid lipid and Tween®80 as a surfactant (F2) demonstrated the smallest size, excellent colloidal stability, and narrow range distribution of the particles as being analyzed using Zetasizer. The obtained capsaicin-loaded NLCs were then characterized by entrapment efficiency (EE) and loading capacity (LC). The release characteristics followed Higuchi kinetics, and the prolonged capsaicin release may result in the reduction in skin irritation. These results could demonstrate the potentials of capsaicinloaded lipid-based nanoparticles for topical drug delivery.Keywords: capsaicin, lipid-based nanoparticles, nanostructured lipid carriers, topical drug delivery system
Procedia PDF Downloads 762228 Development of Restricted Formula SAE Intake Manifold Using 1D and Flow Simulations Based on Track Analysis
Authors: Sahil Kapahi
Abstract:
A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the power-train is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUMLAP software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modeled using 1D simulation on Ricardo WAVE. A design was developed to meet the targeted performance standards in terms of engine torque output and volumetric efficiency. Finally, the intake manifold was manufactured and assembled onto the vehicle, and the engine output of the vehicle with the designed intake was studied using a dynamometer. The results of the dynamometer testing were then validated against predicted values derived from the Ricardo WAVE modeling and benefits to performance of the vehicle were established.Keywords: 1 D Simulation, air flow simulation, ANSYS CFX, four-stroke engine, OPTIMUM LAP, Ricardo WAVE
Procedia PDF Downloads 2472227 An Electrode Material for Ultracapacitors: Hydrothermal Synthesis of Neodymium Oxide/Manganese Oxide/Nitrogen Doped Reduced Graphene Oxide Ternary Nanocomposites
Authors: K. Saravanan, K. A.Rameshkumar, P. Maadeswaran
Abstract:
The depletion of fossil resources and the rise in global temperatures are two of the most important concerns we confront today. There are numerous renewable energy sources like solar power, tidal power, wind energy, radiant energy, hydroelectricity, geothermal energy, and biomass available to generate the needed energy demand. Engineers and scientists around the world are facing a massive barrier in the development of storage technologies for the energy developed from renewable energy sources. The development of electrochemical capacitors as a future energy storage technology is at the forefront of current research and development. This is due to the fact that the electrochemical capacitors have a significantly higher energy density, a faster charging-discharging rate, and a longer life span than capacitors, and they also have a higher power density than batteries, making them superior to both. In this research, electrochemical capacitors using the Nd2O3/Mn3O4/ N-rGO electrode material is chosen since the of hexagonal and tetragonal crystal structures of Nd2O3 and Mn3O4 and also has cycling stability of 68% over a long time at 50mVs-1 and a high coulombic efficiency of 99.64% at 5 Ag-1. This approach may also be used to create novel electrode materials with improved electrochemical and cyclic stability for high-performance supercapacitors.Keywords: Nd2O3/Mn3O4/N-rGO, nanocomposites, hydrothermal method, electrode material, specific capacitance, use of supercapacitors
Procedia PDF Downloads 962226 Analysis of Stall Angle Delay in Airfoil Coupled with Spinning Cylinder
Authors: N. Kiran, S. A. Vikas, Yatish Chandra, S. Srinivasan
Abstract:
Several Centuries ago, the aerodynamic studies on rotating cylinders and spheres have started. From the observation, the rotation of a cylinder has a remarkable effect on the aerodynamic characteristics is noticed. In case of airfoils as the angle of attack increases, the drag increases with reduction in lift i.e at the critical angle of attack. If at this point a strong impulse is imparted to the boundary layer by means of a spinning cylinder, the re-energisation of boundary layer is achieved and hence delaying the boundary layer separation and stalling characteristics. Analysis of aerodynamic effects spinning cylinder either at leading edge or at trailing edge of the airfoil is carried in the past, the positioning of cylinder close to trailing edge and its effects in delaying the stall are yet to be analyzed in depth. This paper aim is to understand the combined aerodynamic effects of coupling the spinning cylinder with the airfoil closer to the Trailing edge, by considering different spin ratio of the cylinder, its location and geometrical parameters in relation to the chord of the airfoil. From the analysis, it was observed that the spinning cylinder speed of rotation and location had a impact on stalling characteristics for a prescribed free stream condition. The results predicted through CFD analysis and experimental analysis showed a raise in aerodynamic efficiency and as the spin ratio increases, increase in stalling angle of attack is noticed when compared to the airfoil without spinning cylinder.Keywords: aerodynamics, airfoil, spinning cylinder, stalling
Procedia PDF Downloads 4402225 Fabrication of Porous Materials for the Removal of Lead from Waste Water
Authors: Marcia Silva, Jayme Kolarik, Brennon Garthwait, William Lee, Hai-Feng Zhang
Abstract:
Adsorption of lead by a natural porous material was studied to establish a baseline for the removal of heavy metals from drinking and waste water. Samples were examined under different conditions such as solution pH, solution concentration, solution temperature, and exposure time. New materials with potentially enhanced adsorption properties were developed by functionalizing the surface of the natural porous material to fabricate graphene based coated and sulfide based treated porous material. The functionalized materials were characterized with Fourier Transform Infrared Spectroscopy (FTIR), Raman, Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) techniques. Solution pH effect on removal efficiency has been investigated in acidic (pH = 4), neutral (pH = 6) and basic (pH = 10) pH levels. All adsorbent materials showed highest adsorption capacities at neutral pH levels. Batch experiment was employed to assess the efficacy for the removal of lead with the sorption kinetics and the adsorption isotherms being determined for the natural and treated porous materials. The addition of graphene-based and sulfide-based materials increased the lead removal capacity of the natural clean porous material. Theoretical calculations confirmed pseudo-second order model as kinetic mechanism for lead adsorption for all adsorbents.Keywords: heavy metals, ion exchange, adsorption, water remediation
Procedia PDF Downloads 2492224 The Influence of Hydrogen Addition to Natural Gas Networks on Gas Appliances
Authors: Yitong Xie, Chaokui Qin, Zhiguang Chen, Shuangqian Guo
Abstract:
Injecting hydrogen, a competitive carbon-free energy carrier, into existing natural gas networks has become a promising step toward alleviating global warming. Considering the differences in properties of hydrogen and natural gas, there is very little evidence showing how many degrees of hydrogen admixture can be accepted and how to adjust appliances to adapt to gas constituents' variation. The lack of this type of analysis provides more uncertainty in injecting hydrogen into networks because of the short the basis of burner design and adjustment. First, the properties of methane and hydrogen were compared for a comprehensive analysis of the impact of hydrogen addition to methane. As the main determinant of flame stability, the burning velocity was adopted for hydrogen addition analysis. Burning velocities for hydrogen-enriched natural gas with different hydrogen percentages and equivalence ratios were calculated by the software CHEMKIN. Interchangeability methods, including single index methods, multi indices methods, and diagram methods, were adopted to determine the limit of hydrogen percentage. Cooktops and water heaters were experimentally tested in the laboratory. Flame structures of different hydrogen percentages and equivalence ratios were observed and photographed. Besides, the change in heat efficiency, burner temperature, emission by hydrogen percentage, and equivalence ratio was studied. The experiment methodologies and results in this paper provide an important basis for the introduction of hydrogen into gas pipelines and the adjustment of gas appliances.Keywords: hydrogen, methane, combustion, appliances, interchangeability
Procedia PDF Downloads 912223 Wind Turbines Optimization: Shield Structure for a High Wind Speed Conditions
Authors: Daniyar Seitenov, Nazim Mir-Nasiri
Abstract:
Optimization of horizontal axis semi-exposed wind turbine has been performed using a shield protection that automatically protects the generator shaft at extreme wind speeds from over speeding, mechanical damage and continues generating electricity during the high wind speed conditions. A semi-exposed to wind generator has been designed and its structure has been described in this paper. The simplified point-force dynamic load model on the blades has been derived for normal and extreme wind conditions with and without shield involvement. Numerical simulation has been conducted at different values of wind speed to study the efficiency of shield application. The obtained results show that the maximum power generated by the wind turbine with shield does not exceed approximately the rated value of the generator, where shield serves as an automatic break for extreme wind speed values of 15 m/sec and above. Meantime the wind turbine without shield produced a power that is much larger than the rated value. The optimized horizontal axis semi-exposed wind turbine with shield protection is suitable for low and medium power generation when installed on the roofs of high rise buildings for harvesting wind energy. Wind shield works automatically with no power consumption. The structure of the generator with the protection, math simulation of kinematics and dynamics of power generation has been described in details in this paper.Keywords: renewable energy, wind turbine, wind turbine optimization, high wind speed
Procedia PDF Downloads 1792222 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle
Authors: Mostafa Mjahed
Abstract:
Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV
Procedia PDF Downloads 1202221 Starting Order Eight Method Accurately for the Solution of First Order Initial Value Problems of Ordinary Differential Equations
Authors: James Adewale, Joshua Sunday
Abstract:
In this paper, we developed a linear multistep method, which is implemented in predictor corrector-method. The corrector is developed by method of collocation and interpretation of power series approximate solutions at some selected grid points, to give a continuous linear multistep method, which is evaluated at some selected grid points to give a discrete linear multistep method. The predictors were also developed by method of collocation and interpolation of power series approximate solution, to give a continuous linear multistep method. The continuous linear multistep method is then solved for the independent solution to give a continuous block formula, which is evaluated at some selected grid point to give discrete block method. Basic properties of the corrector were investigated and found to be zero stable, consistent and convergent. The efficiency of the method was tested on some linear, non-learn, oscillatory and stiff problems of first order, initial value problems of ordinary differential equations. The results were found to be better in terms of computer time and error bound when compared with the existing methods.Keywords: predictor, corrector, collocation, interpolation, approximate solution, independent solution, zero stable, consistent, convergent
Procedia PDF Downloads 5012220 Patient Scheduling Improvement in a Cancer Treatment Clinic Using Optimization Techniques
Authors: Maryam Haghi, Ivan Contreras, Nadia Bhuiyan
Abstract:
Chemotherapy is one of the most popular and effective cancer treatments offered to patients in outpatient oncology centers. In such clinics, patients first consult with an oncologist and the oncologist may prescribe a chemotherapy treatment plan for the patient based on the blood test results and the examination of the health status. Then, when the plan is determined, a set of chemotherapy and consultation appointments should be scheduled for the patient. In this work, a comprehensive mathematical formulation for planning and scheduling different types of chemotherapy patients over a planning horizon considering blood test, consultation, pharmacy and treatment stages has been proposed. To be more realistic and to provide an applicable model, this study is focused on a case study related to a major outpatient cancer treatment clinic in Montreal, Canada. Comparing the results of the proposed model with the current practice of the clinic under study shows significant improvements regarding different performance measures. These major improvements in the patients’ schedules reveal that using optimization techniques in planning and scheduling of patients in such highly demanded cancer treatment clinics is an essential step to provide a good coordination between different involved stages which ultimately increases the efficiency of the entire system and promotes the staff and patients' satisfaction.Keywords: chemotherapy patients scheduling, integer programming, integrated scheduling, staff balancing
Procedia PDF Downloads 1752219 Performance Evaluation and Planning for Road Safety Measures Using Data Envelopment Analysis and Fuzzy Decision Making
Authors: Hamid Reza Behnood, Esmaeel Ayati, Tom Brijs, Mohammadali Pirayesh Neghab
Abstract:
Investment projects in road safety planning can benefit from an effectiveness evaluation regarding their expected safety outcomes. The objective of this study is to develop a decision support system (DSS) to support policymakers in taking the right choice in road safety planning based on the efficiency of previously implemented safety measures in a set of regions in Iran. The measures considered for each region in the study include performance indicators about (1) police operations, (2) treated black spots, (3) freeway and highway facility supplies, (4) speed control cameras, (5) emergency medical services, and (6) road lighting projects. To this end, inefficiency measure is calculated, defined by the proportion of fatality rates in relation to the combined measure of road safety performance indicators (i.e., road safety measures) which should be minimized. The relative inefficiency for each region is modeled by the Data Envelopment Analysis (DEA) technique. In a next step, a fuzzy decision-making system is constructed to convert the information obtained from the DEA analysis into a rule-based system that can be used by policy makers to evaluate the expected outcomes of certain alternative investment strategies in road safety.Keywords: performance indicators, road safety, decision support system, data envelopment analysis, fuzzy reasoning
Procedia PDF Downloads 3532218 Impacts on the Modification of a Two-Blade Mobile on the Agitation of Newtonian Fluids
Authors: Abderrahim Sidi Mohammed Nekrouf, Sarra Youcefi
Abstract:
Fluid mixing plays a crucial role in numerous industries as it has a significant impact on the final product quality and performance. In certain cases, the circulation of viscous fluids presents challenges, leading to the formation of stagnant zones. To overcome this issue, stirring devices are employed for fluid mixing. This study focuses on a numerical analysis aimed at understanding the behavior of Newtonian fluids when agitated by a two-blade agitator in a cylindrical vessel. We investigate the influence of the agitator shape on fluid motion. Bi-blade agitators of this type are commonly used in the food, cosmetic, and chemical industries to agitate both viscous and non-viscous liquids. Numerical simulations were conducted using Computational Fluid Dynamics (CFD) software to obtain velocity profiles, streamlines, velocity contours, and the associated power number. The obtained results were compared with experimental data available in the literature, validating the accuracy of our numerical approach. The results clearly demonstrate that modifying the agitator shape has a significant impact on fluid motion. This modification generates an axial flow that enhances the efficiency of the fluid flow. The various velocity results convincingly reveal that the fluid is more uniformly agitated with this modification, resulting in improved circulation and a substantial reduction in stagnant zones.Keywords: Newtonian fluids, numerical modeling, two blade., CFD
Procedia PDF Downloads 782217 Development and Performance Evaluation of a Gladiolus Planter in Field for Planting Corms
Authors: T. P. Singh, Vijay Gautam
Abstract:
Gladiolus is an important cash crop and is grown mainly for its elegant spikes. Traditionally the gladiolus corms are planted manually which is very tedious, time consuming and labor intensive operation. So far, there is no planter available for planting of gladiolus corms. With a view to mechanize the planting operation of this horticultural crop, a prototype of 4-row gladiolus planter was developed and its performance was evaluated in-situ condition. Cup-chain type metering device was used to singulate the gladiolus corms while planting. Three levels of corm spacing viz 15, 20 and 25 cm and four levels of forward speed viz 1.0, 1.5, 2.0 and 2.5 km/h was taken as evaluation parameter for the planter. The performance indicators namely corm spacing in each row, coefficient of uniformity, missing index, multiple index, quality of feed index, number of corms per meter length, mechanical damage to the corms etc. were determined during the field test. The data was statistically analyzed using Completely Randomized Design (CRD) for testing the significance of the parameters. The result indicated that planter was able to drop the corms at required nominal spacing with minor variations. The highest deviation from the mean corm spacing was observed as 3.53 cm with maximum coefficient of variation as 13.88%. The highest missing and quality of feed indexes were observed as 6.33% and 97.45% respectively with no multiples. The performance of the planter was observed better at lower forward speed and wider corm spacing. The field capacity of the planter was found as 0.103 ha/h with an observed field efficiency of 76.57%.Keywords: coefficient of uniformity, corm spacing, gladiolus planter, mechanization
Procedia PDF Downloads 2392216 ORR Electrocatalyst for Batteries and Fuel Cells Development with SIO₂/Carbon Black Based Composite Nanomaterials
Authors: Maryam Kiani
Abstract:
This study focuses on the development of composite nanomaterials based on SiO₂ and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO₂/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO₂ into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO₂ facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO₂/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.Keywords: ORR, fuel cells, batteries, electrocatalyst
Procedia PDF Downloads 1132215 A Posteriori Trading-Inspired Model-Free Time Series Segmentation
Authors: Plessen Mogens Graf
Abstract:
Within the context of multivariate time series segmentation, this paper proposes a method inspired by a posteriori optimal trading. After a normalization step, time series are treated channelwise as surrogate stock prices that can be traded optimally a posteriori in a virtual portfolio holding either stock or cash. Linear transaction costs are interpreted as hyperparameters for noise filtering. Trading signals, as well as trading signals obtained on the reversed time series, are used for unsupervised channelwise labeling before a consensus over all channels is reached that determines the final segmentation time instants. The method is model-free such that no model prescriptions for segments are made. Benefits of proposed approach include simplicity, computational efficiency, and adaptability to a wide range of different shapes of time series. Performance is demonstrated on synthetic and real-world data, including a large-scale dataset comprising a multivariate time series of dimension 1000 and length 2709. Proposed method is compared to a popular model-based bottom-up approach fitting piecewise affine models and to a recent model-based top-down approach fitting Gaussian models and found to be consistently faster while producing more intuitive results in the sense of segmenting time series at peaks and valleys.Keywords: time series segmentation, model-free, trading-inspired, multivariate data
Procedia PDF Downloads 1362214 Modernization of Garri-Frying Technologies with Respect to Women Anthromophic Quality in Nigeria
Authors: Adegbite Bashiru Adeniyi, Olaniyi Akeem Olawale, Ayobamidele Sinatu Juliet
Abstract:
The study was carried out in the 6 South Western states of Nigeria to analyze socio-economic characteristic of garri processors and their anthropometric qualities with respect to modern technologies used in garri processing. About 20 respondents were randomly selected from each of the 6 workstations purposively considered for the study due to their daily processing activities already attracted high patronage of customers. These include Oguntolu village (Ogun State), Igoba-Akure (Ondo State), Imo-Ilesa (Osun State), Odo Oba-Ileri (Oyo State), Irasa village (Ekiti State) and Epe in Lagos state. Interview schedule was conducted for 120 respondents to elicit information. Data were analyzed using descriptive statistical tools. It was observed from the findings that respondents were in their most productive age range (36-45 years) except Ogun state where majority (45%) were relatively older than 45 years. A fewer processors were much younger than 26 years old. It furthers revealed that not less than 55% have body weight greater than 50.0 kilogram, also not less than 70% were taller than 1.5 meter. So also, the hand length and hand thickness of the majority were long and bulky which are considered suitable for operating some modern and improved technologies in garri-frying process. This information could be used by various technological developers to enhance production of modern equipment and tools for a greater efficiency.Keywords: agro-business, anthromorphic, modernization, proficiency
Procedia PDF Downloads 5122213 MLProxy: SLA-Aware Reverse Proxy for Machine Learning Inference Serving on Serverless Computing Platforms
Authors: Nima Mahmoudi, Hamzeh Khazaei
Abstract:
Serving machine learning inference workloads on the cloud is still a challenging task at the production level. The optimal configuration of the inference workload to meet SLA requirements while optimizing the infrastructure costs is highly complicated due to the complex interaction between batch configuration, resource configurations, and variable arrival process. Serverless computing has emerged in recent years to automate most infrastructure management tasks. Workload batching has revealed the potential to improve the response time and cost-effectiveness of machine learning serving workloads. However, it has not yet been supported out of the box by serverless computing platforms. Our experiments have shown that for various machine learning workloads, batching can hugely improve the system’s efficiency by reducing the processing overhead per request. In this work, we present MLProxy, an adaptive reverse proxy to support efficient machine learning serving workloads on serverless computing systems. MLProxy supports adaptive batching to ensure SLA compliance while optimizing serverless costs. We performed rigorous experiments on Knative to demonstrate the effectiveness of MLProxy. We showed that MLProxy could reduce the cost of serverless deployment by up to 92% while reducing SLA violations by up to 99% that can be generalized across state-of-the-art model serving frameworks.Keywords: serverless computing, machine learning, inference serving, Knative, google cloud run, optimization
Procedia PDF Downloads 1792212 The Planning Strategies of Public Sports Facilities Based on the Field Investigation: Case Study of Songyuan, China
Authors: Li Hua Li, Ling Ling Li
Abstract:
With the National Fitness Program being established as a national strategy by the Chinese government, Chinese old planning strategies of sports facilities which are based on the purpose for hosting high-level sports events have been failed to meet the rapid growth of Chinese residents’ healthy needs. As the most important carrier for promoting the health of citizens in China, public sports facilities may have further conflicts when they are planned without considering the characteristics of the city itself and the fitness needs of the urban residents. With the planning practice in Songyuan in northeastern China, this paper explores the key planning strategies of public sports facilities through the field investigation to obtain the current situation of public sports facilities in Songyuan and the questionnaire to get the date of Songyuan residents’ fitness characteristics and needs. Findings from this investigation suggest that the planning of public sports facilities in Songyuan should first increase the quantities of public sports facilities at the community level, which could match the fitness population and meet the fitness needs in Songyuan. Secondly, the planning should combine with other available resources, such as urban parks, squares and other places where Songyuan residents often choose to do physical activities to enhance the vitality of public sports facilities. Finally, the planning should also link the urban transportation system in Songyuan to improve the accessibility and efficiency of public sports facilities. All these planning strategies could provide essential information for updating the urban and regional design of Songyuan.Keywords: field investigation, healthy needs, public sports facilities, planning strategies, questionnaire
Procedia PDF Downloads 2372211 Energy Service Companies as a Facilitator for Implementation of Energy-Environment Conventions
Authors: Bahareh Arghand
Abstract:
The establishment of rules and regulations for more effective energy-environment interactions are essential to achieving sustainable development. Sustainable development requires mechanisms that can promote compliance in energy-environment conventions. There are many binding agreements and non-binding instruments at regional and international levels on energy and the environment. These conventions try to decrease conflicts of interest between energy, environment and economic by legal principles and practical mechanisms. The major core of conventions is their implementations because the poor implementation and enforcement power affect their success. In this regard, the main goal of this study is proposing the effective implementation mechanisms. Energy service companies' (ESCOs) activities can improve energy efficiency and decrease the environmental degradations. Therefore, it can be proposed and assessed the merit mechanism of ESCO performance as a facilitator to implement energy-environment conventions. An assessment of ESCO performance, including its potentials, problems, and limitations, as a facilitator for effective implementation of the energy-environment convention, is included. This study is oriented towards effective development and application of laws and the function of ESCOs as appropriate economic instruments and facilitator for implementation of energy-environment conventions. The resulting system of close cooperation between the energy-environment conventions and ESCOs is geared toward advancing environmental protection and economic factors by the transfer of environmentally-sound technologies that meet sustainable development objectives.Keywords: energy-environment conventions, energy service company, facilitator mechanism, sustainable development
Procedia PDF Downloads 1832210 Video Object Segmentation for Automatic Image Annotation of Ethernet Connectors with Environment Mapping and 3D Projection
Authors: Marrone Silverio Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner, Djamel Fawzi Hadj Sadok
Abstract:
The creation of a dataset is time-consuming and often discourages researchers from pursuing their goals. To overcome this problem, we present and discuss two solutions adopted for the automation of this process. Both optimize valuable user time and resources and support video object segmentation with object tracking and 3D projection. In our scenario, we acquire images from a moving robotic arm and, for each approach, generate distinct annotated datasets. We evaluated the precision of the annotations by comparing these with a manually annotated dataset, as well as the efficiency in the context of detection and classification problems. For detection support, we used YOLO and obtained for the projection dataset an F1-Score, accuracy, and mAP values of 0.846, 0.924, and 0.875, respectively. Concerning the tracking dataset, we achieved an F1-Score of 0.861, an accuracy of 0.932, whereas mAP reached 0.894. In order to evaluate the quality of the annotated images used for classification problems, we employed deep learning architectures. We adopted metrics accuracy and F1-Score, for VGG, DenseNet, MobileNet, Inception, and ResNet. The VGG architecture outperformed the others for both projection and tracking datasets. It reached an accuracy and F1-score of 0.997 and 0.993, respectively. Similarly, for the tracking dataset, it achieved an accuracy of 0.991 and an F1-Score of 0.981.Keywords: RJ45, automatic annotation, object tracking, 3D projection
Procedia PDF Downloads 1672209 New Managerialism and Organizational Commitment: Impact towards Employees' Work Performance in a Malaysian Public University
Authors: Kamarul Fairuz Hassim, Sharifah Fatimah Syed-Ahmad
Abstract:
New managerialism has become the current trend in managing public sector which emphasizes on efficiency, effectiveness, and accountability. Public universities are not exempted from experiencing this new system. This study tries to explore the direct impact of new managerialism towards work performance of the employees in a public university in Malaysia and the indirect impact through a mediating factor – Organizational Commitment. Feedback were gathered from 204 respondents comprises of academics and non-academics managers in the University of Malaya using a 39 items, self-administered questionnaire. Respondents’ views were asked in the aspects of managerialism level of the university, their organizational commitment, and self-rated work performance level. The findings exhibit that there is a direct impact of new managerialism towards employees’ work performance in a positive way. This is contradicting to the established Hypotheses of this study. Furthermore, there is no significant finding on the role of all three components of organizational commitment – affective, normative, and continuance as the mediating factors in new managerialism approach that gave impact towards work performance. Consequently these insignificant found failed to corroborate the remaining six hypotheses in this study. On another note, findings gathered from this study show some contradiction to the original research conducted earlier by Smeenk et al. in 2009. Therefore, results obtained from this study do contribute to the existing pool of knowledge as previous studies on this topic are scarce especially in the Malaysia’s context.Keywords: new managerialism, Malaysia public universities, organizational commitment, work performance
Procedia PDF Downloads 3742208 Horizontal Gender Inequality and Segregation at Workplace in China: Understanding How Implicit and Unconscious Gender Stereotypes Produce and Reinforce Workplace Gender Inequality in China through Interview-Based Qualitative Analysis
Authors: Yiyan Wu
Abstract:
In the past several decades, the market transition in China has brought in not only more opportunities for women in the labor market but also more attention to gender inequality in workplace. Although some pieces of literature have mentioned gender inequality and segregation at workplace in China, the paper looks into the variations of gender inequality and segregation: working women have little feeling about 'hierarchical inequalities', which define the status and position of women at the workplace. However, at the same time, they unconsciously reinforced 'horizontal inequalities', which creates gender segregation across occupations and job titles. Using qualitative interviews with women employers and employees of various occupations and job titles in Eastern and Southern China, this paper finds evidence that working women's understandings of the division of labor based on the characteristics and expectations of women and men are not as a result of rationality and efficiency, but instead, are the products of gendered stereotypes and traditions. However, holding positive views of gender equality at workplace, working women are not aware of the existence and influence of such gendered stereotypes and traditions. By distinguishing the concepts of 'horizontal inequality' and 'hierarchical inequality' with a cultural sociological approach, this paper contributes to the understanding of gender inequality and segregation in contemporary Chinese society. Moreover, this paper explains the logic behind the paradox in which gender inequality and segregation at workplace persist while women are feeling equal.Keywords: gender equality, segregation, hierarchical inequality, horizontal inequality, China
Procedia PDF Downloads 1642207 Aerodynamic Design Optimization of High-Speed Hatchback Cars for Lucrative Commercial Applications
Authors: A. Aravind, M. Vetrivel, P. Abhimanyu, C. A. Akaash Emmanuel Raj, K. Sundararaj, V. R. S. Kumar
Abstract:
The choice of high-speed, low budget hatchback car with diversified options is increasing for meeting the new generation buyers trend. This paper is aimed to augment the current speed of the hatchback cars through the aerodynamic drag reduction technique. The inverted airfoils are facilitated at the bottom of the car for generating the downward force for negating the lift while increasing the current speed range for achieving a better road performance. The numerical simulations have been carried out using a 2D steady pressure-based k-ɛ realizable model with enhanced wall treatment. In our numerical studies, Reynolds-averaged Navier-Stokes model and its code of solution are used. The code is calibrated and validated using the exact solution of the 2D boundary layer displacement thickness at the Sanal flow choking condition for adiabatic flows. We observed through the parametric analytical studies that the inverted airfoil integrated with the bottom surface at various predesigned locations of Hatchback cars can improve its overall aerodynamic efficiency through drag reduction, which obviously decreases the fuel consumption significantly and ensure an optimum road performance lucratively with maximum permissible speed within the framework of the manufactures constraints.Keywords: aerodynamics of commercial cars, downward force, hatchback car, inverted airfoil
Procedia PDF Downloads 275