Search results for: resource use efficiency
3445 The Impact and Performances of Controlled Ventilation Strategy on Thermal Comfort and Indoor Atmosphere in Building
Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum
Abstract:
Ventilation in buildings is a key element to provide high indoor air quality. Its efficiency appears as one of the most important factors in maintaining thermal comfort for occupants of buildings. Personal displacement ventilation is a new ventilation concept that combines the positive features of displacement ventilation with those of task conditioning or personalized ventilation. This work aims to study numerically the supply air flow in a room to optimize a comfortable microclimate for an occupant. The room is heated, and a dummy is designed to simulate the occupant. Two types of configurations were studied. The first consist of a room without windows; and the second one is a local equipped with a window. The influence of the blowing speed and the solar radiation coming from the window on the thermal comfort of the occupant is studied. To conduct this study we used the turbulence models, namely the high Reynolds k-e, the RNG and the SST models. The numerical tool used is based on the finite volume method. The numerical simulation of the supply air flow in a room can predict and provide a significant information about indoor comfort.Keywords: local, comfort, thermique, ventilation, internal environment
Procedia PDF Downloads 4123444 Introduction of an Approach of Complex Virtual Devices to Achieve Device Interoperability in Smart Building Systems
Authors: Thomas Meier
Abstract:
One of the major challenges for sustainable smart building systems is to support device interoperability, i.e. connecting sensor or actuator devices from different vendors, and present their functionality to the external applications. Furthermore, smart building systems are supposed to connect with devices that are not available yet, i.e. devices that become available on the market sometime later. It is of vital importance that a sustainable smart building platform provides an appropriate external interface that can be leveraged by external applications and smart services. An external platform interface must be stable and independent of specific devices and should support flexible and scalable usage scenarios. A typical approach applied in smart home systems is based on a generic device interface used within the smart building platform. Device functions, even of rather complex devices, are mapped to that generic base type interface by means of specific device drivers. Our new approach, presented in this work, extends that approach by using the smart building system’s rule engine to create complex virtual devices that can represent the most diverse properties of real devices. We examined and evaluated both approaches by means of a practical case study using a smart building system that we have developed. We show that the solution we present allows the highest degree of flexibility without affecting external application interface stability and scalability. In contrast to other systems our approach supports complex virtual device configuration on application layer (e.g. by administration users) instead of device configuration at platform layer (e.g. platform operators). Based on our work, we can show that our approach supports almost arbitrarily flexible use case scenarios without affecting the external application interface stability. However, the cost of this approach is additional appropriate configuration overhead and additional resource consumption at the IoT platform level that must be considered by platform operators. We conclude that the concept of complex virtual devices presented in this work can be applied to improve the usability and device interoperability of sustainable intelligent building systems significantly.Keywords: Internet of Things, smart building, device interoperability, device integration, smart home
Procedia PDF Downloads 2713443 An Optimized Method for 3D Magnetic Navigation of Nanoparticles inside Human Arteries
Authors: Evangelos G. Karvelas, Christos Liosis, Andreas Theodorakakos, Theodoros E. Karakasidis
Abstract:
In the present work, a numerical method for the estimation of the appropriate gradient magnetic fields for optimum driving of the particles into the desired area inside the human body is presented. The proposed method combines Computational Fluid Dynamics (CFD), Discrete Element Method (DEM) and Covariance Matrix Adaptation (CMA) evolution strategy for the magnetic navigation of nanoparticles. It is based on an iteration procedure that intents to eliminate the deviation of the nanoparticles from a desired path. Hence, the gradient magnetic field is constantly adjusted in a suitable way so that the particles’ follow as close as possible to a desired trajectory. Using the proposed method, it is obvious that the diameter of particles is crucial parameter for an efficient navigation. In addition, increase of particles' diameter decreases their deviation from the desired path. Moreover, the navigation method can navigate nanoparticles into the desired areas with efficiency approximately 99%.Keywords: computational fluid dynamics, CFD, covariance matrix adaptation evolution strategy, discrete element method, DEM, magnetic navigation, spherical particles
Procedia PDF Downloads 1423442 Broad Host Range Bacteriophage Cocktail for Reduction of Staphylococcus aureus as Potential Therapy for Atopic Dermatitis
Authors: Tamar Lin, Nufar Buchshtab, Yifat Elharar, Julian Nicenboim, Rotem Edgar, Iddo Weiner, Lior Zelcbuch, Ariel Cohen, Sharon Kredo-Russo, Inbar Gahali-Sass, Naomi Zak, Sailaja Puttagunta, Merav Bassan
Abstract:
Background: Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder that is characterized by dry skin and flares of eczematous lesions and intense pruritus. Multiple lines of evidence suggest that AD is associated with increased colonization by Staphylococcus aureus, which contributes to disease pathogenesis through the release of virulence factors that affect both keratinocytes and immune cells, leading to disruption of the skin barrier and immune cell dysfunction. The aim of the current study is to develop a bacteriophage-based product that specifically targets S. aureus. Methods: For the discovery of phage, environmental samples were screened on 118 S. aureus strains isolated from skin samples, followed by multiple enrichment steps. Natural phages were isolated, subjected to Next-generation Sequencing (NGS), and analyzed using proprietary bioinformatics tools for undesirable genes (toxins, antibiotic resistance genes, lysogeny potential), taxonomic classification, and purity. Phage host range was determined by an efficiency of plating (EOP) value above 0.1 and the ability of the cocktail to completely lyse liquid bacterial culture under different growth conditions (e.g., temperature, bacterial stage). Results: Sequencing analysis demonstrated that the 118 S. aureus clinical strains were distributed across the phylogenetic tree of all available Refseq S. aureus (~10,750 strains). Screening environmental samples on the S. aureus isolates resulted in the isolation of 50 lytic phages from different genera, including Silviavirus, Kayvirus, Podoviridae, and a novel unidentified phage. NGS sequencing confirmed the absence of toxic elements in the phages’ genomes. The host range of the individual phages, as measured by the efficiency of plating (EOP), ranged between 41% (48/118) to 79% (93/118). Host range studies in liquid culture revealed that a subset of the phages can infect a broad range of S. aureus strains in different metabolic states, including stationary state. Combining the single-phage EOP results of selected phages resulted in a broad host range cocktail which infected 92% (109/118) of the strains. When tested in vitro in a liquid infection assay, clearance was achieved in 87% (103/118) of the strains, with no evidence of phage resistance throughout the study (24 hours). A S. aureus host was identified that can be used for the production of all the phages in the cocktail at high titers suitable for large-scale manufacturing. This host was validated for the absence of contaminating prophages using advanced NGS methods combined with multiple production cycles. The phages are produced under optimized scale-up conditions and are being used for the development of a topical formulation (BX005) that may be administered to subjects with atopic dermatitis. Conclusions: A cocktail of natural phages targeting S. aureus was effective in reducing bacterial burden across multiple assays. Phage products may offer safe and effective steroid-sparing options for atopic dermatitis.Keywords: atopic dermatitis, bacteriophage cocktail, host range, Staphylococcus aureus
Procedia PDF Downloads 1533441 A Computational Study of the Effect of Intake Design on Volumetric Efficiency for Best Performance in Motorsport
Authors: Dominic Wentworth-Linton, Shian Gao
Abstract:
This project was aimed at investigating the effect of velocity stacks on the intakes of internal combustion engines for motorsport applications. The intake systems in motorsport are predominantly fuel injection with a plate mounted for the stacks. Using Computational Fluid Dynamics software, the relationship between the stack length and power and torque delivery across the engine’s rev range was investigated and the results were used to choose the best option for its intended motorsport discipline. The test results are expected to vary with engine geometry and its natural manufacturer characteristics. The test was also relevant in bridging between computational data and real simulation as the results show flow, pressure and velocity readings but the behaviour of the engine is inferred from the nature of each test. The results of the data analysis were tested in a real-life simulation on a dynamometer to prove the theory of stack length on power and torque delivery, which helps determine the most suitable stack for the Vauxhall engine for rallying in the Caribbean.Keywords: CFD simulation, Internal combustion engine, Intake system, Dynamometer test
Procedia PDF Downloads 2833440 Soil Mixed Constructed Permeable Reactive Barrier for Groundwater Remediation: Field Observation
Authors: Ziyda Abunada
Abstract:
In-situ remediation of contaminated land with deep mixing can deliver a multi-technique remedial strategy. A field trail includes permeable reactive barrier (PRB) took place at a severely contaminated site in Yorkshire to the north of the UK through the SMiRT (Soil Mix Remediation Technology) project in May 2011. SMiRT involved the execution of the largest research field trials in the UK to provide field validation. Innovative modified bentonite materials in combination with zeolite and organoclay were used to construct six different walls of a hexagonal PRB. Field monitoring, testing and site cores were collected from the PRB twice: once 2 months after the construction and again in March 2014 (almost 34 months later).This paper presents an overview of the results of the PRB materials’ relative performance with some initial 3-year time-related assessment. Results from the monitoring program and the site cores are presented. Some good correlations are seen together with some clear difference among the materials’ efficiency. These preliminary observations represent a potential for further investigations and highlighted the main lessons learned in a filed scale.Keywords: in-situ remediation, groundwater, permeable reactive barrier, site cores
Procedia PDF Downloads 2033439 Synchronization of Two Mobile Robots
Authors: R. M. López-Gutiérrez, J. A. Michel-Macarty, H. Cervantes-De Avila, J. I. Nieto-Hipólito, C. Cruz-Hernández, L. Cardoza-Avendaño, S. Cortiant-Velez
Abstract:
It is well know that mankind benefits from the application of robot control by virtual handlers in industrial environments. In recent years, great interest has emerged in the control of multiple robots in order to carry out collective tasks. One main trend is to copy the natural organization that some organisms have, such as, ants, bees, school of fish, birds’ migration, etc. Surely, this collaborative work, results in better outcomes than those obtain in an isolated or individual effort. This topic has a great drive because collaboration between several robots has the potential capability of carrying out more complicated tasks, doing so, with better efficiency, resiliency and fault tolerance, in cases such as: coordinate navigation towards a target, terrain exploration, and search-rescue operations. In this work, synchronization of multiple autonomous robots is shown over a variety of coupling topologies: star, ring, chain, and global. In all cases, collective synchronous behavior is achieved, in the complex networks formed with mobile robots. Nodes of these networks are modeled by a mass using Matlab to simulate them.Keywords: robots, synchronization, bidirectional, coordinate navigation
Procedia PDF Downloads 3583438 Analysis of the Spatial Distribution of Public Girls’ and Boys’ Secondary Schools in Riyadh
Authors: Nasser Marshad Alzeer
Abstract:
This study examines the spatial distribution of secondary schools in Riyadh. It considers both public girls and boys sector provision and assesses the efficiency of the spatial distribution of secondary schools. Since the establishment of the Ministry of Education (MOE) in 1953 and General Presidency for Female Education, (GPFE) in 1960, there has been a great expansion of education services in Saudi Arabia, particularly during the 1980s. However, recent years have seen much slower rates of increase in the public education sector but the population continues to grow rapidly. This study investigates the spatial distribution of schools through the use of questionnaire surveys and applied GIS. Overall, the results indicate a shortage of public secondary schools, especially in the north of the city. It is clear that there is overcrowding in the majority of secondary schools. The establishment of new schools has been suggested to solve the problem of overcrowding. A number of socio-economic and demographic factors are associated with differences in the utilization of the public secondary schools. A GIS was applied in this study in order to assess the spatial distribution of secondary schools including the modification of existing catchment area boundaries and locating new schools. This modification could also reduce the pupil pressure on certain schools and further benefits could probably be gained.Keywords: analysis, distribution, Saudi, GIS, schools
Procedia PDF Downloads 5543437 Characteristics of Different Volumes of Waste Cellular Concrete Powder-Cement Paste for Sustainable Construction
Authors: Mohammed Abed, Rita Nemes
Abstract:
Cellular concrete powder (CCP) is not used widely as supplementary cementitious material, but in the literature, its efficiency is proved when it used as a replacement of cement in concrete mixtures. In this study, different amounts of raw CCP (CCP as a waste material without any industrial modification) will be used to investigate the characteristics of cement pastes and the effects of CCP on the properties of the cement pastes. It is an attempt to produce green binder paste, which is useful for sustainable construction applications. The fresh and hardened properties of a number of CCP blended cement paste will be tested in different life periods, and the optimized CCP volume will be reported with more significant investigations on durability properties. Different replacing of mass percentage (low and high) of the cement mass will be conducted (0%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%). The consistency, flexural strength, and compressive strength will be the base indicator for the further properties' investigations. The CCP replacement until 50% have been tested until 7 days, and the initial results showed a linear relationship between strength and the percentage of the replacement; that is an optimistic indicator for further replacement percentages of waste CCP.Keywords: cellular concrete powder, supplementary cementitious material, sustainable construction, green concrete
Procedia PDF Downloads 3253436 A Numerical Investigation of Flow Maldistribution in Inlet Header Configuration of Plate Fin Heat Exchanger
Authors: Appasaheb Raul
Abstract:
Numerical analysis of a plate fin heat exchanger accounting for the effect of fluid flow maldistribution on the inlet header configuration of the heat exchanger is investigated. It is found that the flow maldistribution is very significant in normal to the flow direction. Various inlet configuration has been studied for various Reynolds Number. By the study, a modified header configuration is proposed and simulated. The two-dimensional parameters are used to evaluate the flow non-uniformity in the header, global flow maldistribution parameter (Sg), and Velocity Ratio (θ). A series of velocity vectors and streamline graphs at different cross-section are achieved and studied qualitatively with experimental results in the literature. The numerical result indicates that the flow maldistribution is serious in the conventional header while in the improved configuration less maldistribution occurs. The flow maldistribution parameter (Sg) and velocity ratio (θ) is reduced in improved configuration. The vortex decreases compared to that of the conventional configuration so the energy and pressure loss is reduced. The improved header can effectively enhance the efficiency of plate fin heat exchanger and uniformity of flow distribution.Keywords: global flow maldistribution parameter, Sg, velocity ratio, plate fin heat exchanger, fluent 14.5
Procedia PDF Downloads 5263435 Finding Data Envelopment Analysis Targets Using Multi-Objective Programming in DEA-R with Stochastic Data
Authors: R. Shamsi, F. Sharifi
Abstract:
In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose a multi-objective DEA-R model because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduce the efficiency score), an efficient decision-making unit (DMU) is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other cases, only the ratio of stochastic data may be available (e.g., the ratio of stochastic inputs to stochastic outputs). Thus, we provide a multi-objective DEA model without explicit outputs and prove that the input-oriented MOP DEA-R model in the invariable return to scale case can be replaced by the MOP-DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided.Keywords: DEA-R, multi-objective programming, stochastic data, data envelopment analysis
Procedia PDF Downloads 1063434 Evaluation of Trapping Efficiency of Slow Released Formulations of Methyl Eugenol with Lanolin Wax against Bactrocera zonata
Authors: Waleed Afzal Naveed, Muhammd Dildar Gogi, Muhammad Sufian, Muhammad Amjad Ali, Muhammad Junaid Nisar, Mubashar Iqbal, Amna Jalal, Faisal Munir
Abstract:
The study was carried out to evaluate the performance of Slow-Released Formulations (SRF) of Methyl eugenol with Lanolin wax in orchard of the University of Agriculture Faisalabad, Pakistan against fruit flies. Lanolin wax was mixed with methyl eugenol in nine ratios (10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 and 90:10). The results revealed that SRFₗₗ-7 trapped 42.1 flies /day/trap, exhibited an attractancy index (AI) of 51.71%, proved strongly attractive SRFₗₗ for B. zonata and was categorized as Class-III slow-released formulation (AI > 50%). The SRFₗₗ-2, SRFₗₗ-3, SRFₗₗ-4, SRFₗₗ-5, SRFₗₗ-6, SRFₗₗ-8 and SRFₗₗ-9 trapped 17.7, 27.9, 32.3, 23.8, 28.3, 37.8 and 19.9 flies /day/trap, exhibited an attractancy index (AI) of 20.54%, 41.02%, 26.00%, 34.15%, 43.50%, 49.86% and 46.07% AI respectively, proved moderately attractive slow-released formulations for B. zonata and were categorized as Class-II slow-released formulations (AI = 11-50%). However, SRFₗₗ-1 trapped 14.8 flies /day/trap, exhibited 0.71% AI proved little or nonattractive slow-released formulation and was categorized as Class-I slow-released formulation for B. zonata (AI < 11%).Keywords: Bactrocera zonata, slow-released formulation, lenoline wax, methyl euginol
Procedia PDF Downloads 2383433 Determination of Influence Lines for Train Crossings on a Tied Arch Bridge to Optimize the Construction of the Hangers
Authors: Martin Mensinger, Marjolaine Pfaffinger, Matthias Haslbeck
Abstract:
The maintenance and expansion of the railway network represents a central task for transport planning in the future. In addition to the ultimate limit states, the aspects of resource conservation and sustainability are increasingly more necessary to include in the basic engineering. Therefore, as part of the AiF research project, ‘Integrated assessment of steel and composite railway bridges in accordance with sustainability criteria’, the entire lifecycle of engineering structures is involved in planning and evaluation, offering a way to optimize the design of steel bridges. In order to reduce the life cycle costs and increase the profitability of steel structures, it is particularly necessary to consider the demands on hanger connections resulting from fatigue. In order for accurate analysis, a number simulations were conducted as part of the research project on a finite element model of a reference bridge, which gives an indication of the internal forces of the individual structural components of a tied arch bridge, depending on the stress incurred by various types of trains. The calculations were carried out on a detailed FE-model, which allows an extraordinarily accurate modeling of the stiffness of all parts of the constructions as it is made up surface elements. The results point to a large impact of the formation of details on fatigue-related changes in stress, on the one hand, and on the other, they could depict construction-specific specifics over the course of adding stress. Comparative calculations with varied axle-stress distribution also provide information about the sensitivity of the results compared to the imposition of stress and axel distribution on the stress-resultant development. The calculated diagrams help to achieve an optimized hanger connection design through improved durability, which helps to reduce the maintenance costs of rail networks and to give practical application notes for the formation of details.Keywords: fatigue, influence line, life cycle, tied arch bridge
Procedia PDF Downloads 3303432 Comparative Study of Sub-Critical and Supercritical ORC Applications for Exhaust Waste Heat Recovery
Authors: Buket Boz, Alvaro Diez
Abstract:
Waste heat recovery by means of Organic Rankine Cycle is a promising technology for the recovery of engine exhaust heat. However, it is complex to find out the optimum cycle conditions with appropriate working fluids to match exhaust gas waste heat due to its high temperature. Hence, this paper focuses on comparing sub-critical and supercritical ORC conditions with eight working fluids on a combined diesel engine-ORC system. The model employs two ORC designs, Regenerative-ORC and Pre-Heating-Regenerative-ORC respectively. The thermodynamic calculations rely on the first and second law of thermodynamics, thermal efficiency and exergy destruction factors are the fundamental parameters evaluated. Additionally, in this study, environmental and safety, GWP (Global Warming Potential) and ODP (Ozone Depletion Potential), characteristic of the refrigerants are taken into consideration as evaluation criteria to define the optimal ORC configuration and conditions. Consequently, the studys outcomes reveal that supercritical ORCs with alkane and siloxane are more suitable for high temperature exhaust waste heat recovery in contrast to sub-critical conditions.Keywords: internal combustion engine, organic Rankine cycle, waste heat recovery, working fluids
Procedia PDF Downloads 2043431 Critical Appraisal, Smart City Initiative: China vs. India
Authors: Suneet Jagdev, Siddharth Singhal, Dhrubajyoti Bordoloi, Peesari Vamshidhar Reddy
Abstract:
There is no universally accepted definition of what constitutes a Smart City. It means different things to different people. The definition varies from place to place depending on the level of development and the willingness of people to change and reform. It tries to improve the quality of resource management and service provisions for the people living in the cities. Smart city is an urban development vision to integrate multiple information and communication technology (ICT) solutions in a secure fashion to manage the assets of a city. But most of these projects are misinterpreted as being technology projects only. Due to urbanization, a lot of informal as well government funded settlements have come up during the last few decades, thus increasing the consumption of the limited resources available. The people of each city have their own definition of Smart City. In the imagination of any city dweller in India is the picture of a Smart City which contains a wish list of infrastructure and services that describe his or her level of aspiration. The research involved a comparative study of the Smart City models in India and in China. Behavioral changes experienced by the people living in the pilot/first ever smart cities have been identified and compared. This paper discussed what is the target of the quality of life for the people in India and in China and how well could that be realized with the facilities being included in these Smart City projects. Logical and comparative analyses of important data have been done, collected from government sources, government papers and research papers by various experts on the topic. Existing cities with historically grown infrastructure and administration systems will require a more moderate step-by-step approach to modernization. The models were compared using many different motivators and the data is collected from past journals, interacting with the people involved, videos and past submissions. In conclusion, we have identified how these projects could be combined with the ongoing small scale initiatives by the local people/ small group of individuals and what might be the outcome if these existing practices were implemented on a bigger scale.Keywords: behavior change, mission monitoring, pilot smart cities, social capital
Procedia PDF Downloads 2893430 State Budget Accounting: Factors Affected and Basic Orientation to Vietnamese Public Sector Entities
Authors: Pham Quang Huy
Abstract:
State budget is considered as an effective tool for controlling, adjusting and regulating the market economy of any countries. To ensure that the activities of the state in the fields of politics, economy and society has been efficiency, it requires major sources of certain budget. These financial funds are formed from tax revenues and tax revenues beyond. Therefore, the Governments need to have an accounting regime to manage the receipt, expenditure which are suitable for recording a full range of items. From that, it can help to increase the transparency and accountability in budget system. One of the main requirements in Vietnamese policies is to improve that accounting system of revenues and expenditures which can provide many reports to meet the information required of government and users, as well as directions to the trends of international standards requirements. By using quantitative research methods and analytical models to exploring factors, the main purpose of this article is to identify the factors affecting budget accounting and providing some direction for Vietnamese public sector in the future. The results indicated that Vietnam budget accounting has been impacted by seven factors and aims to implement three main orientations in the public sector units.Keywords: state budget, accounting, IPSAS, budget management, government, public sector
Procedia PDF Downloads 2703429 Assembly Training: An Augmented Reality Approach Using Design Science Research
Authors: Stefan Werrlich, Phuc-Anh Nguyen, Kai Nitsche, Gunther Notni
Abstract:
Augmented Reality (AR) is a strong growing research topic. This innovative technology is interesting for several training domains like education, medicine, military, sports and industrial use cases like assembly and maintenance tasks. AR can help to improve the efficiency, quality and transfer of training tasks. Due to these reasons, AR becomes more interesting for big companies and researchers because the industrial domain is still an unexplored field. This paper presents the research proposal of a PhD thesis which is done in cooperation with the BMW Group, aiming to explore head-mounted display (HMD) based training in industrial environments. We give a short introduction, describing the motivation, the underlying problems as well as the five formulated research questions we want to clarify along this thesis. We give a brief overview of the current assembly training in industrial environments and present some AR-based training approaches, including their research deficits. We use the Design Science Research (DSR) framework for this thesis and describe how we want to realize the seven guidelines, mandatory from the DSR. Furthermore, we describe each methodology which we use within that framework and present our approach in a comprehensive figure, representing the entire thesis.Keywords: assembly, augmented reality, research proposal, training
Procedia PDF Downloads 2463428 Spatial Analysis of Survival Pattern and Treatment Outcomes of Multi-Drug Resistant Tuberculosis (MDR-TB) Patients in Lagos, Nigeria
Authors: Akinsola Oluwatosin, Udofia Samuel, Odofin Mayowa
Abstract:
The study is aimed at assessing the Geographic Information System (GIS)-based spatial analysis of Survival Pattern and Treatment Outcomes of Multi-Drug Resistant Tuberculosis (MDR-TB) cases for Lagos, Nigeria, with an objective to inform priority areas for public health planning and resource allocation. Multi-drug resistant tuberculosis (MDR-TB) develops due to problems such as irregular drug supply, poor drug quality, inappropriate prescription, and poor adherence to treatment. The shapefile(s) for this study were already georeferenced to Minna datum. The patient’s information was acquired on MS Excel and later converted to . CSV file for easy processing to ArcMap from various hospitals. To superimpose the patient’s information the spatial data, the addresses was geocoded to generate the longitude and latitude of the patients. The database was used for the SQL query to the various pattern of the treatment. To show the pattern of disease spread, spatial autocorrelation analysis was used. The result was displayed in a graphical format showing the areas of dispersing, random and clustered of patients in the study area. Hot and cold spot analysis was analyzed to show high-density areas. The distance between these patients and the closest health facility was examined using the buffer analysis. The result shows that 22% of the points were successfully matched, while 15% were tied. However, the result table shows that a greater percentage of it was unmatched; this is evident in the fact that most of the streets within the State are unnamed, and then again, most of the patients are likely to supply the wrong addresses. MDR-TB patients of all age groups are concentrated within Lagos-Mainland, Shomolu, Mushin, Surulere, Oshodi-Isolo, and Ifelodun LGAs. MDR-TB patients between the age group of 30-47 years had the highest number and were identified to be about 184 in number. The outcome of patients on ART treatment revealed that a high number of patients (300) were not ART treatment while a paltry 45 patients were on ART treatment. The result shows the Z-score of the distribution is greater than 1 (>2.58), which means that the distribution is highly clustered at a significance level of 0.01.Keywords: tuberculosis, patients, treatment, GIS, MDR-TB
Procedia PDF Downloads 1523427 Modelling Spatial Dynamics of Terrorism
Authors: André Python
Abstract:
To this day, terrorism persists as a worldwide threat, exemplified by the recent deadly attacks in January 2015 in Paris and the ongoing massacres perpetrated by ISIS in Iraq and Syria. In response to this threat, states deploy various counterterrorism measures, the cost of which could be reduced through effective preventive measures. In order to increase the efficiency of preventive measures, policy-makers may benefit from accurate predictive models that are able to capture the complex spatial dynamics of terrorism occurring at a local scale. Despite empirical research carried out at country-level that has confirmed theories explaining the diffusion processes of terrorism across space and time, scholars have failed to assess diffusion’s theories on a local scale. Moreover, since scholars have not made the most of recent statistical modelling approaches, they have been unable to build up predictive models accurate in both space and time. In an effort to address these shortcomings, this research suggests a novel approach to systematically assess the theories of terrorism’s diffusion on a local scale and provide a predictive model of the local spatial dynamics of terrorism worldwide. With a focus on the lethal terrorist events that occurred after 9/11, this paper addresses the following question: why and how does lethal terrorism diffuse in space and time? Based on geolocalised data on worldwide terrorist attacks and covariates gathered from 2002 to 2013, a binomial spatio-temporal point process is used to model the probability of terrorist attacks on a sphere (the world), the surface of which is discretised in the form of Delaunay triangles and refined in areas of specific interest. Within a Bayesian framework, the model is fitted through an integrated nested Laplace approximation - a recent fitting approach that computes fast and accurate estimates of posterior marginals. Hence, for each location in the world, the model provides a probability of encountering a lethal terrorist attack and measures of volatility, which inform on the model’s predictability. Diffusion processes are visualised through interactive maps that highlight space-time variations in the probability and volatility of encountering a lethal attack from 2002 to 2013. Based on the previous twelve years of observation, the location and lethality of terrorist events in 2014 are statistically accurately predicted. Throughout the global scope of this research, local diffusion processes such as escalation and relocation are systematically examined: the former process describes an expansion from high concentration areas of lethal terrorist events (hotspots) to neighbouring areas, while the latter is characterised by changes in the location of hotspots. By controlling for the effect of geographical, economical and demographic variables, the results of the model suggest that the diffusion processes of lethal terrorism are jointly driven by contagious and non-contagious factors that operate on a local scale – as predicted by theories of diffusion. Moreover, by providing a quantitative measure of predictability, the model prevents policy-makers from making decisions based on highly uncertain predictions. Ultimately, this research may provide important complementary tools to enhance the efficiency of policies that aim to prevent and combat terrorism.Keywords: diffusion process, terrorism, spatial dynamics, spatio-temporal modeling
Procedia PDF Downloads 3513426 Removal of Basic Dyes from Aqueous Solutions with a Treated Spent Bleaching Earth
Authors: M. Mana, M. S. Ouali, L. C. de Menorval
Abstract:
A spent bleaching earth from an edible oil refinery has been treated by impregnation with a normal sodium hydroxide solution followed by mild thermal treatment (100°C). The obtained material (TSBE) was washed, dried and characterized by X-ray diffraction, FTIR, SEM, BET, and thermal analysis. The clay structure was not apparently affected by the treatment and the impregnated organic matter was quantitatively removed. We have investigated the comparative sorption of safranine and methylene blue on this material, the spent bleaching earth (SBE) and the virgin bleaching earth (VBE). The kinetic results fit the pseudo second order kinetic model and the Weber & Morris, intra-particle diffusion model. The pH had no effect on the sorption efficiency. The sorption isotherms followed the Langmuir model for various sorbent concentrations with good values of determination coefficient. A linear relationship was found between the calculated maximum removal capacity and the solid/solution ratio. A comparison between the results obtained with this material and those of the literature highlighted the low cost and the good removal capacity of the treated spent bleaching earth.Keywords: basic dyes, isotherms, sorption, spent bleaching earth
Procedia PDF Downloads 2493425 Optimization of Reinforced Concrete Buildings According to the Algerian Seismic Code
Authors: Nesreddine Djafar Henni, Nassim Djedoui, Rachid Chebili
Abstract:
Recent decades have witnessed significant efforts being made to optimize different types of structures and components. The concept of cost optimization in reinforced concrete structures, which aims at minimizing financial resources while ensuring maximum building safety, comprises multiple materials, and the objective function for their optimal design is derived from the construction cost of the steel as well as concrete that significantly contribute to the overall weight of reinforced concrete (RC) structures. To achieve this objective, this work has been devoted to optimizing the structural design of 3D RC frame buildings which integrates, for the first time, the Algerian regulations. Three different test examples were investigated to assess the efficiency of our work in optimizing RC frame buildings. The hybrid GWOPSO algorithm is used, and 30000 generations are made. The cost of the building is reduced by iteration each time. Concrete and reinforcement bars are used in the building cost. As a result, the cost of a reinforced concrete structure is reduced by 30% compared with the initial design. This result means that the 3D cost-design optimization of the framed structure is successfully achieved.Keywords: optimization, automation, API, Malab, RC structures
Procedia PDF Downloads 493424 CFD Simulation and Experimental Validation of the Bubble-Induced Flow during Electrochemical Water Splitting
Authors: Gabriel Wosiak, Jeyse da Silva, Sthefany S. Sena, Renato N. de Andrade, Ernesto Pereira
Abstract:
The bubble formation during hydrogen production by electrolysis and several electrochemical processes is an inherent phenomenon and can impact the energy consumption of the processes. In this work, it was reported both experimental and computational results describe the effect of bubble displacement, which, under the cases investigated, leads to the formation of a convective flow in the solution. The process is self-sustained, and a solution vortex is formed, which modifies the bubble growth and covering at the electrode surface. Using the experimental data, we have built a model to simulate it, which, with high accuracy, describes the phenomena. Then, it simulated many different experimental conditions and evaluated the effects of the boundary conditions on the bubble surface covering the surface. We have observed a position-dependent bubble covering the surface, which has an effect on the water-splitting efficiency. It was shown that the bubble covering is not uniform at the electrode surface, and using statistical analysis; it was possible to evaluate the influence of the gas type (H2 and O2), current density, and the bubble size (and cross-effects) on the covering fraction and the asymmetric behavior over the electrode surface.Keywords: water splitting, bubble, electrolysis, hydrogen production
Procedia PDF Downloads 1003423 An Estimation Process for Progress Rate Based on Labor-Quantity in Republic of Korea
Authors: Dong-Ho Kim, Zheng-Xun Jin, Yong-Woon Cha, Su-Sang Lim, Sang-Won Han, Chang-Taek Hyun
Abstract:
As construction is a labor-intensive industry, it is important to identify and manage labor quantities for accurate progress management of the construction project. However, the progress management that focuses on construction cost calculated based on materials rather than labor quantities has led to a difference in the implementation of cost and progress of the actual construction. In addition, since it is not easy to predict accurate labor quantities in the estimation of labor quantity-based progress rate, there have been limited researches into the progress rate estimation based on labor quantity. Accordingly, this study proposed a process for labor quantity-based progress rate estimation using a standard of estimate to predict accurate progress rate of the construction project in Republic Korea. It is expected that the utilization of the proposed process will help to identify the progress rate closer to that of the actual site management and adjust the workforce in each construction type, thereby contributing to improving construction efficiency.Keywords: labor based, labor cost, progress management, progress rate, progress payment
Procedia PDF Downloads 3443422 Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment
Authors: Mário Silva, Filipa Gomes, Filipa Oliveira, Simone Morais, Cristina Delerue-Matos
Abstract:
Brown seaweeds are abundant in Portuguese coastline and represent an almost unexploited marine economic resource. One of the most common species, easily available for harvesting in the northwest coast, is Saccorhiza polyschides grows in the lowest shore and costal rocky reefs. It is almost exclusively used by local farmers as natural fertilizer, but contains a substantial amount of valuable compounds, particularly alginates, natural biopolymers of high interest for many industrial applications. Alginates are natural polysaccharides present in cell walls of brown seaweed, highly biocompatible, with particular properties that make them of high interest for the food, biotechnology, cosmetics and pharmaceutical industries. Conventional extraction processes are based on thermal treatment. They are lengthy and consume high amounts of energy and solvents. In recent years, microwave-assisted extraction (MAE) has shown enormous potential to overcome major drawbacks that outcome from conventional plant material extraction (thermal and/or solvent based) techniques, being also successfully applied to the extraction of agar, fucoidans and alginates. In the present study, acid pretreatment of brown seaweed Saccorhiza polyschides for subsequent microwave-assisted extraction (MAE) of alginate was optimized. Seaweeds were collected in Northwest Portuguese coastal waters of the Atlantic Ocean between May and August, 2014. Experimental design was used to assess the effect of temperature and acid pretreatment time in alginate extraction. Response surface methodology allowed the determination of the optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried seaweed with constant stirring at 20ºC during 14h. Optimal acid pretreatment conditions have enhanced significantly MAE of alginates from Saccorhiza polyschides, thus contributing for the development of a viable, more environmental friendly alternative to conventional processes.Keywords: acid pretreatment, alginate, brown seaweed, microwave-assisted extraction, response surface methodology
Procedia PDF Downloads 3823421 Exploring Type V Hydrogen Storage Tanks: Shape Analysis and Material Evaluation for Enhanced Safety and Efficiency Focusing on Drop Test Performance
Authors: Mariam Jaber, Abdullah Yahya, Mohammad Alkhedher
Abstract:
The shift toward sustainable energy solutions increasingly focuses on hydrogen, recognized for its potential as a clean energy carrier. Despite its benefits, hydrogen storage poses significant challenges, primarily due to its low energy density and high volatility. Among the various solutions, pressure vessels designed for hydrogen storage range from Type I to Type V, each tailored for specific needs and benefits. Notably, Type V vessels, with their all-composite, liner-less design, significantly reduce weight and costs while optimizing space and decreasing maintenance demands. This study focuses on optimizing Type V hydrogen storage tanks by examining how different shapes affect performance in drop tests—a crucial aspect of achieving ISO 15869 certification. This certification ensures that if a tank is dropped, it will fail in a controlled manner, ideally by leaking before bursting. While cylindrical vessels are predominant in mobile applications due to their manufacturability and efficient use of space, spherical vessels offer superior stress distribution and require significantly less material thickness for the same pressure tolerance, making them advantageous for high-pressure scenarios. However, spherical tanks are less efficient in terms of packing and more complex to manufacture. Additionally, this study introduces toroidal vessels to assess their performance relative to the more traditional shapes, noting that the toroidal shape offers a more space-efficient option. The research evaluates how different shapes—spherical, cylindrical, and toroidal—affect drop test outcomes when combined with various composite materials and layup configurations. The ultimate goal is to identify optimal vessel geometries that enhance the safety and efficiency of hydrogen storage systems. For our materials, we selected high-performance composites such as Carbon T-700/Epoxy, Kevlar/Epoxy, E-Glass Fiber/Epoxy, and Basalt/Epoxy, configured in various orientations like [0,90]s, [45,-45]s, and [54,-54]. Our tests involved dropping tanks from different angles—horizontal, vertical, and 45 degrees—with an internal pressure of 35 MPa to replicate real-world scenarios as closely as possible. We used finite element analysis and first-order shear deformation theory, conducting tests with the Abaqus Explicit Dynamics software, which is ideal for handling the quick, intense stresses of an impact. The results from these simulations will provide valuable insights into how different designs and materials can enhance the durability and safety of hydrogen storage tanks. Our findings aim to guide future designs, making them more effective at withstanding impacts and safer overall. Ultimately, this research will contribute to the broader field of lightweight composite materials and polymers, advancing more innovative and practical approaches to hydrogen storage. By refining how we design these tanks, we are moving toward more reliable and economically feasible hydrogen storage solutions, further emphasizing hydrogen's role in the landscape of sustainable energy carriers.Keywords: hydrogen storage, drop test, composite materials, type V tanks, finite element analysis
Procedia PDF Downloads 463420 Thermo-Elastic and Self-Healing Polyacrylamide: 2D Polymer Composite Hydrogels for Water Shutoff Treatment
Authors: Edreese H. Alsharaeh, Feven Mattews Michael, Ayman Almohsin
Abstract:
Self-healing hydrogels have many advantages since they can resist various types of stresses, including tension, compression, and shear, making them attractive for various applications. In this study, thermo-elastic and self-healing polymer composite hydrogels were prepared from polyacrylamide (PAM) and 2D fillers using in-situ method. In addition, the PAM and fillers were prepared in presence of organic crosslinkers, i.e., hydroquinone (HQ) and hexamethylenediamine (HMT). The swelling behavior of the prepared hydrogels was studied by hydrating the dried hydrogels. The thermal and rheological properties of the prepared hydrogels were evaluated before and after swelling study using thermogravimetric analysis, differential scanning calorimetric technique and dynamic mechanical analysis. From the results obtained, incorporating fillers into the PAM matrix enhanced the swelling degree of the hydrogels with satisfactory mechanical properties, attaining up to 77% self-healing efficiency compared to the neat-PAM (i.e., 29%). This, in turn, indicates addition of 2D fillers improved self-healing properties of the polymer hydrogel, thus, making the prepared hydrogels applicable for water shutoff treatments under high temperature.Keywords: polymer hydrogels, 2D fillers, elastic self-healing hydrogels, water shutoff, swelling properties
Procedia PDF Downloads 1453419 Preliminary Design and Aerodynamic Study of Hybrid Aerial Vehicle
Authors: Pratyush Agnihotri
Abstract:
This paper presents a comprehensive overview of the conceptual design process for a fixed-wing vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV). Fixed-wing VTOL UAVs combine the advantages of rotary-wing aircraft, such as vertical take-off and landing capabilities, with the efficiency and speed of fixed-wing flight. The primary objective of this study is to explore the aerodynamic design principles that optimize performance parameters, including range, endurance, and stability while maintaining the VTOL capability. The design process involves selecting appropriate airfoils, optimizing wing configurations, and integrating propulsion systems suitable for both hovering and forward flight. Analytical methods are employed to evaluate aerodynamic performance, with a focus on lift-to-drag ratio, power requirements, and control strategies. The results highlight the challenges and trade-offs inherent in designing such hybrid aircraft, particularly in balancing the conflicting requirements of VTOL and fixed-wing flight. This study contributes to the development of efficient, versatile UAVs capable of operating in diverse environments.Keywords: fixed wing, hybrid, VTOL, UAV
Procedia PDF Downloads 203418 Contextualization and Localization: Acceptability of the Developed Activity Sheets in Science 5 Integrating Climate Change Adaptation
Authors: Kim Alvin De Lara
Abstract:
The research aimed to assess the level of acceptability of the developed activity sheets in Science 5 integrating climate change adaptation of grade 5 science teachers in the District of Pililla school year 2016-2017. In this research, participants were able to recognize and understand the importance of environmental education in improving basic education and integrating them in lessons through localization and contextualization. The researcher conducted the study to develop a material to use by Science teachers in Grade 5. It served also as a self-learning resource for students. The respondents of the study were the thirteen Grade 5 teachers teaching Science 5 in the District of Pililla. Respondents were selected purposively and identified by the researcher. A descriptive method of research was utilized in the research. The main instrument was a checklist which includes items on the objectives, content, tasks, contextualization and localization of the developed activity sheets. The researcher developed a 2-week lesson in Science 5 for 4th Quarter based on the curriculum guide with integration of climate change adaptation. The findings revealed that majority of respondents are female, 31 years old and above, 10 years above in teaching science and have units in master’s degree. With regards to the level of acceptability, the study revealed developed activity sheets in science 5 is very much acceptable. In view of the findings, lessons in science 5 must be contextualized and localized to improve to make the curriculum responds, conforms, reflects, and be flexible to the needs of the learners, especially the 21st century learners who need to be holistically and skillfully developed. As revealed by the findings, it is more acceptable to localized and contextualized the learning materials for pupils. Policy formation and re-organization of the lessons and competencies in Science must be reviewed and re-evaluated. Lessons in science must also be integrated with climate change adaptation since nowadays, people are experiencing change in climate due to global warming and other factors. Through developed activity sheets, researcher strongly supports environmental education and believes this to serve as a way to instill environmental literacy to students.Keywords: activity sheets, climate change adaptation, contextualization, localization
Procedia PDF Downloads 3273417 Evaluating Radiative Feedback Mechanisms in Coastal West Africa Using Regional Climate Models
Authors: Akinnubi Rufus Temidayo
Abstract:
Coastal West Africa is highly sensitive to climate variability, driven by complex ocean-atmosphere interactions that shape temperature, precipitation, and extreme weather. Radiative feedback mechanisms—such as water vapor feedback, cloud-radiation interactions, and surface albedo—play a critical role in modulating these patterns. Yet, limited research addresses these feedbacks in climate models specific to West Africa’s coastal zones, creating challenges for accurate climate projections and adaptive planning. This study aims to evaluate the influence of radiative feedbacks on the coastal climate of West Africa by quantifying the effects of water vapor, cloud cover, and sea surface temperature (SST) on the region’s radiative balance. The study uses a regional climate model (RCM) to simulate feedbacks over a 20-year period (2005-2025) with high-resolution data from CORDEX and satellite observations. Key mechanisms investigated include (1) Water Vapor Feedback—the amplifying effect of humidity on warming, (2) Cloud-Radiation Interactions—the impact of cloud cover on radiation balance, especially during the West African Monsoon, and (3) Surface Albedo and Land-Use Changes—effects of urbanization and vegetation on the radiation budget. Preliminary results indicate that radiative feedbacks strongly influence seasonal climate variability in coastal West Africa. Water vapor feedback amplifies dry-season warming, cloud-radiation interactions moderate surface temperatures during monsoon seasons, and SST variations in the Atlantic affect the frequency and intensity of extreme rainfall events. The findings suggest that incorporating these feedbacks into climate planning can strengthen resilience to climate impacts in West African coastal communities. Further research should refine regional models to capture anthropogenic influences like greenhouse gas emissions, guiding sustainable urban and resource planning to mitigate climate risks.Keywords: west africa, radiative, climate, resilence, anthropogenic
Procedia PDF Downloads 103416 Application of IED to Condition Based Maintenance of Medium Voltage GCB/VCB
Authors: Ming-Ta Yang, Jyh-Cherng Gu, Chun-Wei Huang, Jin-Lung Guan
Abstract:
Time base maintenance (TBM) is conventionally applied by the power utilities to maintain circuit breakers (CBs), transformers, bus bars and cables, which may result in under maintenance or over maintenance. As information and communication technology (ICT) industry develops, the maintenance policies of many power utilities have gradually changed from TBM to condition base maintenance (CBM) to improve system operating efficiency, operation cost and power supply reliability. This paper discusses the feasibility of using intelligent electronic devices (IEDs) to construct a CB CBM management platform. CBs in power substations can be monitored using IEDs with additional logic configuration and wire connections. The CB monitoring data can be sent through intranet to a control center and be analyzed and integrated by the Elipse Power Studio software. Finally, a human-machine interface (HMI) of supervisory control and data acquisition (SCADA) system can be designed to construct a CBM management platform to provide maintenance decision information for the maintenance personnel, management personnel and CB manufacturers.Keywords: circuit breaker, condition base maintenance, intelligent electronic device, time base maintenance, SCADA
Procedia PDF Downloads 329