Search results for: hierarchical text classification models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10080

Search results for: hierarchical text classification models

4710 Performance and Availability Analysis of 2N Redundancy Models

Authors: Yutae Lee

Abstract:

In this paper, we consider the performance and availability of a redundancy model. The redundancy model is a form of resilience that ensures service availability in the event of component failure. This paper considers a 2N redundancy model. In the model there are at most one active service unit and at most one standby service unit. The active one is providing the service while the standby is prepared to take over the active role when the active fails. We design our analysis model using Stochastic Reward Nets, and then evaluate the performance and availability of 2N redundancy model using Stochastic Petri Net Package (SPNP).

Keywords: availability, performance, stochastic reward net, 2N redundancy

Procedia PDF Downloads 421
4709 Features of Formation and Development of Possessory Risk Management Systems of Organization in the Russian Economy

Authors: Mikhail V. Khachaturyan, Inga A. Koryagina, Maria Nikishova

Abstract:

The study investigates the impact of the ongoing financial crisis, started in the 2nd half of 2014, on marketing budgets spent by Fast-moving consumer goods companies. In these conditions, special importance is given to efficient possessory risk management systems. The main objective for establishing and developing possessory risk management systems for FMCG companies in a crisis is to analyze the data relating to the external environment and consumer behavior in a crisis. Another important objective for possessory risk management systems of FMCG companies is to develop measures and mechanisms to maintain and stimulate sales. In this regard, analysis of risks and threats which consumers define as the main reasons affecting their level of consumption become important. It is obvious that in crisis conditions the effective risk management systems responsible for development and implementation of strategies for consumer demand stimulation, as well as the identification, analysis, assessment and management of other types of risks of economic security will be the key to sustainability of a company. In terms of financial and economic crisis, the problem of forming and developing possessory risk management systems becomes critical not only in the context of management models of FMCG companies, but for all the companies operating in other sectors of the Russian economy. This study attempts to analyze the specifics of formation and development of company possessory risk management systems. In the modern economy, special importance among all the types of owner’s risks has the risk of reduction in consumer activity. This type of risk is common not only for the consumer goods trade. Study of consumer activity decline is especially important for Russia due to domestic market of consumer goods being still in the development stage, despite its significant growth. In this regard, it is especially important to form and develop possessory risk management systems for FMCG companies. The authors offer their own interpretation of the process of forming and developing possessory risk management systems within owner’s management models of FMCG companies as well as in Russian economy in general. Proposed methods and mechanisms of problem analysis of formation and development of possessory risk management systems in FMCG companies and the results received can be helpful for researchers interested in problems of consumer goods market development in Russia and overseas.

Keywords: FMCG companies, marketing budget, risk management, owner, Russian economy, organization, formation, development, system

Procedia PDF Downloads 377
4708 The Impact of Team Heterogeneity and Team Reflexivity on Entrepreneurial Decision -Making - Empirical Study in China

Authors: Chang Liu, Rui Xing, Liyan Tang, Guohong Wang

Abstract:

Entrepreneurial actions are based on entrepreneurial decisions. The quality of decisions influences entrepreneurial activities and subsequent new venture performance. Uncertainty of surroundings put heightened demands on the team as a whole, and each team member. Diverse team composition provides rich information, which a team can draw when making complex decisions. However, team heterogeneity may cause emotional conflicts, which is adverse to team outcomes. Thus, the effects of team heterogeneity on team outcomes are complex. Although team heterogeneity is an essential factor influencing entrepreneurial decision-making, there is a lack of empirical analysis on under what conditions team heterogeneity plays a positive role in promoting decision-making quality. Entrepreneurial teams always struggle with complex tasks. How a team shapes its teamwork is key in resolving constant issues. As a collective regulatory process, team reflexivity is characterized by continuous joint evaluation and discussion of team goals, strategies, and processes, and adapt them to current or anticipated circumstances. It enables diversified information to be shared and overtly discussed. Instead of hostile interpretation of opposite opinions team members take them as useful insights from different perspectives. Team reflexivity leads to better integration of expertise to avoid the interference of negative emotions and conflict. Therefore, we propose that team reflexivity is a conditional factor that influences the impact of team heterogeneity on high-quality entrepreneurial decisions. In this study, we identify team heterogeneity as a crucial determinant of entrepreneurial decision quality. Integrating the literature on decision-making and team heterogeneity, we investigate the relationship between team heterogeneity and entrepreneurial decision-making quality, treating team reflexivity as a moderator. We tested our hypotheses using the hierarchical regression method and the data gathered from 63 teams and 205 individual members from 45 new firms in China's first-tier cities such as Beijing, Shanghai, and Shenzhen. This research found that both teams' education heterogeneity and teams' functional background heterogeneity were significantly positively related to entrepreneurial decision-making quality, and the positive relation was stronger in teams with a high level of team reflexivity. While teams' specialization of education heterogeneity was negatively related to decision-making quality, and the negative relationship was weaker in teams with a high level of team reflexivity. We offer two contributions to decision-making and entrepreneurial team literatures. Firstly, our study enriches the understanding of the role of entrepreneurial team heterogeneity in entrepreneurial decision-making quality. Different from previous entrepreneurial decision-making literatures, which focus more on decision-making modes of entrepreneurs and the top management team, this study is a significant attempt to highlight that entrepreneurial team heterogeneity makes a unique contribution to generating high-quality entrepreneurial decisions. Secondly, this study introduced team reflexivity as the moderating variable, to explore the boundary conditions under which the entrepreneurial team heterogeneity play their roles.

Keywords: decision-making quality, entrepreneurial teams, education heterogeneity, functional background heterogeneity, specialization of education heterogeneity

Procedia PDF Downloads 119
4707 A Conceptual Model of the 'Driver – Highly Automated Vehicle' System

Authors: V. A. Dubovsky, V. V. Savchenko, A. A. Baryskevich

Abstract:

The current trend in the automotive industry towards automatic vehicles is creating new challenges related to human factors. This occurs due to the fact that the driver is increasingly relieved of the need to be constantly involved in driving the vehicle, which can negatively impact his/her situation awareness when manual control is required, and decrease driving skills and abilities. These new problems need to be studied in order to provide road safety during the transition towards self-driving vehicles. For this purpose, it is important to develop an appropriate conceptual model of the interaction between the driver and the automated vehicle, which could serve as a theoretical basis for the development of mathematical and simulation models to explore different aspects of driver behaviour in different road situations. Well-known driver behaviour models describe the impact of different stages of the driver's cognitive process on driving performance but do not describe how the driver controls and adjusts his actions. A more complete description of the driver's cognitive process, including the evaluation of the results of his/her actions, will make it possible to more accurately model various aspects of the human factor in different road situations. This paper presents a conceptual model of the 'driver – highly automated vehicle' system based on the P.K. Anokhin's theory of functional systems, which is a theoretical framework for describing internal processes in purposeful living systems based on such notions as goal, desired and actual results of the purposeful activity. A central feature of the proposed model is a dynamic coupling mechanism between the decision-making of a driver to perform a particular action and changes of road conditions due to driver’s actions. This mechanism is based on the stage by stage evaluation of the deviations of the actual values of the driver’s action results parameters from the expected values. The overall functional structure of the highly automated vehicle in the proposed model includes a driver/vehicle/environment state analyzer to coordinate the interaction between driver and vehicle. The proposed conceptual model can be used as a framework to investigate different aspects of human factors in transitions between automated and manual driving for future improvements in driving safety, and for understanding how driver-vehicle interface must be designed for comfort and safety. A major finding of this study is the demonstration that the theory of functional systems is promising and has the potential to describe the interaction of the driver with the vehicle and the environment.

Keywords: automated vehicle, driver behavior, human factors, human-machine system

Procedia PDF Downloads 146
4706 Determinants of Internationalization of Social Enterprises: A 20-Year Review

Authors: Xiaoqing Li

Abstract:

Social entrepreneurship drives the global movement as social enterprises create best ways to satisfy social needs through connecting international resources. However, what determines social enterprises to internationalize is underexplored. This study aims to answer this question by conducting a systematic review of studies of past 20 years on social enterprises' internationalization. Findings reveal that factors at the individual (entrepreneur), firm, and environment (home and host country) levels determine the degree of social enterprises' internationalization. Future research is challenged by: a. adopting an integrated approach examining the three levels to explain social enterprises' internationalization; b. the different nature of social enterprises from commercial businesses demands scholars to refine and develop appropriate theoretical models to capture the dynamism of social enterprises' internationalization behavior.

Keywords: determinants, entrepreneurship, internationalization, social enterprises

Procedia PDF Downloads 216
4705 Comparative Study on the Effect of Compaction Energy and Moisture Content on the Strength Properties of Lateritic Soil

Authors: Ahmad Idris, O.A. Uche, Ado Y Abdulfatah

Abstract:

Lateritic soils are found in abundance and are the most common types of soils used in construction of roads and embankments in Nigeria. Strength properties of the soils depend on the amount of compaction applied and the amount of water available in the soil at the time of compaction. In this study, the influence of the compactive effort and that of the amount of water in the soil in the determination of the shear strength properties of lateritic soil was investigated. Lateritic soil sample was collected from an existing borrow pit in Kano, Nigeria and its basic characteristics were determined and the soil was classified according to AASHTO classification method. The soil was then compacted under various compactive efforts and at wide range of moisture contents. The maximum dry density (MDD) and optimum moisture content (OMC) at each compactive effort was determined. Unconfined undrained triaxial test was carried out to determine the shear strength properties of the soil under various conditions of moisture and energy. Preliminary results obtained indicated that the soil is an A-7-5 soil. The final results obtained shows that as the compaction energy is increased, both the cohesion and friction angle increased irrespective of the moisture content used in the compaction. However, when the amount of water in the soil was increased and compaction effort kept constant, only the cohesion of the soil increases while the friction angle shows no any pattern of variation. It was also found that the highest values for cohesion and friction angle were obtained when the soil was compacted at the highest energy and at OMC.

Keywords: laterite, OMC, compaction energy, moisture content

Procedia PDF Downloads 407
4704 On the Creep of Concrete Structures

Authors: A. Brahma

Abstract:

Analysis of deferred deformations of concrete under sustained load shows that the creep has a leading role on deferred deformations of concrete structures. Knowledge of the creep characteristics of concrete is a Necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable deformation in pre-stressed concrete or reinforced and the appropriate steps can be taken in design to accommodate this movement. In this study, we propose a prediction model that involves the acting principal parameters on the deferred behaviour of concrete structures. For the estimation of the model parameters Levenberg-Marquardt method has proven very satisfactory. A confrontation between the experimental results and the predictions of models designed shows that it is well suited to describe the evolution of the creep of concrete structures.

Keywords: concrete structure, creep, modelling, prediction

Procedia PDF Downloads 291
4703 A Systematic Review of Process Research in Software Engineering

Authors: Tulasi Rayasa, Phani Kumar Pullela

Abstract:

A systematic review is a research method that involves collecting and evaluating the information on a specific topic in order to provide a comprehensive and unbiased review. This type of review aims to improve the software development process by ensuring that the research is thorough and accurate. To ensure objectivity, it is important to follow systematic guidelines and consider multiple sources, such as literature reviews, interviews, and surveys. The evaluation process should also be streamlined by incorporating research from journals and other sources, such as grey literature. The main goal of a systematic review is to identify the consistency of current models in the field of computer application and software engineering.

Keywords: computer application, software engineering, process research, data science

Procedia PDF Downloads 99
4702 The Effect of Absolute and Relative Deprivation on Homicides in Brazil

Authors: Temidayo James Aransiola, Vania Ceccato, Marcelo Justus

Abstract:

This paper investigates the effect of absolute deprivation (proxy unemployment) and relative deprivation (proxy income inequality) on homicide levels in Brazil. A database from the Brazilian Information System about Mortality and Census of the year 2000 and 2010 was used to estimate negative binomial models of homicide levels controlling for socioeconomic, demographic and geographic factors. Findings show that unemployment and income inequality affect homicides levels and that the effect of the former is more pronounced compared to the latter. Moreover, the combination of income inequality and unemployment exacerbates the overall effect of deprivation on homicide levels.

Keywords: deprivation, inequality, interaction, unemployment, violence

Procedia PDF Downloads 146
4701 Towards Creative Movie Title Generation Using Deep Neural Models

Authors: Simon Espigolé, Igor Shalyminov, Helen Hastie

Abstract:

Deep machine learning techniques including deep neural networks (DNN) have been used to model language and dialogue for conversational agents to perform tasks, such as giving technical support and also for general chit-chat. They have been shown to be capable of generating long, diverse and coherent sentences in end-to-end dialogue systems and natural language generation. However, these systems tend to imitate the training data and will only generate the concepts and language within the scope of what they have been trained on. This work explores how deep neural networks can be used in a task that would normally require human creativity, whereby the human would read the movie description and/or watch the movie and come up with a compelling, interesting movie title. This task differs from simple summarization in that the movie title may not necessarily be derivable from the content or semantics of the movie description. Here, we train a type of DNN called a sequence-to-sequence model (seq2seq) that takes as input a short textual movie description and some information on e.g. genre of the movie. It then learns to output a movie title. The idea is that the DNN will learn certain techniques and approaches that the human movie titler may deploy that may not be immediately obvious to the human-eye. To give an example of a generated movie title, for the movie synopsis: ‘A hitman concludes his legacy with one more job, only to discover he may be the one getting hit.’; the original, true title is ‘The Driver’ and the one generated by the model is ‘The Masquerade’. A human evaluation was conducted where the DNN output was compared to the true human-generated title, as well as a number of baselines, on three 5-point Likert scales: ‘creativity’, ‘naturalness’ and ‘suitability’. Subjects were also asked which of the two systems they preferred. The scores of the DNN model were comparable to the scores of the human-generated movie title, with means m=3.11, m=3.12, respectively. There is room for improvement in these models as they were rated significantly less ‘natural’ and ‘suitable’ when compared to the human title. In addition, the human-generated title was preferred overall 58% of the time when pitted against the DNN model. These results, however, are encouraging given the comparison with a highly-considered, well-crafted human-generated movie title. Movie titles go through a rigorous process of assessment by experts and focus groups, who have watched the movie. This process is in place due to the large amount of money at stake and the importance of creating an effective title that captures the audiences’ attention. Our work shows progress towards automating this process, which in turn may lead to a better understanding of creativity itself.

Keywords: creativity, deep machine learning, natural language generation, movies

Procedia PDF Downloads 326
4700 Preliminary Analysis on Land Use-Land Cover Assessment of Post-Earthquake Geohazard: A Case Study in Kundasang, Sabah

Authors: Nur Afiqah Mohd Kamal, Khamarrul Azahari Razak

Abstract:

The earthquake aftermath has become a major concern, especially in high seismicity region. In Kundasang, Sabah, the earthquake on 5th June 2015 resulted in several catastrophes; landslides, rockfalls, mudflows and major slopes affected regardless of the series of the aftershocks. Certainly, the consequences of earthquake generate and induce the episodic disaster, not only life-threatening but it also affects infrastructure and economic development. Therefore, a need for investigating the change in land use and land cover (LULC) of post-earthquake geohazard is essential for identifying the extent of disastrous effects towards the development in Kundasang. With the advancement of remote sensing technology, post-earthquake geohazards (landslides, mudflows, rockfalls, debris flows) assessment can be evaluated by the employment of object-based image analysis in investigating the LULC change which consists of settlements, public infrastructure and vegetation cover. Therefore, this paper discusses the preliminary results on post-earthquakes geohazards distribution in Kundasang and evaluates the LULC classification effect upon the occurrences of geohazards event. The result of this preliminary analysis will provide an overview to determine the extent of geohazard impact on LULC. This research also provides beneficial input to the local authority in Kundasang about the risk of future structural development on the geohazard area.

Keywords: geohazard, land use land cover, object-based image analysis, remote sensing

Procedia PDF Downloads 245
4699 Modeling and Optimizing of Sinker Electric Discharge Machine Process Parameters on AISI 4140 Alloy Steel by Central Composite Rotatable Design Method

Authors: J. Satya Eswari, J. Sekhar Babub, Meena Murmu, Govardhan Bhat

Abstract:

Electrical Discharge Machining (EDM) is an unconventional manufacturing process based on removal of material from a part by means of a series of repeated electrical sparks created by electric pulse generators at short intervals between a electrode tool and the part to be machined emmersed in dielectric fluid. In this paper, a study will be performed on the influence of the factors of peak current, pulse on time, interval time and power supply voltage. The output responses measured were material removal rate (MRR) and surface roughness. Finally, the parameters were optimized for maximum MRR with the desired surface roughness. RSM involves establishing mathematical relations between the design variables and the resulting responses and optimizing the process conditions. RSM is not free from problems when it is applied to multi-factor and multi-response situations. Design of experiments (DOE) technique to select the optimum machining conditions for machining AISI 4140 using EDM. The purpose of this paper is to determine the optimal factors of the electro-discharge machining (EDM) process investigate feasibility of design of experiment techniques. The work pieces used were rectangular plates of AISI 4140 grade steel alloy. The study of optimized settings of key machining factors like pulse on time, gap voltage, flushing pressure, input current and duty cycle on the material removal, surface roughness is been carried out using central composite design. The objective is to maximize the Material removal rate (MRR). Central composite design data is used to develop second order polynomial models with interaction terms. The insignificant coefficients’ are eliminated with these models by using student t test and F test for the goodness of fit. CCD is first used to establish the determine the optimal factors of the electro-discharge machining (EDM) for maximizing the MRR. The responses are further treated through a objective function to establish the same set of key machining factors to satisfy the optimization problem of the electro-discharge machining (EDM) process. The results demonstrate the better performance of CCD data based RSM for optimizing the electro-discharge machining (EDM) process.

Keywords: electric discharge machining (EDM), modeling, optimization, CCRD

Procedia PDF Downloads 341
4698 The Formulation of R&D Strategy for Biofuel Technology: A Case Study of the Aviation Industry in Iran

Authors: Maryam Amiri, Ali Rajabzade, Gholam Reza Goudarzi, Reza Heidari

Abstract:

Growth of technology and environmental changes are so fast and therefore, companies and industries have much tendency to do activities of R&D for active participation in the market and achievement to a competitive advantages. Aviation industry and its subdivisions have high level technology and play a special role in economic and social development of countries. So, in the aviation industry for getting new technologies and competing with other countries aviation industry, there is a requirement for capability in R&D. Considering of appropriate R&D strategy is supportive that day technologies of the world can be achieved. Biofuel technology is one of the newest technologies that has allocated discussion of the world in aviation industry to itself. The purpose of this research has been formulation of R&D strategy of biofuel technology in aviation industry of Iran. After reviewing of the theoretical foundations of the methods and R&D strategies, finally we classified R&D strategies in four main categories as follows: internal R&D, collaboration R&D, out sourcing R&D and in-house R&D. After a review of R&D strategies, a model for formulation of R&D strategy with the aim of developing biofuel technology in aviation industry in Iran was offered. With regard to the requirements and aracteristics of industry and technology in the model, we presented an integrated approach to R&D. Based on the techniques of decision making and analyzing of structured expert opinion, 4 R&D strategies for different scenarios and with the aim of developing biofuel technology in aviation industry in Iran were recommended. In this research, based on the common features of the implementation process of R&D, a logical classification of these methods are presented as R&D strategies. Then, R&D strategies and their characteristics was developed according to the experts. In the end, we introduced a model to consider the role of aviation industry and biofuel technology in R&D strategies. And lastly, for conditions and various scenarios of the aviation industry, we have formulated a specific R&D strategy.

Keywords: aviation industry, biofuel technology, R&D, R&D strategy

Procedia PDF Downloads 579
4697 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice

Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 68
4696 Simulation of Glass Breakage Using Voronoi Random Field Tessellations

Authors: Michael A. Kraus, Navid Pourmoghaddam, Martin Botz, Jens Schneider, Geralt Siebert

Abstract:

Fragmentation analysis of tempered glass gives insight into the quality of the tempering process and defines a certain degree of safety as well. Different standard such as the European EN 12150-1 or the American ASTM C 1048/CPSC 16 CFR 1201 define a minimum number of fragments required for soda-lime safety glass on the basis of fragmentation test results for classification. This work presents an approach for the glass breakage pattern prediction using a Voronoi Tesselation over Random Fields. The random Voronoi tessellation is trained with and validated against data from several breakage patterns. The fragments in observation areas of 50 mm x 50 mm were used for training and validation. All glass specimen used in this study were commercially available soda-lime glasses at three different thicknesses levels of 4 mm, 8 mm and 12 mm. The results of this work form a Bayesian framework for the training and prediction of breakage patterns of tempered soda-lime glass using a Voronoi Random Field Tesselation. Uncertainties occurring in this process can be well quantified, and several statistical measures of the pattern can be preservation with this method. Within this work it was found, that different Random Fields as basis for the Voronoi Tesselation lead to differently well fitted statistical properties of the glass breakage patterns. As the methodology is derived and kept general, the framework could be also applied to other random tesselations and crack pattern modelling purposes.

Keywords: glass breakage predicition, Voronoi Random Field Tessellation, fragmentation analysis, Bayesian parameter identification

Procedia PDF Downloads 160
4695 How Participatory Climate Information Services Assist Farmers to Uptake Rice Disease Forecasts and Manage Diseases in Advance: Evidence from Coastal Bangladesh

Authors: Moriom Akter Mousumi, Spyridon Paparrizos, Fulco Ludwig

Abstract:

Rice yield reduction due to climate change-induced disease occurrence is becoming a great concern for coastal farmers of Bangladesh. The development of participatory climate information services (CIS) based on farmers’ needs could implicitly facilitate farmers to get disease forecasts and make better decisions to manage diseases. Therefore, this study aimed to investigate how participatory climate information services assist coastal rice farmers to take up rice disease forecasts and better manage rice diseases by improving their informed decision-making. Through participatory approaches, we developed a tailor-made agrometeorological service through the DROP app to forecast rice diseases and manage them in advance. During farmers field schools (FFS) we communicated 7-day disease forecasts during face-to-face weekly meetings using printed paper and, messenger app derived from DROP app. Results show that the majority of the farmers understand disease forecasts through visualization, symbols, and text. The majority of them use disease forecast information directly from the DROP app followed by face-to-face meetings, messenger app, and printed paper. Farmers participation and engagement during capacity building training at FFS also assist them in making more informed decisions and improved management of diseases using both preventive measures and chemical measures throughout the rice cultivation period. We conclude that the development of participatory CIS and the associated capacity-building and training of farmers has increased farmers' understanding and uptake of disease forecasts to better manage of rice diseases. Participatory services such as the DROP app offer great potential as an adaptation option for climate-smart rice production under changing climatic conditions.

Keywords: participatory climate service, disease forecast, disease management, informed decision making, coastal Bangladesg

Procedia PDF Downloads 46
4694 Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 233
4693 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks

Authors: Sulemana Ibrahim

Abstract:

Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.

Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks

Procedia PDF Downloads 62
4692 Developing Reading Methods of Industrial Education Students at King Mongkut’s Institute of Technology Ladkrabang

Authors: Rattana Sangchan, Pattaraporn Thampradit

Abstract:

Teaching students to use a variety of reading methods in developing reading is essential for Thai university students. However, there haven’t been a lot of studies concerned about developing reading methods that are used by Thai students in the industrial education field. Therefore, this study was carried out not only to investigate the developing reading methods of Industrial Education students at King Mongkut’s Institute of Technology Ladkrabang, but also to determine if the developing reading strategies differ among the students’ reading abilities and differ gender: male and female. The research instrument used in collecting the data consisted of fourteen statements which include either metacognitive strategies, cognitive strategies or social / affective strategies. Results of this study revealed that students could develop their reading methods in moderate level (mean=3.13). Furthermore, high reading ability students had different levels of using reading methods to develop their reading from those of mid reading ability students. In addition, high reading ability students could use either metacognitive reading methods or cognitive reading methods to develop their reading much better than mid reading ability students. Interestingly, male students could develop their reading methods in great levels while female students could develop their reading methods only in moderate level. Last but not least, male students could use either metacognitive reading methods or cognitive reading methods to develop their reading much better than female students. Thus, the results of this study could indicate that most students need to apply much more reading strategies to develop their reading. At the same time, suggestions on how to motivate and train their students to apply much more appropriate effective reading strategies to better comprehend their reading were also provided.

Keywords: developing reading methods, industrial education, reading abilities, reading method classification

Procedia PDF Downloads 285
4691 Validation of Global Ratings in Clinical Performance Assessment

Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek

Abstract:

This study aimed to determine the reliability of clinical performance assessments, having been emphasized by ability-based education, and professors overall assessment methods. We addressed the following problems: First, we try to find out whether there is a difference in what we consider to be the main variables affecting the clinical performance test according to the evaluator’s working period and the number of evaluation experience. Second, we examined the relationship among the global rating score (G), analytic global rating score (Gc), and the sum of the analytical checklists (C). What are the main factors affecting clinical performance assessments in relation to the numbers of times the evaluator had administered evaluations and the length of their working period service? What is the relationship between overall assessment score and analytic checklist score? How does analytic global rating with 6 components in OSCE and 4 components in sub-domains (Gc) CPX: aseptic practice, precision, systemic approach, proficiency, successfulness, and attitude overall assessment score and task-specific analytic checklist score sum (C) affect the professor’s overall global rating assessment score (G)? We studied 75 professors who attended a 2016 Bugyeoung Consortium clinical skills performances test evaluating third and fourth year medical students at the Pusan National University Medical school in South Korea (39 prof. in OSCE, 36 prof. in CPX; all consented to participate in our study). Each evaluator used 3 forms; a task-specific analytic checklist, subsequent analytic global rating scale with sub-6 domains, and overall global scale. After the evaluation, the professors responded to the questionnaire on the important factors of clinical performance assessment. The data were analyzed by frequency analysis, correlation analysis, and hierarchical regression analysis using SPSS 21.0. Their understanding of overall assessment was analyzed by dividing the subjects into groups based on experiences. As a result, they considered ‘precision’ most important in overall OSCE assessment, and ‘precise accuracy physical examination’, ‘systemic approaches to taking patient history’, and ‘diagnostic skill capability’ in overall CPX assessment. For OSCE, there was no clear difference of opinion about the main factors, but there was for CPX. Analytic global rating scale score, overall rating scale score, and analytic checklist score had meaningful mutual correlations. According to the regression analysis results, task-specific checklist score sum had the greatest effect on overall global rating. professors regarded task-specific analytic checklist total score sum as best reflecting overall OSCE test score, followed by aseptic practice, precision, systemic approach, proficiency, successfulness, and attitude on a subsequent analytic global rating scale. For CPX, subsequent analytic global rating scale score, overall global rating scale score, and task-specific checklist score had meaningful mutual correlations. These findings support explanations for validity of professors’ global rating in clinical performance assessment.

Keywords: global rating, clinical performance assessment, medical education, analytic checklist

Procedia PDF Downloads 235
4690 Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium Falciparum

Authors: Yagahira E. Castro-Sesquen, Chloe Kim, Robert H. Gilman, David J. Sullivan, Peter C. Searson

Abstract:

Diagnosis of severe malaria is particularly important in highly endemic regions since most patients are positive for parasitemia and treatment differs from non-severe malaria. Diagnosis can be challenging due to the prevalence of diseases with similar symptoms. Accurate diagnosis is increasingly important to avoid overprescribing antimalarial drugs, minimize drug resistance, and minimize costs. A nanoparticle-based assay for detection and quantification of Plasmodium falciparum histidine-rich protein 2 (HRP2) in urine and serum is reported. The assay uses magnetic beads conjugated with anti-HRP2 antibody for protein capture and concentration, and antibody-conjugated quantum dots for optical detection. Western Blot analysis demonstrated that magnetic beads allows the concentration of HRP2 protein in urine by 20-fold. The concentration effect was achieved because large volume of urine can be incubated with beads, and magnetic separation can be easily performed in minutes to isolate beads containing HRP2 protein. Magnetic beads and Quantum Dots 525 conjugated to anti-HRP2 antibodies allows the detection of low concentration of HRP2 protein (0.5 ng mL-1), and quantification in the range of 33 to 2,000 ng mL-1 corresponding to the range associated with non-severe to severe malaria. This assay can be easily adapted to a non-invasive point-of-care test for classification of severe malaria.

Keywords: HRP2 protein, malaria, magnetic beads, Quantum dots

Procedia PDF Downloads 333
4689 Exploring Affordable Care Practs in Nigeria’s Health Insurance Discourse

Authors: Emmanuel Chinaguh, Kehinde Adeosun

Abstract:

Nigerians die untimely, with 55.75 years of life expectancy, which is 17.45 below the world average of 73.2 (Worldometer, 2020). This is due, among other factors, to the country's limited access to high-quality healthcare. To increase access to good and affordable healthcare services, the National Health Insurance Authority (NHIA) Bill 2022 – which repealed the National Health Insurance Scheme Act 2004 – was passed into law. Applying Jacob Mey’s (2001) pragmatics act (pract) theory, this study explores how NHIA seeks to actualise these healthcare goals by characterising the general situational prototype or pragmemes and pragmatic acts in institutional communications. Data was sourced from the NHIA operational guidelines, which has 147 pages and four sections, and shared posters on NHIA Nigeria Twitter Handle with 14,200 followers. Digital humanities tools, like AntConc and Voyant, were engaged in the data analysis for text encoding and data visualisation. This study identifies these discourse tokens in the data: advertisement and programmes, standards and accreditation, records and information, and offences and penalties. Advertisement and programmes pract facilitating, propagating, prospecting, advising and informing; standards and accreditation, and records and information pract stating, informing and instructing; and offences and penalties pract stating and sanctioning. These practs combined to advance the goals of affordable care and universal accessibility to quality healthcare services. The pragmatic acts were marked by these pragmatic tools: shared situational knowledge (SSK), relevance (REL), reference (REF) and inference (INF). This paper adds to the understanding of health insurance discourse in Nigeria as a mediated social practice that promotes the health of Nigerians.

Keywords: affordable care, NHIA, Nigeria’s health insurance discourse, pragmatic acts.

Procedia PDF Downloads 85
4688 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.

Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding

Procedia PDF Downloads 305
4687 Men's Intimate Violence: Theory and Practice Relationship

Authors: Omer Zvi Shaked

Abstract:

Intimate Partner Violence (IPV) is a widespread social problem. Since the 1970's, and due to political changes resulting from the feminist movement, western society has been changing its attitude towards the phenomenon and has been taking an active approach to reduce its magnitude. Enterprises in the form of legislation, awareness and prevention campaigns, women's shelters, and community intervention programs became more prevalent as years progressed. Although many initiatives were found to be productive, the effectiveness of one, however, remained questionable throughout the years: intervention programs for men's intimate violence. Surveys outline two main intervention models for men's intimate violence. The first is the Duluth model, which argued that men are socialized to be dominant - while women are socialized to be subordinate - and men are therefore required by social imperative to enforce, physically if necessary, their dominance. The Duluth model became the chief authorized intervention program, and some states in the US even regulated it as the standard criminal justice program for men's intimate violence. However, meta-analysis findings demonstrated that based on a partner's reports, Duluth treatment completers have 44% recidivism rate, and between 40% and 85% dropout range. The second model is the Cognitive-Behavioral Model (CBT), which is a highly accepted intervention worldwide. The model argues that cognitive misrepresentations of intimate situations precede violent behaviors frequently when anger predisposition exists. Since anger dysregulation mediates between one's cognitive schemes and violent response, anger regulation became the chief purpose of the intervention. Yet, a meta-analysis found only a 56% risk reduction for CBT interventions. It is, therefore, crucial to understand the background behind the domination of both the Duluth model and CBT interventions. This presentation will discuss the ways in which theoretical conceptualizations of men's intimate violence, as well as ideologies, had contributed to the above-mentioned interventions' wide acceptance, despite known lack of scientific and evidential support. First, the presentation will review the prominent interventions for male intimate violence, the Duluth model, and CBT. Second, the presentation will review the prominent theoretical models explaining men's intimate violence: The Patriarchal model, the Abusive Personality model, and the Post-Traumatic Stress model. Third, the presentation will discuss the interrelation between theory and practice, and the nature of affinity between research and practice regarding men's intimate violence. Finally, the presentation will set new directions for further research, aiming to improve intervention's efficiency with men's intimate violence and advance social work practice in the field.

Keywords: intimate partner violence, theory and practice relationship, Duluth, CBT, abusive personality, post-traumatic stress

Procedia PDF Downloads 126
4686 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography

Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai

Abstract:

Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.

Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics

Procedia PDF Downloads 96
4685 Meeting the Energy Balancing Needs in a Fully Renewable European Energy System: A Stochastic Portfolio Framework

Authors: Iulia E. Falcan

Abstract:

The transition of the European power sector towards a clean, renewable energy (RE) system faces the challenge of meeting power demand in times of low wind speed and low solar radiation, at a reasonable cost. This is likely to be achieved through a combination of 1) energy storage technologies, 2) development of the cross-border power grid, 3) installed overcapacity of RE and 4) dispatchable power sources – such as biomass. This paper uses NASA; derived hourly data on weather patterns of sixteen European countries for the past twenty-five years, and load data from the European Network of Transmission System Operators-Electricity (ENTSO-E), to develop a stochastic optimization model. This model aims to understand the synergies between the four classes of technologies mentioned above and to determine the optimal configuration of the energy technologies portfolio. While this issue has been addressed before, it was done so using deterministic models that extrapolated historic data on weather patterns and power demand, as well as ignoring the risk of an unbalanced grid-risk stemming from both the supply and the demand side. This paper aims to explicitly account for the inherent uncertainty in the energy system transition. It articulates two levels of uncertainty: a) the inherent uncertainty in future weather patterns and b) the uncertainty of fully meeting power demand. The first level of uncertainty is addressed by developing probability distributions for future weather data and thus expected power output from RE technologies, rather than known future power output. The latter level of uncertainty is operationalized by introducing a Conditional Value at Risk (CVaR) constraint in the portfolio optimization problem. By setting the risk threshold at different levels – 1%, 5% and 10%, important insights are revealed regarding the synergies of the different energy technologies, i.e., the circumstances under which they behave as either complements or substitutes to each other. The paper concludes that allowing for uncertainty in expected power output - rather than extrapolating historic data - paints a more realistic picture and reveals important departures from results of deterministic models. In addition, explicitly acknowledging the risk of an unbalanced grid - and assigning it different thresholds - reveals non-linearity in the cost functions of different technology portfolio configurations. This finding has significant implications for the design of the European energy mix.

Keywords: cross-border grid extension, energy storage technologies, energy system transition, stochastic portfolio optimization

Procedia PDF Downloads 170
4684 Specific Language Impairment: Assessing Bilingual Children for Identifying Children with Specific Language Impairment (SLI)

Authors: Manish Madappa, Madhavi Gayathri Raman

Abstract:

The primary vehicle of human communication is language. A breakdown occurring in any aspect of communication may lead to frustration and isolation among the learners and the teachers. Over seven percent of the population in the world currently experience limitations and those children who exhibit a deviant/deficient language acquisition curve even when being in a language rich environment as their peers may be at risk of having a language disorder or language impairment. The difficulty may be in the word level [vocabulary/word knowledge] and/or the sentence level [syntax/morphology) Children with SLI appear to be developing normally in all aspects except for their receptive and/or expressive language skills. Thus, it is utmost importance to identify children with or at risk of SLI so that an early intervention can foster language and social growth, provide the best possible learning environment with special support for language to be explicitly taught and a step in providing continuous and ongoing support. The present study looks at Kannada English bilingual children and works towards identifying children at risk of “specific language impairment”. The study was conducted through an exploratory study which systematically enquired into the narratives of young Kannada-English bilinguals and to investigate the data for story structure in their narrative formulations. Oral narrative offers a rich source of data about a child’s language use in a relatively natural context. The fundamental objective is to ensure comparability and to be more universal and thus allows for the evaluation narrative text competence. The data was collected from 10 class three students at a primary school in Mysore, Karnataka and analyzed for macrostructure component reflecting the goal directed behavior of a protagonist who is motivated to carry out some kind of action with the intention of attaining a goal. The results show that the children exhibiting a deviation of -1.25 SD are at risk of SLI. Two learners were identified to be at risk of Specific Language Impairment with a standard deviation of more the 1.25 below the mean score.

Keywords: bilingual, oral narratives, SLI, macrostructure

Procedia PDF Downloads 289
4683 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection

Authors: S. Shankar Bharathi

Abstract:

Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.

Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision

Procedia PDF Downloads 428
4682 Formulation of Building Design Principles for Little People in Hong Kong

Authors: Yung Yau

Abstract:

'Little people' are those who have extremely short stature as they suffer from rare bone diseases. They are commonly known as 'dwarves' or 'people with dwarfism'. Dwarfism is generally regarded as a type of rare disease for its extremely small odds (~1 in 15,000). On account of its rarity, dwarfism, unlike other types of disability, has attracted relatively little attention from the general public and in various academic fields (e.g. architecture, psychology and sociology) except medical science. In view of the extant research gaps, this study aims to investigate the physical barriers facing the little people in the built environment in Hong Kong. Between November 2017 and July 2018, ten little people or their family members participated in in-depth interviews. Responses of the interviewees were transcribed (i.e., speech being converted to text word for word). Interview data were then analyzed using the interpretative phenomenological analysis methodology developed by J. Smith and others in 2009. The findings of the project reveal that although Hong Kong's built environment has been designed barrier-free pursuant to the prevailing building standards, those standards do not cater to the special anthropometric characteristics of little people. As a result, little people face a lot of challenges when using built facilities. For example, most water closets, urinals, and wash hand basins are not fit for little people's use. As indicated by the project findings, we are still far away from providing a discrimination-free and barrier-free living environment for the little people in Hong Kong. To make Hong Kong society more inclusive to the little people, there is a need for further tailored building design. A set of building design principles for better inclusion of the little people in our society are highlighted. These principles include 'the building design should accommodate individuals with different heights' and 'the building design should allow individuals to use comfortably and efficiently with a minimum of fatigue'. At the end of the paper, the author also calls for an agenda for further studies. For instance, we need an anthropometric study on little people for developing practical building design guidelines.

Keywords: dwarfism, little people, inclusive buildings, people with disabilities, social sustainability

Procedia PDF Downloads 129
4681 New Methods to Acquire Grammatical Skills in A Foreign Language

Authors: Indu ray

Abstract:

In today’s digital world the internet is already flooded with information on how to master grammar in a foreign language. It is well known that one cannot master a language without grammar. Grammar is the backbone of any language. Without grammar there would be no structure to help you speak/write or listen/read. Successful communication is only possible if the form and function of linguistic utterances are firmly related to one another. Grammar has its own rules of use to formulate an easier-to-understand language. Like a tool, grammar formulates our thoughts and knowledge in a meaningful way. Every language has its own grammar. With grammar, we can quickly analyze whether there is any action in this text: (Present, past, future). Knowledge of grammar is an important prerequisite for mastering a foreign language. What’s most important is how teachers can make grammar lessons more interesting for students and thus promote grammar skills more successfully. Through this paper, we discuss a few important methods like (Interactive Grammar Exercises between students, Interactive Grammar Exercise between student to teacher, Grammar translation method, Audio -Visual Method, Deductive Method, Inductive Method). This paper is divided into two sections. In the first part, brief definitions and principles of these approaches will be provided. Then the possibility and the case of combination of this approach will be analyzed. In the last section of the paper, I would like to present a survey result conducted at my university on a few methods to quickly learn grammar in Foreign Language. We divided the Grammatical Skills in six Parts. 1.Grammatical Competence 2. Speaking Skills 3. Phonology 4. The syntax and the Semantics 5. Rule 6. Cognitive Function and conducted a survey among students. From our survey results, we can observe that phonology, speaking ability, syntax and semantics can be improved by inductive method, Audio-visual Method, and grammatical translation method, for grammar rules and cognitive functions we should choose IGE (teacher-student) method. and the IGE method (pupil-pupil). The study’s findings revealed, that the teacher delivery Methods should be blend or fusion based on the content of the Grammar.

Keywords: innovative method, grammatical skills, audio-visual, translation

Procedia PDF Downloads 77