Search results for: machine vision operating system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21610

Search results for: machine vision operating system

21100 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning

Procedia PDF Downloads 132
21099 Computational Model of Human Cardiopulmonary System

Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek

Abstract:

The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.

Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine

Procedia PDF Downloads 181
21098 Soueif’s 'The Returning' and 'The Nativity': A Portrait of the Other as Others

Authors: Samira Brahimi

Abstract:

Throughout Aisha, her first collection of short stories, Ahdaf Soueif draws a multilayered picture of the Other as others, picturing a series of encounters of her protagonist with this very Other as a set of binary elements. The current essay includes a comparative study between two narratives, namely The Returning and The Nativity. The Other is portrayed as a male/female binary in The Returning and as 'The Foreigner' in an exotic land vs. the local in The Nativity. The analysis is to focus on Aisha, the main female character, who figures as conforming to the portrait of the stereotyped Arab Muslim woman as a sex-subject, submissive, and maudlin character, confining her vision of the Other to the boundaries of her cocooned self, epitomizing a self-centered vision of the world. This reduced vision results in the possibility of viewing the Other as a hindrance to her attaining a clarified and centrifugal representation of the latter, herself, and the outside world. The encounters could also be considered as the character's opportunity for a less stigmatized perception of the elements set forth. The main queries to be probed are: what are the different perceptions of the Other by the author in the narratives set forth? How does the protagonist's encounter with the Other(s) impede her ability to understand the Other, herself, and the world around her? Or how does this encounter allow her an enlightened vision of the aforementioned elements to forge a new start? The possibility of imagining a dialogic relation between different perceptions of the Other opens up new perspectives for adopting magnified representations of the later, oneself, and the world, dilating one's imagination.

Keywords: dialogic, female, foreigner, local, male, other, others

Procedia PDF Downloads 131
21097 Shotcrete Performance Optimisation and Audit Using 3D Laser Scanning

Authors: Carlos Gonzalez, Neil Slatcher, Marcus Properzi, Kan Seah

Abstract:

In many underground mining operations, shotcrete is used for permanent rock support. Shotcrete thickness is a critical measure of the success of this process. 3D Laser Mapping, in conjunction with Jetcrete, has developed a 3D laser scanning system specifically for measuring the thickness of shotcrete. The system is mounted on the shotcrete spraying machine and measures the rock faces before and after spraying. The calculated difference between the two 3D surface models is measured as the thickness of the sprayed concrete. Typical work patterns for the shotcrete process required a rapid and automatic system. The scanning takes place immediately before and after the application of the shotcrete so no convergence takes place in the interval between scans. Automatic alignment of scans without targets was implemented which allows for the possibility of movement of the spraying machine between scans. Case studies are presented where accuracy tests are undertaken and automatic audit reports are calculated. The use of 3D imaging data for the calculation of shotcrete thickness is an important tool for geotechnical engineers and contract managers, and this could become the new state-of-the-art methodology for the mining industry.

Keywords: 3D imaging, shotcrete, surface model, tunnel stability

Procedia PDF Downloads 290
21096 Integration of an Augmented Reality System for the Visualization of the HRMAS NMR Analysis of Brain Biopsy Specimens Using the Brainlab Cranial Navigation System

Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux, Mariana Kuras, Vincent Récamier, Martial Piotto, Karim Elbayed, François Proust, Izzie Namer

Abstract:

This paper proposes an augmented reality system dedicated to neurosurgery in order to assist the surgeon during an operation. This work is part of the ExtempoRMN project (Funded by Bpifrance) which aims at analyzing during a surgical operation the metabolic content of tumoral brain biopsy specimens by HRMAS NMR. Patients affected with a brain tumor (gliomas) frequently need to undergo an operation in order to remove the tumoral mass. During the operation, the neurosurgeon removes biopsy specimens using image-guided surgery. The biopsy specimens removed are then sent for HRMAS NMR analysis in order to obtain a better diagnosis and prognosis. Image-guided refers to the use of MRI images and a computer to precisely locate and target a lesion (abnormal tissue) within the brain. This is performed using preoperative MRI images and the BrainLab neuro-navigation system. With the patient MRI images loaded on the Brainlab Cranial neuro-navigation system in the operating theater, surgeons can better identify their approach before making an incision. The Brainlab neuro-navigation tool tracks in real time the position of the instruments and displays their position on the patient MRI data. The results of the biopsy analysis by 1H HRMAS NMR are then sent back to the operating theater and superimposed on the 3D localization system directly on the MRI images. The method we have developed to communicate between the HRMAS NMR analysis software and Brainlab makes use of a combination of C++, VTK and the Insight Toolkit using OpenIGTLink protocol.

Keywords: neuro-navigation, augmented reality, biopsy, BrainLab, HR-MAS NMR

Procedia PDF Downloads 363
21095 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: color moments, visual thing recognition system, SIFT, color SIFT

Procedia PDF Downloads 469
21094 Corporate Social Responsibility as a Determinant of Sustainability of SME: A Study of House of Tara, a Small Business Operating in Nigeria

Authors: Bolanle Deborah Motilewa, E. K. Rowland Worlu, Gbenga Mayowa Agboola, Ayodele Maxwell Olokundun

Abstract:

In the pursuit of profit maximization as a major objective of business organizations, several firms forfeit their social and economic responsibility whilst focusing on activities that are deemed to solely profit the firm, without taking into cognizance the effect of their operations on the society in which they operate. Business analysts have, however, realized the determinant role of social responsibility in corporate performance, such that firms that are able to imbibe corporate social responsibility in their core business operations may be able to take advantage of the social reputation gained across their several stakeholders. Small and medium enterprises operating in highly competitive markets are also advised to leverage on this reputation gained from being socially responsible, if they seek ways to remain relevant in the same markets dominated by multinational corporations. Adapting a case study approach, this study highlights the advantages (such as employee and customer loyalty) gained by House of Tara, a small business operating in the beauty and make-up industry in Nigeria, resulting from the firm’s commitment to advancing the society in which it operates through several social responsibility activities. It is observed that although competing with major makeup brands such as MAC, Maybelline, Dior, Mary Kay and others, House of Tara has been able to not only thrive, but gain a sizeable market in the Nigerian makeup industry, because several consumers purchase their products not solely because of the quality or price of their product, but because they perceive themselves as buying into the firm’s CSR vision. This study, therefore, recommends that small and medium enterprises that may lack adequate resources (manpower, technology, capital) needed to successfully compete with multinationals, can harness the potentials in the reputation and loyalty gained from adequate investment in corporate social responsibility.

Keywords: corporate social responsibility, small and medium enterprises, House of Tara, sustainability

Procedia PDF Downloads 273
21093 Microgrid: An Alternative of Electricity Supply to an Island in Thailand

Authors: Pawitchaya Srijaiwong, Surin Khomfoi

Abstract:

There are several solutions to supply electricity to an island in Thailand such as diesel generation, submarine power cable, and renewable energy power generation. However, each alternative has its own limitation like fuel and pollution of diesel generation, submarine power cable length resulting in loss of cable and cost of investment, and potential of renewable energy in the local area. This paper shows microgrid system which is a new alternative for power supply to an island. It integrates local power plant from renewable energy, energy storage system, and microgrid controller. The suitable renewable energy power generation on an island is selected from geographic location and potential evaluation. Thus, photovoltaic system and hydro power plant are taken into account. The capacity of energy storage system is also estimated by transient stability study in order to supply electricity demand sufficiently under normal condition. Microgrid controller plays an important role in conducting, communicating and operating for both sources and loads on an island so that its functions are discussed in this study. The conceptual design of microgrid operation is investigated in order to analyze the reliability and power quality. The result of this study shows that microgrid is able to operate in parallel with the main grid and in case of islanding. It is applicable for electricity supply to an island and a remote area. The advantages of operating microgrid on an island include the technical aspect like improving reliability and quality of power system and social aspects like outage cost saving and CO₂ reduction.

Keywords: energy storage, islanding, microgrid, renewable energy

Procedia PDF Downloads 328
21092 Image Based Landing Solutions for Large Passenger Aircraft

Authors: Thierry Sammour Sawaya, Heikki Deschacht

Abstract:

In commercial aircraft operations, almost half of the accidents happen during approach or landing phases. Automatic guidance and automatic landings have proven to bring significant safety value added for this challenging landing phase. This is why Airbus and ScioTeq have decided to work together to explore the capability of image-based landing solutions as additional landing aids to further expand the possibility to perform automatic approach and landing to runways where the current guiding systems are either not fitted or not optimum. Current systems for automated landing often depend on radio signals provided by airport ground infrastructure on the airport or satellite coverage. In addition, these radio signals may not always be available with the integrity and performance required for safe automatic landing. Being independent from these radio signals would widen the operations possibilities and increase the number of automated landings. Airbus and ScioTeq are joining their expertise in the field of Computer Vision in the European Program called Clean Sky 2 Large Passenger Aircraft, in which they are leading the IMBALS (IMage BAsed Landing Solutions) project. The ultimate goal of this project is to demonstrate, develop, validate and verify a certifiable automatic landing system guiding an airplane during the approach and landing phases based on an onboard camera system capturing images, enabling automatic landing independent from radio signals and without precision instrument for landing. In the frame of this project, ScioTeq is responsible for the development of the Image Processing Platform (IPP), while Airbus is responsible for defining the functional and system requirements as well as the testing and integration of the developed equipment in a Large Passenger Aircraft representative environment. The aim of this paper will be to describe the system as well as the associated methods and tools developed for validation and verification.

Keywords: aircraft landing system, aircraft safety, autoland, avionic system, computer vision, image processing

Procedia PDF Downloads 101
21091 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 98
21090 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors

Authors: Duc V. Nguyen

Abstract:

Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest bene t based on their requirements. These are the key requirements of a robust prognostics and health management system.

Keywords: fault detection, FFT, induction motor, predictive maintenance

Procedia PDF Downloads 170
21089 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System

Authors: Mehmet Savsar, Majid Aldaihani

Abstract:

Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.

Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability

Procedia PDF Downloads 516
21088 Suitable Operating Conditions of Hot Water Generators Combined with Central Air Package Units: A Case Study of Tipco Building Group

Authors: Chalermporn Jindapeng

Abstract:

The main objective of the study of the suitable operating conditions of hot water generators combined with central air package units: a case study of Tipco Building Group was to analyze the suitable operating conditions and energy-related costs in each operating condition of hot water generators combined with central air package units which resulted in water-cooled packages. Thermal energy from vapor form refrigerants at high pressures and temperatures was exchanged with thermal energy of the water in the swimming pool that required suitable temperature control for users with the use of plate heat exchangers before refrigerants could enter the condenser in its function to change the status of vapor form refrigerants at high pressures and temperatures to liquid form at high pressures and temperatures. Thus, if this was used to replace heat pumps it could reduce the electrical energy that was used to make hot water and reduce the cost of the electrical energy of air package units including the increased efficacy of air package units. Of the analyses of the suitable operating conditions by means of the study of the elements involved with actual measurements from the system that had been installed at the Tipco Building Group hot water generators were combined with air package units which resulted in water-cooled packages with a cooling capacity of 75 tonnes. Plate heat exchangers were used in the transfer of thermal energy from refrigerants to one set of water with a heat exchanger area of 1.5 m² which was used to increase the temperature of swimming pool water that has a capacity of 240 m³. From experimental results, it was discovered after continuous temperature measurements in the swimming pool every 15 minutes that swimming pool water temperature increased by 0.78 ⁰C 0.75 ⁰C 0.74 ⁰C and 0.71 ⁰C. The rates of flow of hot water through the heat exchangers were equal to 14, 16, 18 and 20 litres per minute respectively where the swimming pool water temperature was at a constant value and when the rate of flow of hot water increased this caused hot water temperatures to decrease and the coefficient of performance of the air package units to increase from 5.9 to 6.3, 6.7, 6.9 and 7.6 while the rates of flow of hot water were equal to 14, 16, 18 and 20 litres per minute, respectively. As for the cooling systems, there were no changes and the system cooling functions were normal as the cooling systems were able to continuously transfer incoming heat for the swimming pool water which resulted in a constant pressure in the cooling system that allowed its cooling functions to work normally.

Keywords: central air package units, heat exchange, hot water generators, swimming pool

Procedia PDF Downloads 258
21087 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach

Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas

Abstract:

Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.

Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)

Procedia PDF Downloads 73
21086 The Optimum Operating Conditions for the Synthesis of Zeolite from Waste Incineration Fly Ash by Alkali Fusion and Hydrothermal Methods

Authors: Yi-Jie Lin, Jyh-Cherng Chen

Abstract:

The fly ash of waste incineration processes is usually hazardous and the disposal or reuse of waste incineration fly ash is difficult. In this study, the waste incineration fly ash was converted to useful zeolites by the alkali fusion and hydrothermal synthesis method. The influence of different operating conditions (the ratio of Si/Al, the ratio of hydrolysis liquid to solid, and hydrothermal time) was investigated to seek the optimum operating conditions for the synthesis of zeolite from waste incineration fly ash. The results showed that concentrations of heavy metals in the leachate of Toxicity Characteristic Leaching Procedure (TCLP) were all lower than the regulatory limits except lead. The optimum operating conditions for the synthesis of zeolite from waste incineration fly ash by the alkali fusion and hydrothermal synthesis method were Si/Al=40, NaOH/ash=1.5, alkali fusion at 400 oC for 40 min, hydrolysis with Liquid to Solid ratio (L/S)= 200 at 105 oC for 24 h, and hydrothermal synthesis at 105 oC for 24 h. The specific surface area of fly ash could be significantly increased from 8.59 m2/g to 651.51 m2/g (synthesized zeolite). The influence of different operating conditions on the synthesis of zeolite from waste incineration fly ash followed the sequence of Si/Al ratio > hydrothermal time > hydrolysis L/S ratio. The synthesized zeolites can be reused as good adsorbents to control the air or wastewater pollutants. The purpose of fly ash detoxification, reduction and waste recycling/reuse is achieved successfully.

Keywords: alkali fusion, hydrothermal, fly ash, zeolite

Procedia PDF Downloads 240
21085 Study of Syntactic Errors for Deep Parsing at Machine Translation

Authors: Yukiko Sasaki Alam, Shahid Alam

Abstract:

Syntactic parsing is vital for semantic treatment by many applications related to natural language processing (NLP), because form and content coincide in many cases. However, it has not yet reached the levels of reliable performance. By manually examining and analyzing individual machine translation output errors that involve syntax as well as semantics, this study attempts to discover what is required for improving syntactic and semantic parsing.

Keywords: syntactic parsing, error analysis, machine translation, deep parsing

Procedia PDF Downloads 560
21084 The Impacts of Cost Stickiness on the Profitability of Indonesian Firms

Authors: Dezie L. Warganegara, Dewi Tamara

Abstract:

The objectives of this study are to investigate the existence of the sticky cost behaviour of firms listed in the Indonesia Stock Exchange (IDX) and to find an evidence on the effects of sticky operating expenses (SG&A expenses) on profitability of firms. For the first objective, this study found that the sticky cost behaviour does exist. For the second objective, this study finds that the stickier the operating expenses the less future profitability of the firms. This study concludes that sticky cost affects negatively to the performance and, therefore, firms should include flexibility in designing the cost structure of their firms.

Keywords: sticky costs, Indonesia Stock Exchange (IDX), profitability, operating expenses, SG&A

Procedia PDF Downloads 317
21083 Empirical Prediction of the Effect of Rain Drops on Dbs System Operating in Ku-Band (Case Study of Abuja)

Authors: Tonga Agadi Danladi, Ajao Wasiu Bamidele, Terdue Dyeko

Abstract:

Recent advancement in microwave communications technologies especially in telecommunications and broadcasting have resulted in congestion on the frequencies below 10GHz. This has forced microwave designers to look for high frequencies. Unfortunately for frequencies greater than 10GHz rain becomes one of the main factors of attenuation in signal strength. At frequencies from 10GHz upwards, rain drop sizes leads to outages that compromises the availability and quality of service this making it a critical factor in satellite link budget design. Rain rate and rain attenuation predictions are vital steps to be considered when designing microwave satellite communication link operating at Ku-band frequencies (112-18GHz). Unreliable rain rates data in the tropical regions of the world like Nigeria from radio communication group of the international Telecommunication Union (ITU-R) makes it difficult for microwave engineers to determine a realistic rain margin that needs to be accommodated in satellite link budget design in such region. This work presents an empirical tool for predicting the amount of signal due to rain on DBS signal operating at the Ku-band.

Keywords: attenuation, Ku-Band, microwave communication, rain rates

Procedia PDF Downloads 485
21082 Increasing Efficiency of Own Used Fuel Gas by “LOTION” Method in Generating Systems PT. Pertamina EP Cepu Donggi Matindok Field in Central Sulawesi Province, Indonesia

Authors: Ridwan Kiay Demak, Firmansyahrullah, Muchammad Sibro Mulis, Eko Tri Wasisto, Nixon Poltak Frederic, Agung Putu Andika, Lapo Ajis Kamamu, Muhammad Sobirin, Kornelius Eppang

Abstract:

PC Prove LSM successfully improved the efficiency of Own Used Fuel Gas with the "Lotion" method in the PT Pertamina EP Cepu Donggi Matindok Generating System. The innovation of using the "LOTION" (LOAD PRIORITY SELECTION) method in the generating system is modeling that can provide a priority qualification of main and non-main equipment to keep gas processing running even though it leaves 1 GTG operating. GTG operating system has been integrated, controlled, and monitored properly through PC programs and web-based access to answer Industry 4.0 problems. The results of these improvements have succeeded in making Donggi Matindok Field Production reach 98.77 MMSCFD and become a proper EMAS candidate in 2022-2023. Additional revenue from increasing the efficiency of the use of own used gas amounting to USD USD 5.06 Million per year and reducing operational costs from maintenance efficiency (ABO) due to saving running hours GTG amounted to USD 3.26 Million per year. Continuity of fuel gas availability for the GTG generation system can maintain the operational reliability of the plant, which is 3.833333 MMSCFD. And reduced gas emissions wasted to the environment by 33,810 tons of C02 eq per year.

Keywords: LOTION method, load priority selection, fuel gas efficiency, gas turbine generator, reduce emissions

Procedia PDF Downloads 60
21081 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms

Authors: Senol Dogan, Gunay Karli

Abstract:

Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.

Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model

Procedia PDF Downloads 210
21080 Queueing Modeling of M/G/1 Fault Tolerant System with Threshold Recovery and Imperfect Coverage

Authors: Madhu Jain, Rakesh Kumar Meena

Abstract:

This paper investigates a finite M/G/1 fault tolerant multi-component machining system. The system incorporates the features such as standby support, threshold recovery and imperfect coverage make the study closer to real time systems. The performance prediction of M/G/1 fault tolerant system is carried out using recursive approach by treating remaining service time as a supplementary variable. The numerical results are presented to illustrate the computational tractability of analytical results by taking three different service time distributions viz. exponential, 3-stage Erlang and deterministic. Moreover, the cost function is constructed to determine the optimal choice of system descriptors to upgrading the system.

Keywords: fault tolerant, machine repair, threshold recovery policy, imperfect coverage, supplementary variable technique

Procedia PDF Downloads 292
21079 Design, Analysis and Construction of a 250vac 8amps Arc Welding Machine

Authors: Anthony Okechukwu Ifediniru, Austin Ikechukwu Gbasouzor, Isidore Uche Uju

Abstract:

This article is centered on the design, analysis, construction, and test of a locally made arc welding machine that operates on 250vac with 8 amp output taps ranging from 60vac to 250vac at a fixed frequency, which is of benefit to urban areas; while considering its cost-effectiveness, strength, portability, and mobility. The welding machine uses a power supply to create an electric arc between an electrode and the metal at the welding point. A current selector coil needed for current selection is connected to the primary winding. Electric power is supplied to the primary winding of its transformer and is transferred to the secondary winding by induction. The voltage and current output of the secondary winding are connected to the output terminal, which is used to carry out welding work. The output current of the machine ranges from 110amps for low current welding to 250amps for high current welding. The machine uses a step-down transformer configuration for stepping down the voltage in order to obtain a high current level for effective welding. The welder can adjust the output current within a certain range. This allows the welder to properly set the output current for the type of welding that is being performed. The constructed arc welding machine was tested by connecting the work piece to it. Since there was no shock or spark from the transformer’s laminated core and was successfully used to join metals, it confirmed and validated the design.

Keywords: AC current, arc welding machine, DC current, transformer, welds

Procedia PDF Downloads 181
21078 A Low-Cost Vision-Based Unmanned Aerial System for Extremely Low-Light GPS-Denied Navigation and Thermal Imaging

Authors: Chang Liu, John Nash, Stephen D. Prior

Abstract:

This paper presents the design and implementation details of a complete unmanned aerial system (UAS) based on commercial-off-the-shelf (COTS) components, focusing on safety, security, search and rescue scenarios in GPS-denied environments. In particular, the aerial platform is capable of semi-autonomously navigating through extremely low-light, GPS-denied indoor environments based on onboard sensors only, including a downward-facing optical flow camera. Besides, an additional low-cost payload camera system is developed to stream both infrared video and visible light video to a ground station in real-time, for the purpose of detecting sign of life and hidden humans. The total cost of the complete system is estimated to be $1150, and the effectiveness of the system has been tested and validated in practical scenarios.

Keywords: unmanned aerial system, commercial-off-the-shelf, extremely low-light, GPS-denied, optical flow, infrared video

Procedia PDF Downloads 327
21077 Comparisons of Individual and Group Replacement Policies for a Series Connection System with Two Machines

Authors: Wen Liang Chang, Mei Wei Wang, Ruey Huei Yeh

Abstract:

This paper studies the comparisons of individual and group replacement policies for a series connection system with two machines. Suppose that manufacturer’s production system is a series connection system which is combined by two machines. For two machines, when machines fail within the operating time, minimal repair is performed for machines by the manufacturer. The manufacturer plans to a preventive replacement for machines at a pre-specified time to maintain system normal operation. Under these maintenance policies, the maintenance cost rate models of individual and group replacement for a series connection system with two machines is derived and further, optimal preventive replacement time is obtained such that the expected total maintenance cost rate is minimized. Finally, some numerical examples are given to illustrate the influences of individual and group replacement policies to the maintenance cost rate.

Keywords: individual replacement, group replacement, replacement time, two machines, series connection system

Procedia PDF Downloads 488
21076 Modeling Aerosol Formation in an Electrically Heated Tobacco Product

Authors: Markus Nordlund, Arkadiusz K. Kuczaj

Abstract:

Philip Morris International (PMI) is developing a range of novel tobacco products with the potential to reduce individual risk and population harm in comparison to smoking cigarettes. One of these products is the Tobacco Heating System 2.2 (THS 2.2), (named as the Electrically Heated Tobacco System (EHTS) in this paper), already commercialized in a number of countries (e.g., Japan, Italy, Switzerland, Russia, Portugal and Romania). During use, the patented EHTS heats a specifically designed tobacco product (Electrically Heated Tobacco Product (EHTP)) when inserted into a Holder (heating device). The EHTP contains tobacco material in the form of a porous plug that undergoes a controlled heating process to release chemical compounds into vapors, from which an aerosol is formed during cooling. The aim of this work was to investigate the aerosol formation characteristics for realistic operating conditions of the EHTS as well as for relevant gas mixture compositions measured in the EHTP aerosol consisting mostly of water, glycerol and nicotine, but also other compounds at much lower concentrations. The nucleation process taking place in the EHTP during use when operated in the Holder has therefore been modeled numerically using an extended Classical Nucleation Theory (CNT) for multicomponent gas mixtures. Results from the performed simulations demonstrate that aerosol droplets are formed only in the presence of an aerosol former being mainly glycerol. Minor compounds in the gas mixture were not able to reach a supersaturated state alone and therefore could not generate aerosol droplets from the multicomponent gas mixture at the operating conditions simulated. For the analytically characterized aerosol composition and estimated operating conditions of the EHTS and EHTP, glycerol was shown to be the main aerosol former triggering the nucleation process in the EHTP. This implies that according to the CNT, an aerosol former, such as glycerol needs to be present in the gas mixture for an aerosol to form under the tested operating conditions. To assess if these conclusions are sensitive to the initial amount of the minor compounds and to include and represent the total mass of the aerosol collected during the analytical aerosol characterization, simulations were carried out with initial masses of the minor compounds increased by as much as a factor of 500. Despite this extreme condition, no aerosol droplets were generated when glycerol, nicotine and water were treated as inert species and therefore not actively contributing to the nucleation process. This implies that according to the CNT, an aerosol cannot be generated without the help of an aerosol former, from the multicomponent gas mixtures at the compositions and operating conditions estimated for the EHTP, even if all minor compounds are released or generated in a single puff.

Keywords: aerosol, classical nucleation theory (CNT), electrically heated tobacco product (EHTP), electrically heated tobacco system (EHTS), modeling, multicomponent, nucleation

Procedia PDF Downloads 278
21075 Mathematical Modelling and Performance Investigating of Salt Gradient Solar Pond

Authors: Umesh Kumar Sinha, Monika

Abstract:

The author has tried to increase the efficiency of the storage zone of a salt gradient solar pond, storing heat and delivering it to different uses by extracting heat from the storage zone of an SGSP. A mathematical analysis has demonstrated that the heat extraction from the storage zone might potentially produce heat at a reasonably high temperature of up to 115 degrees centigrade, which increases the efficiency of the salt gradient solar pond when compared to a corrugated bottom solar pond to a conventional salt gradient solar pond. The C++ program was implemented to get the simulation results. The system and operating characteristics of the salt gradient solar pond, such as the depth of the pond, heat extraction rate, heat capacity rate, and area enhancement factor (β), have been found to have a variety of effects on efficiency and temperature distribution. It has been reported that system and operating factors affect the temperature distribution in the solar pond.

Keywords: solar pond, heat extraction rate, simulation results using C++, area enhancement factor (β), surface convective zone, gradient zone, storage zone

Procedia PDF Downloads 2
21074 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: Dua Hişam, Serhat İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.

Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting

Procedia PDF Downloads 69
21073 Improving Machine Learning Translation of Hausa Using Named Entity Recognition

Authors: Aishatu Ibrahim Birma, Aminu Tukur, Abdulkarim Abbass Gora

Abstract:

Machine translation plays a vital role in the Field of Natural Language Processing (NLP), breaking down language barriers and enabling communication across diverse communities. In the context of Hausa, a widely spoken language in West Africa, mainly in Nigeria, effective translation systems are essential for enabling seamless communication and promoting cultural exchange. However, due to the unique linguistic characteristics of Hausa, accurate translation remains a challenging task. The research proposes an approach to improving the machine learning translation of Hausa by integrating Named Entity Recognition (NER) techniques. Named entities, such as person names, locations, organizations, and dates, are critical components of a language's structure and meaning. Incorporating NER into the translation process can enhance the quality and accuracy of translations by preserving the integrity of named entities and also maintaining consistency in translating entities (e.g., proper names), and addressing the cultural references specific to Hausa. The NER will be incorporated into Neural Machine Translation (NMT) for the Hausa to English Translation.

Keywords: machine translation, natural language processing (NLP), named entity recognition (NER), neural machine translation (NMT)

Procedia PDF Downloads 44
21072 Improvement of GVPI Insulation System Characteristics by Curing Process Modification

Authors: M. Shadmand

Abstract:

The curing process of insulation system for electrical machines plays a determinative role for its durability and reliability. Polar structure of insulating resin molecules and used filler of insulation system can be taken as an occasion to leverage it to enhance overall characteristics of insulation system, mechanically and electrically. The curing process regime for insulating system plays an important role for its mechanical and electrical characteristics by arranging the polymerization of chain structure for resin. In this research, the effect of electrical field application on in-curing insulating system for Global Vacuum Pressurized Impregnation (GVPI) system for traction motor was considered by performing the dissipation factor, polarization and de-polarization current (PDC) and voltage endurance (aging) measurements on sample test objects. Outcome results depicted obvious improvement in mechanical strength of the insulation system as well as higher electrical characteristics with routing and long-time (aging) electrical tests. Coming together, polarization of insulation system during curing process would enhance the machine life time. 

Keywords: insulation system, GVPI, PDC, aging

Procedia PDF Downloads 268
21071 A Review of Intelligent Fire Management Systems to Reduce Wildfires

Authors: Nomfundo Ngombane, Topside E. Mathonsi

Abstract:

Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented.

Keywords: moderate resolution imaging spectroradiometer, advanced fire information system, machine learning algorithm, detection of wildfires

Procedia PDF Downloads 78