Search results for: copolymers material
6218 Earthquake Resistant Sustainable Steel Green Building
Authors: Arup Saha Chaudhuri
Abstract:
Structural steel is a very ductile material with high strength carrying capacity, thus it is very useful to make earthquake resistant buildings. It is a homogeneous material also. The member section and the structural system can be made very efficient for economical design. As the steel is recyclable and reused, it is a green material. The embodied energy for the efficiently designed steel structure is less than the RC structure. For sustainable green building steel is the best material nowadays. Moreover, pre-engineered and pre-fabricated faster construction methodologies help the development work to complete within the stipulated time. In this paper, the usefulness of Eccentric Bracing Frame (EBF) in steel structure over Moment Resisting Frame (MRF) and Concentric Bracing Frame (CBF) is shown. Stability of the steel structures against horizontal forces especially in seismic condition is efficiently possible by Eccentric bracing systems with economic connection details. The EBF is pin–ended, but the beam-column joints are designed for pin ended or for full connectivity. The EBF has several desirable features for seismic resistance. In comparison with CBF system, EBF system can be designed for appropriate stiffness and drift control. The link beam is supposed to yield in shear or flexure before initiation of yielding or buckling of the bracing member in tension or compression. The behavior of a 2-D steel frame is observed under seismic loading condition in the present paper. Ductility and brittleness of the frames are compared with respect to time period of vibration and dynamic base shear. It is observed that the EBF system is better than MRF system comparing the time period of vibration and base shear participation.Keywords: steel building, green and sustainable, earthquake resistant, EBF system
Procedia PDF Downloads 3496217 Polymersomes in Drug Delivery: A Comparative Review with Liposomes and Micelles
Authors: Salma E. Ahmed
Abstract:
Since the mid 50’s, enormous attention has been paid towards nanocarriers and their applications in drug and gene delivery. Among these vesicles, liposomes and micelles have been heavily investigated due to their many advantages over other types. Liposomes, for instance, are mostly distinguished by their ability to encapsulate hydrophobic, hydrophilic and amphiphilic drugs. Micelles, on the other hand, are self-assembled shells of lipids, amphiphilic or oppositely charged block copolymers that, once exposed to aqueous media, can entrap hydrophobic agents, and possess prolonged circulation in the bloodstream. Both carriers are considered compatible and biodegradable. Nevertheless, they have limited stabilities, chemical versatilities, and drug encapsulation efficiencies. In order to overcome these downsides, strategies for optimizing a novel drug delivery system that has the architecture of liposomes and polymeric characteristics of micelles have been evolved. Polymersomes are vehicles with fluidic cores and hydrophobic shells that are protected and isolated from the aqueous media by the hydrated hydrophilic brushes which give the carrier its distinctive polymeric bilayer shape. Similar to liposomes, this merit enables the carrier to encapsulate a wide range of agents, despite their affinities and solubilities in water. Adding to this, the high molecular weight of the amphiphiles that build the body of the polymersomes increases their colloidal and chemical stabilities and reduces the permeability of the polymeric membranes, which makes the vesicles more protective to the encapsulated drug. These carriers can also be modified in ways that make them responsive when targeted or triggered, by manipulating their composition and attaching moieties and conjugates to the body of the carriers. These appealing characteristics, in addition to the ease of synthesis, gave the polymersomes greater potentials in the area of drug delivery. Thus, their design and characterization, in comparison with liposomes and micelles, are briefly reviewed in this work.Keywords: controlled release, liposomes, micelles, polymersomes, targeting
Procedia PDF Downloads 1956216 Ultra-Sensitive and Real Time Detection of ZnO NW Using QCM
Authors: Juneseok You, Kuewhan Jang, Chanho Park, Jaeyeong Choi, Hyunjun Park, Sehyun Shin, Changsoo Han, Sungsoo Na
Abstract:
Nanomaterials occur toxic effects to human being or ecological systems. Some sensors have been developed to detect toxic materials and the standard for toxic materials has been established. Zinc oxide nanowire (ZnO NW) is known for toxic material. By ionizing in cell body, ionized Zn ions are overexposed to cell components, which cause critical damage or death. In this paper, we detected ZnO NW in water using QCM (Quartz Crystal Microbalance) and ssDNA (single strand DNA). We achieved 30 minutes of response time for real time detection and 100 pg/mL of limit of detection (LOD).Keywords: zinc oxide nanowire, QCM, ssDNA, toxic material, biosensor
Procedia PDF Downloads 4286215 Simulation of GAG-Analogue Biomimetics for Intervertebral Disc Repair
Authors: Dafna Knani, Sarit S. Sivan
Abstract:
Aggrecan, one of the main components of the intervertebral disc (IVD), belongs to the family of proteoglycans (PGs) that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein. Its primary function is to maintain tissue hydration and hence disc height under the high loads imposed by muscle activity and body weight. Significant PG loss is one of the first indications of disc degeneration. A possible solution to recover disc functions is by injecting a synthetic hydrogel into the joint cavity, hence mimicking the role of PGs. One of the hydrogels proposed is GAG-analogues, based on sulfate-containing polymers, which are responsible for hydration in disc tissue. In the present work, we used molecular dynamics (MD) to study the effect of the hydrogel crosslinking (type and degree) on the swelling behavior of the suggested GAG-analogue biomimetics by calculation of cohesive energy density (CED), solubility parameter, enthalpy of mixing (ΔEmix) and the interactions between the molecules at the pure form and as a mixture with water. The simulation results showed that hydrophobicity plays an important role in the swelling of the hydrogel, as indicated by the linear correlation observed between solubility parameter values of the copolymers and crosslinker weight ratio (w/w); this correlation was found useful in predicting the amount of PEGDA needed for the desirable hydration behavior of (CS)₄-peptide. Enthalpy of mixing calculations showed that all the GAG analogs, (CS)₄ and (CS)₄-peptide are water-soluble; radial distribution function analysis revealed that they form interactions with water molecules, which is important for the hydration process. To conclude, our simulation results, beyond supporting the experimental data, can be used as a useful predictive tool in the future development of biomaterials, such as disc replacement.Keywords: molecular dynamics, proteoglycans, enthalpy of mixing, swelling
Procedia PDF Downloads 756214 Fabricating an Infrared-Radar Compatible Stealth Surface with Frequency Selective Surface and Structured Radar-Absorbing Material
Authors: Qingtao Yu, Guojia Ma
Abstract:
Approaches to microwave absorption and low infrared emissivity are often conflicting, as the low-emissivity layer, usually consisting of metals, increases the reflection of microwaves, especially in high frequency. In this study, an infrared-radar compatible stealth surface was fabricated by first depositing a layer of low-emissivity metal film on the surface of a layer of radar-absorbing material. Then, ultrafast laser was used to generate patterns on the metal film, forming a frequency selective surface. With proper pattern design, while the majority of the frequency selective surface is covered by the metal film, it has relatively little influence on the reflection of microwaves between 2 to 18 GHz. At last, structures on the radar-absorbing layer were fabricated by ultra-fast laser to further improve the absorbing bandwidth of the microwave. This study demonstrates that the compatibility between microwave absorption and low infrared emissivity can be achieved by properly designing patterns and structures on the metal film and the radar-absorbing layer accordingly.Keywords: frequency selective surface, infrared-radar compatible, low infrared emissivity, radar-absorbing material, patterns, structures
Procedia PDF Downloads 1296213 Thermal Instability in Solid under Irradiation
Authors: P. Selyshchev
Abstract:
Construction materials for nuclear facilities are operated under extreme thermal and radiation conditions. First of all, they are nuclear fuel, fuel assemblies, and reactor vessel. It places high demands on the control of their state, stability of their state, and their operating conditions. An irradiated material is a typical example of an open non-equilibrium system with nonlinear feedbacks between its elements. Fluxes of energy, matter and entropy maintain states which are far away from thermal equilibrium. The links that arise under irradiation are inherently nonlinear. They form the mechanisms of feed-backs that can lead to instability. Due to this instability the temperature of the sample, heat transfer, and the defect density can exceed the steady-state value in several times. This can lead to change of typical operation and an accident. Therefore, it is necessary to take into account the thermal instability to avoid the emergency situation. The point is that non-thermal energy can be accumulated in materials because irradiation produces defects (first of all these are vacancies and interstitial atoms), which are metastable. The stored energy is about energy of defect formation. Thus, an annealing of the defects is accompanied by releasing of non-thermal stored energy into thermal one. Temperature of the material grows. Increase of temperature results in acceleration of defect annealing. Density of the defects drops and temperature grows more and more quickly. The positive feed-back is formed and self-reinforcing annealing of radiation defects develops. To describe these phenomena a theoretical approach to thermal instability is developed via formalism of complex systems. We consider system of nonlinear differential equations for different components of microstructure and temperature. The qualitative analysis of this non-linear dynamical system is carried out. Conditions for development of instability have been obtained. Points of bifurcation have been found. Convenient way to represent obtained results is a set of phase portraits. It has been shown that different regimes of material state under irradiation can develop. Thus degradation of irradiated material can be limited by means of choice appropriate kind of evolution of materials under irradiation.Keywords: irradiation, material, non-equilibrium state, nonlinear feed-back, thermal instability
Procedia PDF Downloads 2686212 Effect of Glass Powder and GGBS on Strength of Fly Ash Based Geopolymer Concrete
Authors: I. Ramesha Mithanthaya, N. Bhavanishankar Rao
Abstract:
In this study, the effect of glass powder (GP) and ground granulated blast furnace slag (GGBS) on the compressive strength of Fly ash based geopolymer concrete has been investigated. The mass ratio of fine aggregate (fA) to coarse aggregate (CA) was maintained constant. NAOH flakes dissolved in water was used as activating liquid and mixed with fly ash (FA) to produce geopolymer paste or cementing material. This paste was added to mixture of CA and fA to obtain geopolymer concrete. Cube samples were prepared from this concrete. The ranges of investigation parameters include GP/FA from 0% to 20%, and GGBS/ FA from 0% to 20% with constant amount of GP. All the samples were air cured inside laboratory under room temperature. Compressive strength of cube samples after 7 days and 28 days curing were determined. The test results are presented and discussed. Based on the results of limited tests a suitable composition of FA, GP and GGBS for constant quantity of CA and fA has been obtained to produce geopolymer concrete of M32. It is found that geopolymer concrete is 14% cheaper than concrete of same strength using OPC. The strength gain in the case of geo-polymer concrete is rather slow compared to that of Portland cement concrete. Tensile strength of this concrete was also determined by conducting flexure test on beam prepared using this concrete. During curing, up to 7days, greyish-white powder used to come out from all the surfaces of sample and it was found to be a mixture of Carbonates and Sulphides of Na, Mg and Fe. Detailed investigation is necessary to arrive at an optimum mixture composition for producing Geo-polymer concrete of required strength. Effect of greyish-white powder on the strength and durability of the concrete is to be studied.Keywords: geopolymer, industrial waste, green material, cost effective material, eco-friendly material
Procedia PDF Downloads 5456211 Study of Multimodal Resources in Interactions Involving Children with Autistic Spectrum Disorders
Authors: Fernanda Miranda da Cruz
Abstract:
This paper aims to systematize, descriptively and analytically, the relations between language, body and material world explored in a specific empirical context: everyday co-presence interactions between children diagnosed with Autistic Spectrum Disease ASD and various interlocutors. We will work based on 20 hours of an audiovisual corpus in Brazilian Portuguese language. This analysis focuses on 1) the analysis of daily interactions that have the presence/participation of subjects with a diagnosis of ASD based on an embodied interaction perspective; 2) the study of the status and role of gestures, body and material world in the construction and constitution of human interaction and its relation with linguistic-cognitive processes and Autistic Spectrum Disorders; 3) to highlight questions related to the field of videoanalysis, such as: procedures for recording interactions in complex environments (involving many participants, use of objects and body movement); the construction of audiovisual corpora for linguistic-interaction research; the invitation to a visual analytical mentality of human social interactions involving not only the verbal aspects that constitute it, but also the physical space, the body and the material world.Keywords: autism spectrum disease, multimodality, social interaction, non-verbal interactions
Procedia PDF Downloads 1146210 Evaluation of Vine Stem Waste as a Filler Material for High Density Polyethylene
Authors: Y. Seki, A. Ç. Kılıç, M. Atagür, O. Özdemir, İ. Şen, K. Sever, Ö. Seydibeyoğlu, M. Sarikanat, N. Küçükdoğan
Abstract:
Cheap and abundant waste materials have been investigated as filler materials in thermoplastic polymers instead of wood- based materials because of deforestation. Vine stem, as an agricultural waste, was used as a filler material for a thermoplastic polymer, high-density polyethylene (HDPE) in this study. Agricultural waste of vine stem was collected from Manisa region, Turkey. Vine stem at different rations was used to reinforce HDPE. The effect of vine stem loading on tensile strength and Young’s modulus of composites were obtained. It was clearly observed that tensile strength and Young’s modulus of HDPE was increased by vine stem loading. Thermal stabilities of composites were obtained by using thermogravimetric analysis. Water absorption behavior of HDPE was improved by loading vine stem into HDPE. The crystallinity index values of neat HDPE and vine stem loaded HDPE composites were investigated byX-ray diffraction analysis. From this study, it was inferred that vine stem, as an agricultural waste, can be used as a filler material for HDPE.Keywords: waste filler, high density polyethylene, composite, composite materials
Procedia PDF Downloads 5176209 Experimental Investigation on the Fire Performance of Corrugated Sandwich Panels made from Renewable Material
Authors: Avishek Chanda, Nam Kyeun Kim, Debes Bhattacharyya
Abstract:
The use of renewable substitutes in various semi-structural and structural applications has experienced an increase since the last few decades. Sandwich panels have been used for many decades, although research on understanding the effects of the core structures on the panels’ fire-reaction properties is limited. The current work investigates the fire-performance of a corrugated sandwich panel made from renewable, biodegradable, and sustainable material, plywood. The bench-scale fire testing apparatus, cone-calorimeter, was employed to evaluate the required fire-reaction properties of the sandwich core in a panel configuration, with three corrugated layers glued together with face-sheets under a heat irradiance of 50 kW/m2. The study helped in documenting a unique heat release trend associated with the fire performance of the 3-layered corrugated sandwich panels and in understanding the structural stability of the samples in the event of a fire. Furthermore, the total peak heat release rate was observed to be around 421 kW/m2, which is significantly low compared to many polymeric materials in the literature. The total smoke production was also perceived to be very limited compared to other structural materials, and the total heat release was also nominal. The time to ignition of 21.7 s further outlined the advantages of using the plywood component since polymeric composites, even with flame-retardant additives, tend to ignite faster. Overall, the corrugated plywood sandwich panels had significant fire-reaction properties and could have important structural applications. The possible use of structural panels made from bio-degradable material opens a new avenue for the use of similar structures in sandwich panel preparation.Keywords: corrugated sandwich panel, fire-reaction properties, plywood, renewable material
Procedia PDF Downloads 1566208 Application of Adaptive Architecture in Building Technologies: A Case Study of Neuhoff Site in Nashville, Tennessee
Authors: Shohreh Moshiri, Hossein Alimohammadi
Abstract:
Building construction has a great impact on climate change. Adaptive design strategies were developed to provide new life and purpose to old buildings and create new environments with economic benefits to meet resident needs. The role of smart material systems is undeniable in providing adaptivity of the architectural environments and their effects on creating better adaptive building environments. In this research, a case study named Neuhoff site located near Cumberland River in the Germantown neighborhood in the city of Nashville, Tennessee, was considered. This building in the early 1920s was constructed as a meat-packing facility and then served as a mixed-use space; however, New City has partnered with world-class architects to reinvent this site to be changed to mixed-use waterfront development. The future office space will be designed with LEED certification as a goal. Environmentally friendly sensitive materials and designs will offer for all adaptive reuse of the building. The smart materials and their applications, especially in the field of building technology and architecture, were emphasized in providing a renovation plan for the site. The advantages and qualities of smart material systems were targeted to explore in this research on the field of architecture. Also, this research helps to understand better the effects of smart material systems on the construction and design processes, exploration of the way to make architecture with better adaptive characteristics, plus provide optimal environmental situations for the users, which reflect on the climatic, structural, and architectural performances.Keywords: adaptive architecture, building technology, case study, smart material systems
Procedia PDF Downloads 736207 Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties
Authors: Yoshio Kurosawa, Takao Yamaguchi
Abstract:
High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy for designers. In this report, the outline of this tool and an analysis example applied to floor mat are introduced.Keywords: automobile, acoustics, porous material, transfer matrix method
Procedia PDF Downloads 5096206 Study on The Model of Microscopic Contact Parameters for Grinding M300 Using Elastic Abrasive Tool
Authors: Wu Xiaojun, Liu Ruiping, Yu Xingzhan, Wu Qian
Abstract:
In precision grinding, utilizing the elastic matrix ball has higher processing efficiency and better superficial quality than traditional grinding. The diversity of characteristics which elastic abrasive tool contact with bend surface results in irregular wear abrasion,and abrasive tool machining status get complicated. There is no theoretical interpretation that parameters affect the grinding accuracy.Aiming at corrosion resistance, wear resistance and other characteristics of M 300 material, it is often used as a material on aerospace precision components. The paper carried out grinding and polishing experiments by using material of M 300,to theoretically show the relationship between stress magnitude and grinding efficiency,and predict the optimal combination of grinding parameter for effective grinding, just for the high abrasion resistance features of M 300, analyzing the micro-contact of elastic ball abrasive tool (Whetstone), using mathematical methods deduce the functional relationship between residual peak removal rate and the main parameters which impact the grinding accuracy on the plane case.Thus laying the foundation for the study of elastic abrasive prediction and compensation.Keywords: flexible abrasive tool, polishing parameters, Hertz theory, removal rate
Procedia PDF Downloads 5456205 A Failure Investigations of High-Temperature Hydrogen Attack at Plat Forming Unit Furnace Elbow
Authors: Altoumi Alndalusi
Abstract:
High-temperature hydrogen attack (HTHA) failure is the common phenomena at elevated temperature in hydrogen environment in oil and gas field. The failure occurred once after four years at the internal surface of Platforming elbow. Both visual and microscopic examinations revealed that the failure was initiated due to blistering forming followed by large cracking at the inner surface. Crack morphology showed that the crack depth was about 50% of material wall thickness and its behavior generally was intergranular. This study concluded that the main reason led to failure due to incorrect material selection comparing to the platforming conditions.Keywords: decarburization, failure, heat affected zone, morphology, partial pressure, plate form
Procedia PDF Downloads 1566204 New Insulation Material for Solar Thermal Collectors
Authors: Nabila Ihaddadene, Razika Ihaddadene, Abdelwahaab Betka
Abstract:
1973 energy crisis (rising oil prices) pushed the world to consider other alternative energy resources to existing conventional energies consisting predominantly of hydrocarbons. Renewable energies such as solar, the wind and geothermal have received renewed interest, especially to preserve nature ( the low-temperature rise of global environmental problems). Solar energy as an available, cheap and environmental friendly alternative source has various applications such as heating, cooling, drying, power generation, etc. In short, there is no life on earth without this enormous nuclear reactor, called the sun. Among available solar collector designs, flat plate collector (FPC) is low-temperature applications (heating water, space heating, etc.) due to its simple design and ease of manufacturing. Flat plate collectors are permanently fixed in position and do not track the sun (non-concentrating collectors). They operate by converting solar radiation into heat and transferring that heat to a working fluid (usually air, water, water plus antifreeze additive) flowing through them. An FPC generally consists of the main following components: glazing, absorber plate of high absorptivity, fluid tubes welded to or can be an integral part of the absorber plate, insulation and container or casing of the above-mentioned components. Insulation is of prime importance in thermal applications. There are three main families of insulation: mineral insulation; vegetal insulation and synthetic organic insulation. The old houses of the inhabitants of North Africa were built of brick made of composite material that is clay and straw. These homes are characterized by their thermal comfort; i.e. the air inside these houses is cool in summer and warm in winter. So, the material composed from clay and straw act as a thermal insulation. In this research document, the polystyrene used as insulation in the ET200 flat plate solar collector is replaced by the cheapest natural material which is clay and straw. Trials were carried out on a solar energy demonstration system (ET 200). This system contains a solar collector, water storage tank, a high power lamp simulating solar energy and a control and command cabinet. In the experimental device, the polystyrene is placed under the absorber plate and in the edges of the casing containing the components of the solar collector. In this work, we have replaced the polystyrene of the edges by the composite material. The use of the clay and straw as insulation instead of the polystyrene increases temperature difference (T2-T1) between the inlet and the outlet of the absorber by 0.9°C; thus increases the useful power transmitted to water in the solar collector. Tank Water is well heated when using the clay and straw as insulation. However, it is less heated when using the polystyrene as insulation. Clay and straw material improves also the performance of the solar collector by 5.77%. Thus, it is recommended to use this cheapest non-polluting material instead of synthetic insulation to improve the performance of the solar collector.Keywords: clay, insulation material, polystyrene, solar collector, straw
Procedia PDF Downloads 4616203 Characterization of the Viscoelastic Behavior of Polymeric Composites
Authors: Abir Abdessalem, Sahbi Tamboura, J. Fitoussi, Hachmi Ben Daly, Abbas Tcharkhtchi
Abstract:
Dynamic mechanical analysis (DMA) is one of the most used experimental techniques to investigate the temperature and frequency dependence of the mechanical behavior of viscoelastic materials. The measured data are generally shifted by the application of the principle of the time– temperature superposition (TTS) to obtain the viscoelastic system’s master curve. The aim of this work is to show the methodology to define the horizontal shift factor to be applied to the storage modulus measured in order to indicate the validity of (TTS) principle for this material system. This principle was successfully used to determine the long-term properties of the Sheet Moulding Compound (SMC) composites.Keywords: composite material, dynamic mechanical analysis, SMC composites, viscoelastic behavior, modeling
Procedia PDF Downloads 2336202 Investigation of Elastic Properties of 3D Full Five Directional (f5d) Braided Composite Materials
Authors: Apeng Dong, Shu Li, Wenguo Zhu, Ming Qi, Qiuyi Xu
Abstract:
The primary objective of this paper is to focus on the elasticity properties of three-dimensional full five directional (3Df5d) braided composite. A large body of research has been focused on the 3D four directional (4d) and 3D five directional (5d) structure but not much research on the 3Df5d material. Generally, the influence of the yarn shape on mechanical properties of braided materials tends to be ignored, which makes results too ideal. Besides, with the improvement of the computational ability, people are accustomed to using computers to predict the material parameters, which fails to give an explicit and concise result facilitating production and application. Based on the traditional mechanics, this paper firstly deduced the functional relation between elasticity properties and braiding parameters. In addition, considering the actual shape of yarns after consolidation, the longitudinal modulus is modified and defined practically. Firstly, the analytic model is established based on the certain assumptions for the sake of clarity, this paper assumes that: A: the cross section of axial yarns is square; B: The cross section of braiding yarns is hexagonal; C: the characters of braiding yarns and axial yarns are the same; D: The angle between the structure boundary and the projection of braiding yarns in transverse plane is 45°; E: The filling factor ε of composite yarns is π/4; F: The deformation of unit cell is under constant strain condition. Then, the functional relation between material constants and braiding parameters is systematically deduced aimed at the yarn deformation mode. Finally, considering the actual shape of axial yarns after consolidation, the concept of technology factor is proposed and the longitudinal modulus of the material is modified based on the energy theory. In this paper, the analytic solution of material parameters is given for the first time, which provides a good reference for further research and application for 3Df5d materials. Although the analysis model is established based on certain assumptions, the analysis method is also applicable for other braided structures. Meanwhile, it is crucial that the cross section shape and straightness of axial yarns play dominant roles in the longitudinal elastic property. So in the braiding and solidifying process, the stability of the axial yarns should be guaranteed to increase the technology factor to reduce the dispersion of material parameters. Overall, the elastic properties of this materials are closely related to the braiding parameters and can be strongly designable, and although the longitudinal modulus of the material is greatly influenced by the technology factors, it can be defined to certain extent.Keywords: analytic solution, braided composites, elasticity properties, technology factor
Procedia PDF Downloads 2376201 Comparison Study on Characterization of Various Fly Ashes for Heavy Metal Adsorption
Authors: E. Moroydor Derun, N. Tugrul, N. Baran Acarali, A. S. Kipcak, S. Piskin
Abstract:
Fly ash is a waste material of coal firing thermal plants that is released from thermal power plants. It was defined as very fine particles that are drifted upward which are taken up by the flue gases. The emerging amount of fly ash in the world is approximately 600 million tons per year. In our country, it is expected that will be occurred 50 million tons of waste ash per year until 2020. The fly ashes can be evaluated by using as adsorbent material. The purpose of this study is to investigate the possibility of use of various fly ashes (Tuncbilek, Catalagzi, Orhaneli) like low-cost adsorbents for heavy metal adsorption. First of all, fly ashes were characterized. For this purpose; analyses such as XRD, XRF, SEM and FT-IR were performed.Keywords: adsorbent, fly ash, heavy metal, waste
Procedia PDF Downloads 2596200 Case-Based Reasoning for Modelling Random Variables in the Reliability Assessment of Existing Structures
Authors: Francesca Marsili
Abstract:
The reliability assessment of existing structures with probabilistic methods is becoming an increasingly important and frequent engineering task. However probabilistic reliability methods are based on an exhaustive knowledge of the stochastic modeling of the variables involved in the assessment; at the moment standards for the modeling of variables are absent, representing an obstacle to the dissemination of probabilistic methods. The framework according to probability distribution functions (PDFs) are established is represented by the Bayesian statistics, which uses Bayes Theorem: a prior PDF for the considered parameter is established based on information derived from the design stage and qualitative judgments based on the engineer past experience; then, the prior model is updated with the results of investigation carried out on the considered structure, such as material testing, determination of action and structural properties. The application of Bayesian statistics arises two different kind of problems: 1. The results of the updating depend on the engineer previous experience; 2. The updating of the prior PDF can be performed only if the structure has been tested, and quantitative data that can be statistically manipulated have been collected; performing tests is always an expensive and time consuming operation; furthermore, if the considered structure is an ancient building, destructive tests could compromise its cultural value and therefore should be avoided. In order to solve those problems, an interesting research path is represented by investigating Artificial Intelligence (AI) techniques that can be useful for the automation of the modeling of variables and for the updating of material parameters without performing destructive tests. Among the others, one that raises particular attention in relation to the object of this study is constituted by Case-Based Reasoning (CBR). In this application, cases will be represented by existing buildings where material tests have already been carried out and an updated PDFs for the material mechanical parameters has been computed through a Bayesian analysis. Then each case will be composed by a qualitative description of the material under assessment and the posterior PDFs that describe its material properties. The problem that will be solved is the definition of PDFs for material parameters involved in the reliability assessment of the considered structure. A CBR system represent a good candi¬date in automating the modelling of variables because: 1. Engineers already draw an estimation of the material properties based on the experience collected during the assessment of similar structures, or based on similar cases collected in literature or in data-bases; 2. Material tests carried out on structure can be easily collected from laboratory database or from literature; 3. The system will provide the user of a reliable probabilistic description of the variables involved in the assessment that will also serve as a tool in support of the engineer’s qualitative judgments. Automated modeling of variables can help in spreading probabilistic reliability assessment of existing buildings in the common engineering practice, and target at the best intervention and further tests on the structure; CBR represents a technique which may help to achieve this.Keywords: reliability assessment of existing buildings, Bayesian analysis, case-based reasoning, historical structures
Procedia PDF Downloads 3376199 Thermoluminescence Characteristic of Nanocrystalline BaSO4 Doped with Europium
Authors: Kanika S. Raheja, A. Pandey, Shaila Bahl, Pratik Kumar, S. P. Lochab
Abstract:
The subject of undertaking for this paper is the study of BaSO4 nanophosphor doped with Europium in which mainly the concentration of the rare earth impurity Eu (0.05, 0.1, 0.2, 0.5, and 1 mol %) has been varied. A comparative study of the thermoluminescence(TL) properties of the given nanophosphor has also been done using a well-known standard dosimetry material i.e. TLD-100.Firstly, a number of samples were prepared successfully by the chemical co-precipitation method. The whole lot was then compared to a well established standard material (TLD-100) for its TL sensitivity property. BaSO4:Eu ( 0.2 mol%) showed the highest sensitivity out of the lot. It was also found that when compared to the standard TLD-100, BaSo4:Eu (0.2mol%) showed surprisingly high sensitivity for a large range of doses. The TL response curve for all prepared samples has also been studied over a wide range of doses i.e 10Gy to 2kGy for gamma radiation. Almost all the samples of BaSO4:Eu showed a remarkable linearity for a broad range of doses, which is a characteristic feature of a fine TL dosimeter. The graph remained linear even beyond 1kGy for gamma radiation. Thus, the given nanophosphor has been successfully optimised for the concentration of the dopant material to achieve its highest TL sensitivity. Further, the comparative study with the standard material revealed that the current optimised sample shows an astonishingly better TL sensitivity and a phenomenal linear response curve for an incredibly wide range of doses for gamma radiation (Co-60) as compared to the standard TLD-100, which makes the current optimised BaSo4:Eu quite promising as an efficient gamma radiation dosimeter. Lastly, the present phosphor has been optimised for its annealing temperature to acquire the best results while also studying its fading and reusability properties.Keywords: gamma radiation, nanoparticles, radiation dosimetry, thermoluminescence
Procedia PDF Downloads 4306198 Selectivity Mechanism of Cobalt Precipitation by an Imidazole Linker From an Old Battery Solution
Authors: Anna-Caroline Lavergne-Bril, Jean-François Colin, David Peralta, Pascale Maldivi
Abstract:
Cobalt is a critical material, widely used in Li-ion batteries. Due to the planned electrification of European vehicles, cobalt needs are expending – and resources are limited. To meet the needs in cobalt to come, it is necessary to develop new efficient ways to recycle cobalt. One of the biggest sources comes from old electrical vehicles batteries (batteries sold in 2019: 500 000 tons of waste to be). A closed loop process of cobalt recycling has been developed and this presentation aims to present the selectivity mechanism of cobalt over manganese and nickel in solution. Cobalt precipitation as a ZIF material (Zeolitic Imidazolate framework) from a starting solution composed of equimolar nickel, manganese and cobalt is studied. A 2-MeIm (2-methylimidazole) linker is introduced in a multimetallic Ni, Mn, Co solution and the resulting ZIF-67 is 100% pure Co among its metallic centers. Selectivity of Co over Ni is experimentally studied and DFT modelisation calculation are conducted to understand the geometry of ligand-metal-solvent complexes in solution. Selectivity of Co over Mn is experimentally studied, and DFT modelisation calcucation are conducted to understand the link between pKa of the ligand and precipitration of Mn impurities within the final material. Those calculation open the way to other ligand being used in the same process, with more efficiency. Experimental material are synthetized from bimetallic (Ni²⁺/Co²⁺, Mn²⁺/Co²⁺, Mn²⁺/Ni²⁺) solutions. Their crystallographic structure is analysed by XRD diffraction (Brüker AXS D8 diffractometer, Cu anticathode). Morphology is studied by scanning electron microscopy, using a LEO 1530 FE-SEM microscope. The chemical analysis is performed by using ICP-OES (Agilent Technologies 700 series ICP-OES). Modelisation calculation are DFT calculation (density functional theory), using B3LYP, conducted with Orca 4.2.Keywords: MOFs, ZIFs, recycling, closed-loop, cobalt, li-ion batteries
Procedia PDF Downloads 1376197 The Influence of Mycelium Species and Incubation Protocols on Heat and Moisture Transfer Properties of Mycelium-Based Composites
Authors: Daniel Monsalve, Takafumi Noguchi
Abstract:
Mycelium-based composites (MBC) are made by growing living mycelium on lignocellulosic fibres to create a porous composite material which can be lightweight, and biodegradable, making them suitable as a sustainable thermal insulation. Thus, they can help to reduce material extraction while improving the energy efficiency of buildings, especially when agricultural by-products are used. However, as MBC are hygroscopic materials, moisture can reduce their thermal insulation efficiency. It is known that surface growth, or “mycelium skin”, can form a natural coating due to the hydrophobic properties in the mycelium cell wall. Therefore, this research aims to biofabricate a homogeneous mycelium skin and measure its influence on the final composite material by testing material properties such as thermal conductivity, vapour permeability and water absorption by partial immersion over 24 hours. In addition, porosity, surface morphology and chemical composition were also analyzed. The white-rot fungi species Pleurotus ostreatus, Ganoderma lucidum, and Trametes versicolor were grown on 10 mm hemp fibres (Cannabis sativa), and three different biofabrication protocols were used during incubation, varying the time and surface treatment, including the addition of pre-colonised sawdust. The results indicate that density can be reduced by colonisation time, which will favourably impact thermal conductivity but will negatively affect vapour and liquid water control. Additionally, different fungi can exhibit different resistance to prolonged water absorption, and due to osmotic sensitivity, mycelium skin may also diminish moisture control. Finally, a collapse in the mycelium network after water immersion was observed through SEM, indicating how the microstructure is affected, which is also dependent on fungi species and the type of skin achieved. These results help to comprehend the differences and limitations of three of the most common species used for MBC fabrication and how precise engineering is needed to effectively control the material output.Keywords: mycelium, thermal conductivity, vapor permeability, water absorption
Procedia PDF Downloads 426196 Material Vitalism’s Potential Role in Informing EU Construction and Demolition Waste Policy
Authors: Cameron Jones
Abstract:
Emissions, produced by landfill waste from demolished obsolete buildings, have a damaging effect on both the Earth’s climate and human health. The philosophical theory of material vitalism - the potential for materials to react and emit harmful pollutants - therefore defines this construction and demolition waste (CDW) as having vitality. The European Union’s ‘Circular Economic Action Plan’ (CEAP) aims to mitigate the effects of CDW by prioritising the circularity of building materials. This dissertation examines how the philosophical theory of material vitalism can make an environmentally responsible contribution to CDW policy. The CEAP and Silvertown Quays development are used as case studies for the application of vitalism to policy revision. The study concludes that vitalism has a positive role to play in informing CDW policy, although its contribution is stronger in some areas. This is established by first appraising the aspects that relate to the obsolescence of buildings outlined in the EU’s existing CDW policies. Next, these policy directives are compared with the CE principles employed in the Silvertown Quays development. Subsequently, a keyword analysis model is used to categorise the language used in the CEAP, demonstrating how socio-political approaches to the CE and strategies to address resource scarcity could be strengthened to represent the EU’s policy aspirations more effectively. Recommendations are then made on how material vitalism could be utilised to strengthen legislation, arguing that a notable contribution can be made in most policy areas. Finally, theoretical testing of the impact of these revisions to policy on the case study development identified some practicalities for consideration in improving waste management outcomes.Keywords: vitalism, construction waste, obsolescence, political ecology, exceptionalism
Procedia PDF Downloads 446195 Function Study of IrMYB55 in Regulating Synthesis of Terpenoids in Isodon Rubescens
Authors: Qingfang Guo
Abstract:
Isodon rubescens is rich in a variety of terpenes such as oridonin. It has important medicinal value. MYB transcription factors are involved in the regulation of plant secondary metabolic pathways. The combined transcriptomics and metabolomics analysis revealed that IrMYB55 might be involved in the regulation of the synthesis of terpenes. The function of IrMYB55 was further verified by establishing of a genetic transformation system by CRISPR/Cas9. Obtaining a virus-mediated Isodon rubescens gene silencing material. The main research results are as follows: (1) Screening IrMYB which can regulate the synthesis of terpenes. Metabolomics and transcriptomics analyses of materials with high (TJ)-and low (FL)-content populations which revealed significant differences in terpene content and IrMYB55 expression. Correlation analysis showed that the expression level of IrMYB55 had a significant correlation with the content of terpenes. (2) Establishment of a genetic transformation system of Isodon rubescens. The IrPDS gene could be knocked out by injection of Isodon rubescens cotyledon, and the transformed material showed obvious albino phenotype. Subsequently, IrMYB55 conversion material was obtained by this method. (3) The IrMYB55 silencing material was obtained. Subcellular localization indicated that IrMYB55 was located in the nucleus, indicating that it might regulate the synthesis of terpenoids through transcription. In summary, IrMYB55 that may regulate the synthesis of oridonin was dug out from the transcriptome and metabolome data. In this study, a genetic transformation system of Isodon rubescens was successfully established. Further studies showed that IrMYB55 regulated the transcription level of genes related to the synthesis of terpenoids, thereby promoting the accumulation of oridonin.Keywords: isodon rubescens, MYB, oridonin, CRISPR/Cas9
Procedia PDF Downloads 296194 Surface Functionalized Biodegradable Polymersome for Targeted Drug Delivery
Authors: Susmita Roy, Madhavan Nallani
Abstract:
In recent years' polymersomes, self-assembled polymeric vesicles emerge from block copolymers, have been widely investigated due to their enhance stability and unique advantageous properties compared to their phospholipid counterpart, liposomes, dendrimers, and micelles. It provides a distinctive platform for advanced therapeutics and the creation of complex (bio) catalytically active systems for research in Nanomedicine and synthetic biology. Inspired by nature, where compartmentalization of biological components is all ubiquitous, we are interested in developing a platform technology of self-assembled multifunctional compartments with applications in areas from targeted drug/gene delivery, biosensing, pharmaceutical to cosmetics. Polymersome surfaces can be a proper choice of derivatization with a controlled amount of functional groups. To achieve site-specific targeting of polymersomes, biological recognition motives can be attached to the polymersomes surface by standard bioconjugation techniques, (like esterification, amidation, thiol-maleimide coupling, click-chemistry routes or other coupling methods). Herein, we are developing easy going, one-step bioconjugation strategies for site-specific surface functionalized biodegradable polymeric and/or polymer-lipid hybrid vesicles for targeted drug delivery. Biodegradable polymer, polycaprolactone-b-polyethylene glycol (PCL-PEG), polylactic acid-b-polyethylene glycol (PLA-PEG) and phospholipid, 1-palmitoyl-2- oleoyl-sn-glycero-3-phosphocholine (POPC) has been widely used for numerous vesicle formulations. Some of these drug-loaded formulations are being tested on mice for controlled release. These surface functionalized polymersomes are also appropriate for membrane protein reconstitution/insertion, antibodies conjugation and various bioconjugation with diverse targeted molecules for controlled drug delivery.Keywords: drug delivery, membrane protein, polymersome, surface modification
Procedia PDF Downloads 1546193 Sustainable Housing in Steel: Prospects for Future World of Developing Countries
Authors: Poorva Kulkarni
Abstract:
Developing countries are having significant additions to existing population of urban areas with loads of migrants from rural areas. There is a tremendous need to provide accommodation facility to cater to rapidly growing urban population. This leads to unprecedented growth in urban areas since the temporary shelters are constructed with any available material. Architecture in a broader sense serves to humanity in terms of making life of people happy and comfortable by providing comfortable shelters. It is also the need of the time for an architect to be extremely sensitive towards nature by providing design solution of human shelters with minimum impact on the environment. The sensitive approach towards designing of housing units and provision of comfortable and affordable housing units should go hand in hand for future growth of developing countries. Steel has proved itself a versatile material in terms of strength, uniformity and ease of operation and many such other advantages. Steel can be used as the most promising material for modern construction practices. The current research paper focuses on how effectively steel can be used probably in combination with other construction material to achieve the mentioned objectives for sustainable housing. The research available on sustainable housing in steel is studied along with few case studies of buildings with the efficient use of steel providing a solution with affordability and minimum harm to the environment. The research will conclude the effective solutions exploring possibilities of use of steel for sustainable housing units. The researcher shows how the use of steel in combination with other materials for human shelters can promote sustainable housing for community living which is the need of the time.Keywords: community living, steel, sustainable housing, urban area
Procedia PDF Downloads 2276192 Seismic Preparedness Challenge in Ionian Islands (Greece) through 'Telemachus' Project
Authors: A. Kourou, M. Panoutsopoulou
Abstract:
Nowadays, disaster risk reduction requires innovative ways of working collaboratively, monitoring tools, management methods, risk communication, and knowledge, as key factors for decision-making actors. Experience has shown that the assessment of seismic risk and its effective management is still an important challenge. In Greece, Ionian Islands region is characterized as the most seismic area of the country and one of the most active worldwide. It is well known that in case of a disastrous earthquake the local authorities need to assess the situation in the affected area and coordinate the disaster response. In particular, the main outcomes of 'Telemachus' project are the development of an innovative operational system that hosts the needed data of seismic risk management in the Ionian Islands and the implementation of educational actions for the involved target groups. This project is funded in the Priority Axis 'Environmental Protection and Sustainable Development' of Operational Plan 'Ionian Islands 2014-2020'. EPPO is one of the partners of the project and it is responsible, among others, for the development of proper training material. This paper presents the training material of 'Telemachus' and its usage as a helpful, managerial tool in case of earthquake emergency. This material is addressed to different target groups, such as civil protection staff, people that involved with the tourism industry, educators of disabled people, etc. Very positive aspect of the project is the involvement of end-users that should evaluate the training products; test standards; clarify the personnel’s roles and responsibilities; improve interagency coordination; identify gaps in resources; improve individual performance; and identify opportunities for improvement. It is worth mentioning that even though the abovementioned material developed is useful for the training of specific target groups on emergency management issues within Ionian Islands Region, it could be used throughout Greece and other countries too.Keywords: education of civil protection staff, Ionian Islands Region of Greece, seismic risk, training material
Procedia PDF Downloads 1236191 Microanalysis of a New Cementitious System Containing High Calcium Fly Ash and Waste Material by Scanning Electron Microscopy (SEM)
Authors: Anmar Dulaimi, Hassan Al Nageim, Felicite Ruddock, Linda Seton
Abstract:
Fast-curing cold bituminous emulsion mixture (CBEM) including active filler from high calcium fly ash (HCFA) and waste material (LJMU-A2) has been developed in this study. This will overcome the difficulties related with the use of hot mix asphalt such as greenhouse gases emissions and problems in keeping the temperature when transporting long distance. The aim of this study is to employ petrographic examinations using scanning electron microscopy (SEM) for characterizing the hydrates microstructure, in a new binary blended cement filler (BBCF) system. The new BBCF has been used as a replacement to traditional mineral filler in cold bituminous emulsion mixtures (CBEMs), comprises supplementary cementitious materials containing high calcium fly ash (HCFA) and a waste material (LJMU-A2). SEM analysis demonstrated the formation of hydrates after varying curing ages within the BBCF. The accelerated activation of HCFA by LJMU-A2 within the BBCF was revealed and as a consequence early and later stiffness was developed in novel CBEM.Keywords: cold bituminous emulsion mixtures, indirect tensile stiffness modulus, scanning electron microscopy (SEM), and high calcium fly ash
Procedia PDF Downloads 2766190 Fluidized-Bed Combustion of Biomass with Elevated Alkali Content: A Comparative Study between Two Alternative Bed Materials
Authors: P. Ninduangdee, V. I. Kuprianov
Abstract:
Palm kernel shell is an important bioenergy resource in Thailand. However, due to elevated alkali content in biomass ash, this oil palm residue shows high tendency to bed agglomeration in a fluidized-bed combustion system using conventional bed material (silica sand). In this study, palm kernel shell was burned in the conical fluidized-bed combustor (FBC) using alumina and dolomite as alternative bed materials to prevent bed agglomeration. For each bed material, the combustion tests were performed at 45kg/h fuel feed rate with excess air within 20–80%. Experimental results revealed rather weak effects of the bed material type but substantial influence of excess air on the behaviour of temperature, O2, CO, CxHy, and NO inside the reactor, as well as on the combustion efficiency and major gaseous emissions of the conical FBC. The optimal level of excess air ensuring high combustion efficiency (about 98.5%) and acceptable level of the emissions was found to be about 40% when using alumina and 60% with dolomite. By using these alternative bed materials, bed agglomeration can be prevented when burning the shell in the proposed conical FBC. However, both bed materials exhibited significant changes in their morphological, physical and chemical properties in the course of the time.Keywords: palm kernel shell, fluidized-bed combustion, alternative bed materials, combustion and emission performance, bed agglomeration prevention
Procedia PDF Downloads 2486189 Loss Quantification Archaeological Sites in Watershed Due to the Use and Occupation of Land
Authors: Elissandro Voigt Beier, Cristiano Poleto
Abstract:
The main objective of the research is to assess the loss through the quantification of material culture (archaeological fragments) in rural areas, sites explored economically by machining on seasonal crops, and also permanent, in a hydrographic subsystem Camaquã River in the state of Rio Grande do Sul, Brazil. The study area consists of different micro basins and differs in area, ranging between 1,000 m² and 10,000 m², respectively the largest and the smallest, all with a large number of occurrences and outcrop locations of archaeological material and high density in intense farm environment. In the first stage of the research aimed to identify the dispersion of points of archaeological material through field survey through plot points by the Global Positioning System (GPS), within each river basin, was made use of concise bibliography on the topic in the region, helping theoretically in understanding the old landscaping with preferences of occupation for reasons of ancient historical people through the settlements relating to the practice observed in the field. The mapping was followed by the cartographic development in the region through the development of cartographic products of the land elevation, consequently were created cartographic products were to contribute to the understanding of the distribution of the absolute materials; the definition and scope of the material dispersed; and as a result of human activities the development of revolving letter by mechanization of in situ material, it was also necessary for the preparation of materials found density maps, linking natural environments conducive to ancient historical occupation with the current human occupation. The third stage of the project it is for the systematic collection of archaeological material without alteration or interference in the subsurface of the indigenous settlements, thus, the material was prepared and treated in the laboratory to remove soil excesses, cleaning through previous communication methodology, measurement and quantification. Approximately 15,000 were identified archaeological fragments belonging to different periods of ancient history of the region, all collected outside of its environmental and historical context and it also has quite changed and modified. The material was identified and cataloged considering features such as object weight, size, type of material (lithic, ceramic, bone, Historical porcelain and their true association with the ancient history) and it was disregarded its principles as individual lithology of the object and functionality same. As observed preliminary results, we can point out the change of materials by heavy mechanization and consequent soil disturbance processes, and these processes generate loading of archaeological materials. Therefore, as a next step will be sought, an estimate of potential losses through a mathematical model. It is expected by this process, to reach a reliable model of high accuracy which can be applied to an archeological site of lower density without encountering a significant error.Keywords: degradation of heritage, quantification in archaeology, watershed, use and occupation of land
Procedia PDF Downloads 277