Search results for: technology transfer offices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10349

Search results for: technology transfer offices

5039 Enabling Self-Care and Shared Decision Making for People Living with Dementia

Authors: Jonathan Turner, Julie Doyle, Laura O’Philbin, Dympna O’Sullivan

Abstract:

People living with dementia should be at the centre of decision-making regarding goals for daily living. These goals include basic activities (dressing, hygiene, and mobility), advanced activities (finances, transportation, and shopping), and meaningful activities that promote well-being (pastimes and intellectual pursuits). However, there is limited involvement of people living with dementia in the design of technology to support their goals. A project is described that is co-designing intelligent computer-based support for, and with, people affected by dementia and their carers. The technology will support self-management, empower participation in shared decision-making with carers and help people living with dementia remain healthy and independent in their homes for longer. It includes information from the patient’s care plan, which documents medications, contacts, and the patient's wishes on end-of-life care. Importantly for this work, the plan can outline activities that should be maintained or worked towards, such as exercise or social contact. The authors discuss how to integrate care goal information from such a care plan with data collected from passive sensors in the patient’s home in order to deliver individualized planning and interventions for persons with dementia. A number of scientific challenges are addressed: First, to co-design with dementia patients and their carers computerized support for shared decision-making about their care while allowing the patient to share the care plan. Second, to develop a new and open monitoring framework with which to configure sensor technologies to collect data about whether goals and actions specified for a person in their care plan are being achieved. This is developed top-down by associating care quality types and metrics elicited from the co-design activities with types of data that can be collected within the home, from passive and active sensors, and from the patient’s feedback collected through a simple co-designed interface. These activities and data will be mapped to appropriate sensors and technological infrastructure with which to collect the data. Third, the application of machine learning models to analyze data collected via the sensing devices in order to investigate whether and to what extent activities outlined via the care plan are being achieved. The models will capture longitudinal data to track disease progression over time; as the disease progresses and captured data show that activities outlined in the care plan are not being achieved, the care plan may recommend alternative activities. Disease progression may also require care changes, and a data-driven approach can capture changes in a condition more quickly and allow care plans to evolve and be updated.

Keywords: care goals, decision-making, dementia, self-care, sensors

Procedia PDF Downloads 170
5038 Incorporating Adult Learners’ Interests into Learning Styles: Enhancing Education for Lifelong Learners

Authors: Christie DeGregorio

Abstract:

In today's rapidly evolving educational landscape, adult learners are becoming an increasingly significant demographic. These individuals often possess a wealth of life experiences and diverse interests that can greatly influence their learning styles. Recognizing and incorporating these interests into educational practices can lead to enhanced engagement, motivation, and overall learning outcomes for adult learners. This essay aims to explore the significance of incorporating adult learners' interests into learning styles and provide an overview of the methodologies used in related studies. When investigating the incorporation of adult learners' interests into learning styles, researchers have employed various methodologies to gather valuable insights. These methodologies include surveys, interviews, case studies, and classroom observations. Surveys and interviews allow researchers to collect self-reported data directly from adult learners, providing valuable insights into their interests, preferences, and learning styles. Case studies offer an in-depth exploration of individual adult learners, highlighting how their interests can be integrated into personalized learning experiences. Classroom observations provide researchers with a firsthand understanding of the dynamics between adult learners' interests and their engagement within a learning environment. The major findings from studies exploring the incorporation of adult learners' interests into learning styles reveal the transformative impact of this approach. Firstly, aligning educational content with adult learners' interests increases their motivation and engagement in the learning process. By connecting new knowledge and skills to topics they are passionate about, adult learners become active participants in their own education. Secondly, integrating interests into learning styles fosters a sense of relevance and applicability. Adult learners can see the direct connection between the knowledge they acquire and its real-world applications, which enhances their ability to transfer learning to various contexts. Lastly, personalized learning experiences tailored to individual interests enable adult learners to take ownership of their educational journey, promoting lifelong learning habits and self-directedness.

Keywords: integration, personalization, transferability, learning style

Procedia PDF Downloads 74
5037 Block Mining: Block Chain Enabled Process Mining Database

Authors: James Newman

Abstract:

Process mining is an emerging technology that looks to serialize enterprise data in time series data. It has been used by many companies and has been the subject of a variety of research papers. However, the majority of current efforts have looked at how to best create process mining from standard relational databases. This paper is the first pass at outlining a database custom-built for the minimal viable product of process mining. We present Block Miner, a blockchain protocol to store process mining data across a distributed network. We demonstrate the feasibility of storing process mining data on the blockchain. We present a proof of concept and show how the intersection of these two technologies helps to solve a variety of issues, including but not limited to ransomware attacks, tax documentation, and conflict resolution.

Keywords: blockchain, process mining, memory optimization, protocol

Procedia PDF Downloads 103
5036 Strategies to Enhance Export Performance of Thai Furniture Industry

Authors: Khomsan Laosillapacharoen

Abstract:

This research paper was aimed to analyze the current situation of the furniture industry and embark a plan to enhance the export volume of Thai furniture. This is a qualitative research which utilized meta-analysis and focus group. A total of 24 experts in both government and private sectors were interviewed. The findings revealed that Thai furniture had some advantages of access to raw material, high quality of labors, and have a unique skill. However, the threat included a tendency to have more foreign competitors in domestic market. In addition, the strategies to enhance the level of export included increase the standard quality of Thai furniture, offer new and modern designs, use marketing on the internet, use modern technology, and gain tax incentive from the government.

Keywords: export, furniture, strategies, marketing

Procedia PDF Downloads 399
5035 Rectenna Modeling Based on MoM-GEC Method for RF Energy Harvesting

Authors: Soulayma Smirani, Mourad Aidi, Taoufik Aguili

Abstract:

Energy harvesting has arisen as a prominent research area for low power delivery to RF devices. Rectennas have become a key element in this technology. In this paper, electromagnetic modeling of a rectenna system is presented. In our approach, a hybrid technique was demonstrated to associate both the method of auxiliary sources (MAS) and MoM-GEC (the method of moments combined with the generalized equivalent circuit technique). Auxiliary sources were used in order to substitute specific electronic devices. Therefore, a simple and controllable model is obtained. Also, it can easily be interconnected to form different topologies of rectenna arrays for more energy harvesting. At last, simulation results show the feasibility and simplicity of the proposed rectenna model with high precision and computation efficiency.

Keywords: computational electromagnetics, MoM-GEC method, rectennas, RF energy harvesting

Procedia PDF Downloads 171
5034 Toward a Risk Assessment Model Based on Multi-Agent System for Cloud Consumer

Authors: Saadia Drissi

Abstract:

The cloud computing is an innovative paradigm that introduces several changes in technology that have resulted a new ways for cloud providers to deliver their services to cloud consumers mainly in term of security risk assessment, thus, adapting a current risk assessment tools to cloud computing is a very difficult task due to its several characteristics that challenge the effectiveness of risk assessment approaches. As consequence, there is a need of risk assessment model adapted to cloud computing. This paper requires a new risk assessment model based on multi-agent system and AHP model as fundamental steps towards the development of flexible risk assessment approach regarding cloud consumers.

Keywords: cloud computing, risk assessment model, multi-agent system, AHP model, cloud consumer

Procedia PDF Downloads 545
5033 Photophysics and Photochemistry of Cross-Conjugated Y-Shaped Enediyne Fluorophores

Authors: Anuja Singh, Avik K. Pati, Ashok K. Mishra

Abstract:

Organic fluorophores with π-conjugated scaffolds are important because of their interesting optoelectronic properties. In recent years, our lab has been engaged in understanding the photophysics of small diacetylene bridged fluorophores and found the diynes as a promising class of π-conjugated fluorophores. Building on this understanding, recently we have focused on the photophysics of a less explored class of cross-conjugated Y-shaped enediynes (one double and two triple bonds). Here we present the photophysical properties of such enediynes which show interesting photophysical properties that include dual emissions from locally excited (LE) and intramolecular charge transfer (ICT) states and ring size dependent aggregate fluorescence in non-aqueous media. The dyes also show prominent aggregate fluorescence in mixed-aqueous solvents and solid powder form. We further show that the solid state fluorescence can be reversibly switched multiple of cycles by external stimuli, highlighting their potential applications in solid states. The enediynes with push-pull electronic substituents/moieties exhibit high contrast fluorescence color switching upon continuous photon illumination. The intriguing photophysical outcomes of the enediynyl fluorophores are judiciously exploited to generate single-component white light emission in binary solvent mixtures and sense polar aprotic vapor in polymer film matrices. The photophysical behavior of the dyes is further successfully utilized to monitor the microenvironment changes of biologically relevant anisotropic media such as bile salts. In summary, the newly introduced cross-conjugated enediynes enrich the toolbox of organic fluorophores and vouch to display versatile applications.

Keywords: aggregation in solution and solid state, enediynes, physical photochemistry and photophysics, vapor sensing and white light emission

Procedia PDF Downloads 480
5032 Encouraging Collaboration and Innovation: The New Engineering Oriented Educational Reform in Urban Planning, Tianjin University, China

Authors: Tianjie Zhang, Bingqian Cheng, Peng Zeng

Abstract:

Engineering science and technology progress and innovation have become an important engine to promote social development. The reform exploration of "new engineering" in China has drawn extensive attention around the world, with its connotation as "to cultivate future diversified, innovative and outstanding engineering talents by taking ‘fostering character and civic virtue’ as the guide, responding to changes and shaping the future as the construction concept, and inheritance and innovation, crossover and fusion, coordination and sharing as the principal approach". In this context, Tianjin University, as a traditional Chinese university with advantages in engineering, further launched the CCII (Coherent-Collaborative-Interdisciplinary-Innovation) program, raising the cultivation idea of integrating new liberal arts education, multidisciplinary engineering education and personalized professional education. As urban planning practice in China has undergone the evolution of "physical planning -- comprehensive strategic planning -- resource management-oriented planning", planning education has also experienced the transmutation process of "building foundation -- urban scientific foundation -- multi-disciplinary integration". As a characteristic and advantageous discipline of Tianjin University, the major of Urban and Rural Planning, in accordance with the "CCII Program of Tianjin University", aims to build China's top and world-class major, and implements the following educational reform measures: 1. Adding corresponding English courses, such as advanced course on GIS Analysis, courses on comparative studies in international planning involving ecological resources and the sociology of the humanities, etc. 2. Holding "Academician Forum", inviting international academicians to give lectures or seminars to track international frontier scientific research issues. 3. Organizing "International Joint Workshop" to provide students with international exchange and design practice platform. 4. Setting up a business practice base, so that students can find problems from practice and solve them in an innovative way. Through these measures, the Urban and Rural Planning major of Tianjin University has formed a talent training system with multi-disciplinary cross integration and orienting to the future science and technology.

Keywords: China, higher education reform, innovation, new engineering education, rural and urban planning, Tianjin University

Procedia PDF Downloads 121
5031 Reforms in China's Vaccine Administration: Vulnerabilities, Legislative Progresses and the Systemic View of Vaccine Administration Law

Authors: Lin Tang, Xiaoxia Guo, Lingling Zhang

Abstract:

Recent vaccine scandals overshadowed China’s accomplishment of public health, triggering discussions on the causes of vaccine incidents. Through legal interpretation of selected vaccine incidents and analysis of systemic vulnerabilities in vaccine circulation and lot release, a panoramic review of legislative progresses in the vaccine administration sheds the light on this debate. In essence, it is the combination of the lagging legal system and the absence of information technology infrastructure in the process of vaccine administration reform that has led to the recurrence of vaccine incidents. These findings have significant implications for further improvement of vaccine administration and China’s participation in global healthcare.

Keywords: legislation, lot release, public health, reform, vaccine administration, vaccine circulation

Procedia PDF Downloads 152
5030 Flip-Chip Bonding for Monolithic of Matrix-Addressable GaN-Based Micro-Light-Emitting Diodes Array

Authors: Chien-Ju Chen, Chia-Jui Yu, Jyun-Hao Liao, Chia-Ching Wu, Meng-Chyi Wu

Abstract:

A 64 × 64 GaN-based micro-light-emitting diode array (μLEDA) with 20 μm in pixel size and 40 μm in pitch by flip-chip bonding (FCB) is demonstrated in this study. Besides, an underfilling (UF) technology is applied to the process for improving the uniformity of device. With those configurations, good characteristics are presented, operation voltage and series resistance of a pixel in the 450 nm flip chip μLEDA are 2.89 V and 1077Ω (4.3 mΩ-cm²) at 25 A/cm², respectively. The μLEDA can sustain higher current density compared to conventional LED, and the power of the device is 9.5 μW at 100 μA and 0.42 mW at 20 mA.

Keywords: GaN, micro-light-emitting diode array(μLEDA), flip-chip bonding, underfilling

Procedia PDF Downloads 423
5029 Review, Analysis and Simulation of Advanced Technology Solutions of Selected Components in Power Electronics Systems (PES) of More Electric Aircraft

Authors: Lucjan Setlak, Emil Ruda

Abstract:

The subject of this paper is to review, comparative analysis and simulation of selected components of power electronic systems (PES), consistent with the concept of a more electric aircraft (MEA). Comparative analysis and simulation in software environment MATLAB / Simulink were carried out based on a group of representatives of civil aircraft (B-787, A-380) and military (F-22 Raptor, F-35) in the context of multi-pulse converters used in them (6- and 12-pulse, and 18- and 24-pulse), which are key components of high-tech electronics on-board power systems of autonomous power systems (ASE) of modern aircraft (airplanes of the future).

Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems)

Procedia PDF Downloads 494
5028 Investigating the Dynamic Plantar Pressure Distribution in Individuals with Multiple Sclerosis

Authors: Hilal Keklicek, Baris Cetin, Yeliz Salci, Ayla Fil, Umut Altinkaynak, Kadriye Armutlu

Abstract:

Objectives and Goals: Spasticity is a common symptom characterized with a velocity dependent increase in tonic stretch reflexes (muscle tone) in patient with multiple sclerosis (MS). Hypertonic muscles affect the normal plantigrade contact by disturbing accommodation of foot to the ground while walking. It is important to know the differences between healthy and neurologic foot features for management of spasticity related deformities and/or determination of rehabilitation purposes and contents. This study was planned with the aim of investigating the dynamic plantar pressure distribution in individuals with MS and determining the differences between healthy individuals (HI). Methods: Fifty-five individuals with MS (108 foot with spasticity according to Modified Ashworth Scale) and 20 HI (40 foot) were the participants of the study. The dynamic pedobarograph was utilized for evaluation of dynamic loading parameters. Participants were informed to walk at their self-selected speed for seven times to eliminate learning effect. The parameters were divided into 2 categories including; maximum loading pressure (N/cm2) and time of maximum pressure (ms) were collected from heal medial, heal lateral, mid foot, heads of first, second, third, fourth and fifth metatarsal bones. Results: There were differences between the groups in maximum loading pressure of heal medial (p < .001), heal lateral (p < .001), midfoot (p=.041) and 5th metatarsal areas (p=.036). Also, there were differences between the groups the time of maximum pressure of all metatarsal areas, midfoot, heal medial and heal lateral (p < .001) in favor of HI. Conclusions: The study provided basic data about foot pressure distribution in individuals with MS. Results of the study primarily showed that spasticity of lower extremity muscle disrupted the posteromedial foot loading. Secondarily, according to the study result, spasticity lead to inappropriate timing during load transfer from hind foot to forefoot.

Keywords: multiple sclerosis, plantar pressure distribution, gait, norm values

Procedia PDF Downloads 321
5027 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model

Authors: Gholba Niranjan Dilip, Anil Kumar

Abstract:

Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.

Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector

Procedia PDF Downloads 160
5026 Implicature of Jokes in Broadcast Messages

Authors: Yuli Widiana

Abstract:

The study of implicature which is one of the discussions of pragmatics is an interesting and challenging topic to discuss. Implicature is a meaning which is implied in an utterance which is not the same as its literal meaning. The rapid development of information technology results in social networks as media to broadcast messages. The broadcast messages may be in the form of jokes which contain implicature. The research applies the pragmatic equivalent method to analyze the topics of jokes based on the implicatures contained in them. Furthermore, the method is also applied to reveal the purpose of creating implicature in jokes. The findings include the kinds of implicature found in jokes which are classified into conventional implicature and conversational implicature. Then, in detailed analysis, implicature in jokes is divided into implicature related to gender, culture, and social phenomena. Furthermore, implicature in jokes may not only be used to give entertainment but also to soften criticisms or satire so that it does not sound rude and harsh.

Keywords: implicature, broadcast messages, conventional implicature, conversational implicature

Procedia PDF Downloads 359
5025 Determining the Direction of Causality between Creating Innovation and Technology Market

Authors: Liubov Evstigneeva

Abstract:

In this paper an attempt is made to establish causal nexuses between innovation and international trade in Russia. The topicality of this issue is determined by the necessity of choosing policy instruments for economic modernization and transition to innovative development. The vector auto regression (VAR) model and Granger test are applied for the Russian monthly data from 2005 until the second quartile of 2015. Both lagged import and export at the national level cause innovation, the latter starts to stimulate foreign trade since it is a remote lag. In comparison to aggregate data, the results by patent’s categories are more diverse. Importing technologies from foreign countries stimulates patent activity, while innovations created in Russia are only Granger causality for import to Commonwealth of Independent States.

Keywords: export, import, innovation, patents

Procedia PDF Downloads 321
5024 Artificial Intelligence Impact on Strategic Stability

Authors: Darius Jakimavicius

Abstract:

Artificial intelligence is the subject of intense debate in the international arena, identified both as a technological breakthrough and as a component of the strategic stability effect. Both the kinetic and non-kinetic development of AI and its application in the national strategies of the great powers may trigger a change in the security situation. Artificial intelligence is generally faster, more capable and more efficient than humans, and there is a temptation to transfer decision-making and control responsibilities to artificial intelligence. Artificial intelligence, which, once activated, can select and act on targets without further intervention by a human operator, blurs the boundary between human or robot (machine) warfare, or perhaps human and robot together. Artificial intelligence acts as a force multiplier that speeds up decision-making and reaction times on the battlefield. The role of humans is increasingly moving away from direct decision-making and away from command and control processes involving the use of force. It is worth noting that the autonomy and precision of AI systems make the process of strategic stability more complex. Deterrence theory is currently in a phase of development in which deterrence is undergoing further strain and crisis due to the complexity of the evolving models enabled by artificial intelligence. Based on the concept of strategic stability and deterrence theory, it is appropriate to develop further research on the development and impact of AI in order to assess AI from both a scientific and technical perspective: to capture a new niche in the scientific literature and academic terminology, to clarify the conditions for deterrence, and to identify the potential uses, impacts and possibly quantities of AI. The research problem is the impact of artificial intelligence developed by great powers on strategic stability. This thesis seeks to assess the impact of AI on strategic stability and deterrence principles, with human exclusion from the decision-making and control loop as a key axis. The interaction between AI and human actions and interests can determine fundamental changes in great powers' defense and deterrence, and the development and application of AI-based great powers strategies can lead to a change in strategic stability.

Keywords: artificial inteligence, strategic stability, deterrence theory, decision making loop

Procedia PDF Downloads 42
5023 Review of Suitable Advanced Oxidation Processes for Degradation of Organic Compounds in Produced Water during Enhanced Oil Recovery

Authors: Smita Krishnan, Krittika Chandran, Chandra Mohan Sinnathambi

Abstract:

Produced water and its treatment and management are growing challenges in all producing regions. This water is generally considered as a nonrevenue product, but it can have significant value in enhanced oil recovery techniques if it meets the required quality standards. There is also an interest in the beneficial uses of produced water for agricultural and industrial applications. Advanced Oxidation Process is a chemical technology that has been growing recently in the wastewater treatment industry, and it is highly recommended for non-easily removal of organic compounds. The efficiency of AOPs is compound specific, therefore, the optimization of each process should be done based on different aspects.

Keywords: advanced oxidation process, photochemical processes, degradation, organic contaminants

Procedia PDF Downloads 504
5022 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system

Procedia PDF Downloads 299
5021 Proposal for a Web System for the Control of Fungal Diseases in Grapes in Fruits Markets

Authors: Carlos Tarmeño Noriega, Igor Aguilar Alonso

Abstract:

Fungal diseases are common in vineyards; they cause a decrease in the quality of the products that can be sold, generating distrust of the customer towards the seller when buying fruit. Currently, technology allows the classification of fruits according to their characteristics thanks to artificial intelligence. This study proposes the implementation of a control system that allows the identification of the main fungal diseases present in the Italia grape, making use of a convolutional neural network (CNN), OpenCV, and TensorFlow. The methodology used was based on a collection of 20 articles referring to the proposed research on quality control, classification, and recognition of fruits through artificial vision techniques.

Keywords: computer vision, convolutional neural networks, quality control, fruit market, OpenCV, TensorFlow

Procedia PDF Downloads 83
5020 The Driving Force for Taiwan Social Innovation Business Model Transformation: A Case Study of Social Innovation Internet Celebrity Training Project

Authors: Shih-Jie Ma, Jui-Hsu Hsiao, Ming-Ying Hsieh, Shin-Yan Yang, Chun-Han Yeh, Kuo-Chun Su

Abstract:

In Taiwan, social enterprises and non-profit organizations (NPOs) are not familiar with innovative business models, such as live streaming. In 2019, a brand new course called internet celebrity training project is introduced to them by the Social Innovation Lab. The Goal of this paper is to evaluate the effect of this project, to explore the role of new technology (internet live stream) in business process management (BPM), and to analyze how live stream programs can assist social enterprises in creating new business models. Social Innovation, with the purpose to solve social issues in innovative ways, is one of the most popular topics in the world. Social Innovation Lab was established in 2017 by Executive Yuan in Taiwan. The vision of Social Innovation Lab is to exploit technology, innovation and experimental methods to solve social issues, and to maximize the benefits from government investment. Social Innovation Lab aims at creating a platform for both supply and demand sides of social issues, to make social enterprises and start-ups communicate with each other, and to build an eco-system in which stakeholders can make a social impact. Social Innovation Lab keeps helping social enterprises and NPOs to gain better publicity and to enhance competitiveness by facilitating digital transformation. In this project, Social Innovation Lab exerted the influence of social media such as YouTube and Facebook, to make social enterprises and start-ups adjust their business models by using the live stream of social media, which becomes one of the tools to expand their market and diversify their sales channels. Internet live stream training courses were delivered in different regions of Taiwan in 2019, including Taitung, Taichung, Kaohsiung and Hualien. Through these courses, potential groups and enterprises were cultivated to become so-called internet celebrities. With their concern about social issues in mind, these internet celebrities know how to manipulate social media to make a social impact in different fields, such as aboriginal people, food and agriculture, LOHAS (Lifestyles of Health and Sustainability), environmental protection and senior citizens. Participants of live stream training courses in Taiwan are selected to take in-depth interviews and questionnaire surveys. Results indicate that the digital transformation process of social enterprises and NPOs can be successful by implementing business process reengineering, a significant change made by social innovation internet celebrities. Therefore, this project can be the new driving force to facilitate the business model transformation in Taiwan.

Keywords: business process management, digital transformation, live stream, social innovation

Procedia PDF Downloads 146
5019 Effect of MPPT and THD in Grid-Connected Photovoltaic System

Authors: Sajjad Yahaghifar

Abstract:

From the end of the last century, the importance and use of renewable energy sources have gained prominence, due not only by the fossil fuels dependence reduction, but mainly by environmental reasons related to climate change and the effects to the humanity. Consequently, solar energy has been arousing interest in several countries for being a technology considered clean, with reduced environmental impact. The output power of photo voltaic (PV) arrays is always changing with weather conditions,i.e., solar irradiation and atmospheric temperature. Therefore, maximum power point tracking (MPPT) control to extract maximum power from the PV arrays at real time becomes indispensable in PV generation system. This paper Study MPPT and total harmonic distortion (THD) in the city of Tabriz, Iran with the grid-connected PV system as distributed generation.

Keywords: MPPT, THD, grid-connected, PV system

Procedia PDF Downloads 398
5018 A Generative Pretrained Transformer-Based Question-Answer Chatbot and Phantom-Less Quantitative Computed Tomography Bone Mineral Density Measurement System for Osteoporosis

Authors: Mian Huang, Chi Ma, Junyu Lin, William Lu

Abstract:

Introduction: Bone health attracts more attention recently and an intelligent question and answer (QA) chatbot for osteoporosis is helpful for science popularization. With Generative Pretrained Transformer (GPT) technology developing, we build an osteoporosis corpus dataset and then fine-tune LLaMA, a famous open-source GPT foundation large language model(LLM), on our self-constructed osteoporosis corpus. Evaluated by clinical orthopedic experts, our fine-tuned model outperforms vanilla LLaMA on osteoporosis QA task in Chinese. Three-dimensional quantitative computed tomography (QCT) measured bone mineral density (BMD) is considered as more accurate than DXA for BMD measurement in recent years. We develop an automatic Phantom-less QCT(PL-QCT) that is more efficient for BMD measurement since no need of an external phantom for calibration. Combined with LLM on osteoporosis, our PL-QCT provides efficient and accurate BMD measurement for our chatbot users. Material and Methods: We build an osteoporosis corpus containing about 30,000 Chinese literatures whose titles are related to osteoporosis. The whole process is done automatically, including crawling literatures in .pdf format, localizing text/figure/table region by layout segmentation algorithm and recognizing text by OCR algorithm. We train our model by continuous pre-training with Low-rank Adaptation (LoRA, rank=10) technology to adapt LLaMA-7B model to osteoporosis domain, whose basic principle is to mask the next word in the text and make the model predict that word. The loss function is defined as cross-entropy between the predicted and ground-truth word. Experiment is implemented on single NVIDIA A800 GPU for 15 days. Our automatic PL-QCT BMD measurement adopt AI-associated region-of-interest (ROI) generation algorithm for localizing vertebrae-parallel cylinder in cancellous bone. Due to no phantom for BMD calibration, we calculate ROI BMD by CT-BMD of personal muscle and fat. Results & Discussion: Clinical orthopaedic experts are invited to design 5 osteoporosis questions in Chinese, evaluating performance of vanilla LLaMA and our fine-tuned model. Our model outperforms LLaMA on over 80% of these questions, understanding ‘Expert Consensus on Osteoporosis’, ‘QCT for osteoporosis diagnosis’ and ‘Effect of age on osteoporosis’. Detailed results are shown in appendix. Future work may be done by training a larger LLM on the whole orthopaedics with more high-quality domain data, or a multi-modal GPT combining and understanding X-ray and medical text for orthopaedic computer-aided-diagnosis. However, GPT model gives unexpected outputs sometimes, such as repetitive text or seemingly normal but wrong answer (called ‘hallucination’). Even though GPT give correct answers, it cannot be considered as valid clinical diagnoses instead of clinical doctors. The PL-QCT BMD system provided by Bone’s QCT(Bone’s Technology(Shenzhen) Limited) achieves 0.1448mg/cm2(spine) and 0.0002 mg/cm2(hip) mean absolute error(MAE) and linear correlation coefficient R2=0.9970(spine) and R2=0.9991(hip)(compared to QCT-Pro(Mindways)) on 155 patients in three-center clinical trial in Guangzhou, China. Conclusion: This study builds a Chinese osteoporosis corpus and develops a fine-tuned and domain-adapted LLM as well as a PL-QCT BMD measurement system. Our fine-tuned GPT model shows better capability than LLaMA model on most testing questions on osteoporosis. Combined with our PL-QCT BMD system, we are looking forward to providing science popularization and early morning screening for potential osteoporotic patients.

Keywords: GPT, phantom-less QCT, large language model, osteoporosis

Procedia PDF Downloads 71
5017 Employment Problems of Graduands Graduated Form Vocational High Schools

Authors: Refik Uyanöz, Sadife Güngör, Sevilay Konya

Abstract:

The aim of this study is to show the employing ability of vocational students. And also, the employment problems of these students are emphasized in this study.The rapid development in technology and information and increased qualified labor is widely affects labor market. On the other hand, labor market will look for educated, qualified, talented and young people. Because of this reason, qualified staff should be educated at vocational high schools. Vocational high schools are one of the best institutions to educate qualified staff. In this research, the conditions of vocational high schools are studied. The difference between the employment policies and current employment problems are researched.

Keywords: vocational high school, employment, employment problems, vocational students

Procedia PDF Downloads 466
5016 Streamlining the Fuzzy Front-End and Improving the Usability of the Tools Involved

Authors: Michael N. O'Sullivan, Con Sheahan

Abstract:

Researchers have spent decades developing tools and techniques to aid teams in the new product development (NPD) process. Despite this, it is evident that there is a huge gap between their academic prevalence and their industry adoption. For the fuzzy front-end, in particular, there is a wide range of tools to choose from, including the Kano Model, the House of Quality, and many others. In fact, there are so many tools that it can often be difficult for teams to know which ones to use and how they interact with one another. Moreover, while the benefits of using these tools are obvious to industrialists, they are rarely used as they carry a learning curve that is too steep and they become too complex to manage over time. In essence, it is commonly believed that they are simply not worth the effort required to learn and use them. This research explores a streamlined process for the fuzzy front-end, assembling the most effective tools and making them accessible to everyone. The process was developed iteratively over the course of 3 years, following over 80 final year NPD teams from engineering, design, technology, and construction as they carried a product from concept through to production specification. Questionnaires, focus groups, and observations were used to understand the usability issues with the tools involved, and a human-centred design approach was adopted to produce a solution to these issues. The solution takes the form of physical toolkit, similar to a board game, which allows the team to play through an example of a new product development in order to understand the process and the tools, before using it for their own product development efforts. A complimentary website is used to enhance the physical toolkit, and it provides more examples of the tools being used, as well as deeper discussions on each of the topics, allowing teams to adapt the process to their skills, preferences and product type. Teams found the solution very useful and intuitive and experienced significantly less confusion and mistakes with the process than teams who did not use it. Those with a design background found it especially useful for the engineering principles like Quality Function Deployment, while those with an engineering or technology background found it especially useful for design and customer requirements acquisition principles, like Voice of the Customer. Products developed using the toolkit are added to the website as more examples of how it can be used, creating a loop which helps future teams understand how the toolkit can be adapted to their project, whether it be a small consumer product or a large B2B service. The toolkit unlocks the potential of these beneficial tools to those in industry, both for large, experienced teams and for inexperienced start-ups. It allows users to assess the market potential of their product concept faster and more effectively, arriving at the product design stage with technical requirements prioritized according to their customers’ needs and wants.

Keywords: new product development, fuzzy front-end, usability, Kano model, quality function deployment, voice of customer

Procedia PDF Downloads 108
5015 Consumer Preferences for Low-Carbon Futures: A Structural Equation Model Based on the Domestic Hydrogen Acceptance Framework

Authors: Joel A. Gordon, Nazmiye Balta-Ozkan, Seyed Ali Nabavi

Abstract:

Hydrogen-fueled technologies are rapidly advancing as a critical component of the low-carbon energy transition. In countries historically reliant on natural gas for home heating, such as the UK, hydrogen may prove fundamental for decarbonizing the residential sector, alongside other technologies such as heat pumps and district heat networks. While the UK government is set to take a long-term policy decision on the role of domestic hydrogen by 2026, there are considerable uncertainties regarding consumer preferences for ‘hydrogen homes’ (i.e., hydrogen-fueled appliances for space heating, hot water, and cooking. In comparison to other hydrogen energy technologies, such as road transport applications, to date, few studies have engaged with the social acceptance aspects of the domestic hydrogen transition, resulting in a stark knowledge deficit and pronounced risk to policymaking efforts. In response, this study aims to safeguard against undesirable policy measures by revealing the underlying relationships between the factors of domestic hydrogen acceptance and their respective dimensions: attitudinal, socio-political, community, market, and behavioral acceptance. The study employs an online survey (n=~2100) to gauge how different UK householders perceive the proposition of switching from natural gas to hydrogen-fueled appliances. In addition to accounting for housing characteristics (i.e., housing tenure, property type and number of occupants per dwelling) and several other socio-structural variables (e.g. age, gender, and location), the study explores the impacts of consumer heterogeneity on hydrogen acceptance by recruiting respondents from across five distinct groups: (1) fuel poor householders, (2) technology engaged householders, (3) environmentally engaged householders, (4) technology and environmentally engaged householders, and (5) a baseline group (n=~700) which filters out each of the smaller targeted groups (n=~350). This research design reflects the notion that supporting a socially fair and efficient transition to hydrogen will require parallel engagement with potential early adopters and demographic groups impacted by fuel poverty while also accounting strongly for public attitudes towards net zero. Employing a second-order multigroup confirmatory factor analysis (CFA) in Mplus, the proposed hydrogen acceptance model is tested to fit the data through a partial least squares (PLS) approach. In addition to testing differences between and within groups, the findings provide policymakers with critical insights regarding the significance of knowledge and awareness, safety perceptions, perceived community impacts, cost factors, and trust in key actors and stakeholders as potential explanatory factors of hydrogen acceptance. Preliminary results suggest that knowledge and awareness of hydrogen are positively associated with support for domestic hydrogen at the household, community, and national levels. However, with the exception of technology and/or environmentally engaged citizens, much of the population remains unfamiliar with hydrogen and somewhat skeptical of its application in homes. Knowledge and awareness present as critical to facilitating positive safety perceptions, alongside higher levels of trust and more favorable expectations for community benefits, appliance performance, and potential cost savings. Based on these preliminary findings, policymakers should be put on red alert about diffusing hydrogen into the public consciousness in alignment with energy security, fuel poverty, and net-zero agendas.

Keywords: hydrogen homes, social acceptance, consumer heterogeneity, heat decarbonization

Procedia PDF Downloads 114
5014 Using Chatbots to Create Situational Content for Coursework

Authors: B. Bricklin Zeff

Abstract:

This research explores the development and application of a specialized chatbot tailored for a nursing English course, with a primary objective of augmenting student engagement through situational content and responsiveness to key expressions and vocabulary. Introducing the chatbot, elucidating its purpose, and outlining its functionality are crucial initial steps in the research study, as they provide a comprehensive foundation for understanding the design and objectives of the specialized chatbot developed for the nursing English course. These elements establish the context for subsequent evaluations and analyses, enabling a nuanced exploration of the chatbot's impact on student engagement and language learning within the nursing education domain. The subsequent exploration of the intricate language model development process underscores the fusion of scientific methodologies and artistic considerations in this application of artificial intelligence (AI). Tailored for educators and curriculum developers in nursing, practical principles extending beyond AI and education are considered. Some insights into leveraging technology for enhanced language learning in specialized fields are addressed, with potential applications of similar chatbots in other professional English courses. The overarching vision is to illuminate how AI can transform language learning, rendering it more interactive and contextually relevant. The presented chatbot is a tangible example, equipping educators with a practical tool to enhance their teaching practices. Methodologies employed in this research encompass surveys and discussions to gather feedback on the chatbot's usability, effectiveness, and potential improvements. The chatbot system was integrated into a nursing English course, facilitating the collection of valuable feedback from participants. Significant findings from the study underscore the chatbot's effectiveness in encouraging more verbal practice of target expressions and vocabulary necessary for performance in role-play assessment strategies. This outcome emphasizes the practical implications of integrating AI into language education in specialized fields. This research holds significance for educators and curriculum developers in the nursing field, offering insights into integrating technology for enhanced English language learning. The study's major findings contribute valuable perspectives on the practical impact of the chatbot on student interaction and verbal practice. Ultimately, the research sheds light on the transformative potential of AI in making language learning more interactive and contextually relevant, particularly within specialized domains like nursing.

Keywords: chatbot, nursing, pragmatics, role-play, AI

Procedia PDF Downloads 65
5013 Effects of Umbilical Cord Clamping on Puppies Neonatal Vitality

Authors: Maria L. G. Lourenço, Keylla H. N. P. Pereira, Viviane Y. Hibaru, Fabiana F. Souza, Joao C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado

Abstract:

In veterinary medicine, the standard procedure during a caesarian section is clamping the umbilical cord immediately after birth. In human neonates, when the umbilical cord is kept intact after birth, blood continues to flow from the cord to the newborn, but this procedure may prove to be difficult in dogs due to the shorter umbilical cord and the number of newborns in the litter. However, a possible detachment of the placenta while keeping the umbilical cord intact may make the residual blood to flow to the neonate. This study compared the effects on neonatal vitality between clamping and no clamping the umbilical cord of dogs born through cesarean section, assessing them through Apgar and reflex scores. Fifty puppies delivered from 16 bitches were randomly allocated to receive clamping of the umbilical cord immediately (n=25) or to not receive the clamping until breathing (n=25). The neonates were assessed during the first five min of life and once again 10 min after the first assessment. The differences observed between the two moments were significant (p < 0.01) for both the Apgar and reflex scores. The differences observed between the groups (clamped vs. not clamped) were not significant for the Apgar score in the 1st moment (p=0.1), but the 2nd moment was significantly (p < 0.01) in the group not clamped, as well as significant (p < 0.05) for the reflex score in the 1st moment and 2nd moment (p < 0.05), revealing higher neonatal vitality in the not clamped group. The differences observed between the moments (1st vs. 2nd) of each group as significant (p < 0.01), revealing higher neonatal vitality in the 2nd moments. In the no clamping group, after removing the neonates together with the umbilical cord and the placenta, we observed that the umbilical cords were full of blood at the time of birth and later became whitish and collapsed, demonstrating the blood transfer. The results suggest that keeping the umbilical cord intact for at least three minutes after the onset breathing is not detrimental and may contribute to increase neonate vitality in puppies delivered by cesarean section.

Keywords: puppy vitality, newborn dog, cesarean section, Apgar score

Procedia PDF Downloads 153
5012 Thermal Regulation of Channel Flows Using Phase Change Material

Authors: Kira Toxopeus, Kamran Siddiqui

Abstract:

Channel flows are common in a wide range of engineering applications. In some types of channel flows, particularly the ones involving chemical or biological processes, the control of the flow temperature is crucial to maintain the optimal conditions for the chemical reaction or to control the growth of biological species. This often becomes an issue when the flow experiences temperature fluctuations due to external conditions. While active heating and cooling could regulate the channel temperature, it may not be feasible logistically or economically and is also regarded as a non-sustainable option. Thermal energy storage utilizing phase change material (PCM) could provide the required thermal regulation sustainably by storing the excess heat from the channel and releasing it back as required, thus regulating the channel temperature within a range in the proximity of the PCM melting temperature. However, in designing such systems, the configuration of the PCM storage within the channel is critical as it could influence the channel flow dynamics, which would, in turn, affect the heat exchange between the channel fluid and the PCM. The present research is focused on the investigation of the flow dynamical behavior in the channel during heat transfer from the channel flow to the PCM thermal energy storage. Offset vertical columns in a narrow channel were used that contained the PCM. Two different column shapes, square and circular, were considered. Water was used as the channel fluid that entered the channel at a temperature higher than that of the PCM melting temperature. Hence, as the water was passing through the channel, the heat was being transferred from the water to the PCM, causing the PCM to store the heat through a phase transition from solid to liquid. Particle image velocimetry (PIV) was used to measure the two-dimensional velocity field of the channel flow as it flows between the PCM columns. Thermocouples were also attached to the PCM columns to measure the PCM temperature at three different heights. Three different water flow rates (0.5, 0.75 and 1.2 liters/min) were considered. At each flow rate, experiments were conducted at three different inlet water temperatures (28ᵒC, 33ᵒC and 38ᵒC). The results show that the flow rate and the inlet temperature influenced the flow behavior inside the channel.

Keywords: channel flow, phase change material, thermal energy storage, thermal regulation

Procedia PDF Downloads 140
5011 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0

Authors: Harris Niavis, Dimitra Politaki

Abstract:

The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.

Keywords: blockchain, data quality, industry4.0, product quality

Procedia PDF Downloads 189
5010 The Post-Crisis Expansion of European Central Bank Powers: Understanding the Legitimate Boundaries of the ECB's Supervisory Independence and Accountability

Authors: Jakub Gren

Abstract:

The recent transfer of banking supervision to the ECB has expanded its influence as of a non-majoritarian and technocratic policy-shaper in EU supervisory policies. To fulfil the main policy objectives of the Single Supervisory Mechanism, the ECB has been tasked with building a single supervisory approach to supervised banks across the euro area and is now exclusively responsible for direct supervision of the largest ‘significant’ euro area banks and the oversight of the remaining ‘less significant’ banks. This enhanced supranational position of the ECB significantly alters the EU institutional order and creates powerful incentives to actively pursue integrationist agenda by the ECB. However, this drastic shift has a little impact upon adapting the ECB’s new supervisory mandate to the requirements of democratic legitimacy. Whereas the ECB’s strong pre-crisis independence and limited accountability could be reconciled with democratic principles through a clearly articulated price stability mandate, independence and limited accountability in the context of a more complex supervisory mandate is problematic. Hence, in order to ensure the democratic legitimacy of the ECB/SSM’s supervisory policies, the ECB’s supervisory mandate requires both a lower scope of independence and higher accountability requirements. To address this situation, organizational separation (“Chinese Wall”) between the ECB monetary and supervisory arms was introduced. This separation includes different reporting lines and the relocation of the ECB’s monetary function to a new building complex while leaving its supervisory function at the Euro-tower (“Two Towers”). This paper argues that these measures are not sufficient to establish proper checks and balances on the ECB’s powers to pursue euro zone’s wide supervisory policies. As a remedy, this contribution suggests that the ECB’s Treaties-embedded independence, as set out by art. 130 TFEU, designed to carry out its monetary function shall not be fully applicable to its supervisory function. Indeed functional and conditional reading of this provision to ECB supervisory function could enhance the legitimacy of future ECB’s supervisory action.

Keywords: accountability and transparency, democratic governance, financial management, rule of law

Procedia PDF Downloads 207