Search results for: Bayesian models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6960

Search results for: Bayesian models

1650 A Phenomenological Approach to Computational Modeling of Analogy

Authors: José Eduardo García-Mendiola

Abstract:

In this work, a phenomenological approach to computational modeling of analogy processing is carried out. The paper goes through the consideration of the structure of the analogy, based on the possibility of sustaining the genesis of its elements regarding Husserl's genetic theory of association. Among particular processes which take place in order to get analogical inferences, there is one which arises crucial for enabling efficient base cases retrieval through long-term memory, namely analogical transference grounded on familiarity. In general, it has been argued that analogical reasoning is a way by which a conscious agent tries to determine or define a certain scope of objects and relationships between them using previous knowledge of other familiar domain of objects and relations. However, looking for a complete description of analogy process, a deeper consideration of phenomenological nature is required in so far, its simulation by computational programs is aimed. Also, one would get an idea of how complex it would be to have a fully computational account of the analogy elements. In fact, familiarity is not a result of a mere chain of repetitions of objects or events but generated insofar as the object/attribute or event in question is integrable inside a certain context that is taking shape as functionalities and functional approaches or perspectives of the object are being defined. Its familiarity is generated not by the identification of its parts or objective determinations as if they were isolated from those functionalities and approaches. Rather, at the core of such a familiarity between entities of different kinds lays the way they are functionally encoded. So, and hoping to make deeper inroads towards these topics, this essay allows us to consider that cognitive-computational perspectives can visualize, from the phenomenological projection of the analogy process reviewing achievements already obtained as well as exploration of new theoretical-experimental configurations towards implementation of analogy models in specific as well as in general purpose machines.

Keywords: analogy, association, encoding, retrieval

Procedia PDF Downloads 122
1649 A Dual Spark Ignition Timing Influence for the High Power Aircraft Radial Engine Using a CFD Transient Modeling

Authors: Tytus Tulwin, Ksenia Siadkowska, Rafał Sochaczewski

Abstract:

A high power radial reciprocating engine is characterized by a large displacement volume of a combustion chamber. Choosing the right moment for ignition is important for a high performance or high reliability and ignition certainty. This work shows methods of simulating ignition process and its impact on engine parameters. For given conditions a flame speed is limited when a deflagration combustion takes place. Therefore, a larger length scale of the combustion chamber compared to a standard size automotive engine makes combustion take longer time to propagate. In order to speed up the mixture burn-up time the second spark is introduced. The transient Computational Fluid Dynamics model capable of simulating multicycle engine processes was developed. The CFD model consists of ECFM-3Z combustion and species transport models. A relative ignition timing difference for the both spark sources is constant. The temperature distribution on engine walls was calculated in the separate conjugate heat transfer simulation. The in-cylinder pressure validation was performed for take-off power flight conditions. The influence of ignition timing on parameters like in-cylinder temperature or rate of heat release was analyzed. The most advantageous spark timing for the highest power output was chosen. The conditions around the spark plug locations for the pre-ignition period were analyzed. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, ignition, simulation, timing

Procedia PDF Downloads 296
1648 The Optimization of TICSI in the Convergence Mechanism of Urban Water Management

Authors: M. Macchiaroli, L. Dolores, V. Pellecchia

Abstract:

With the recent Resolution n. 580/2019/R/idr, the Italian Regulatory Authority for Energy, Networks, and Environment (ARERA) for the Urban Water Management has introduced, for water managements characterized by persistent critical issues regarding the planning and organization of the service and the implementation of the necessary interventions for the improvement of infrastructures and management quality, a new mechanism for determining tariffs: the regulatory scheme of Convergence. The aim of this regulatory scheme is the overcoming of the Water Service Divided in order to improve the stability of the local institutional structures, technical quality, contractual quality, as well as in order to guarantee transparency elements for Users of the Service. Convergence scheme presupposes the identification of the cost items to be considered in the tariff in parametric terms, distinguishing three possible cases according to the type of historical data available to the Manager. The study, in particular, focuses on operations that have neither data on tariff revenues nor data on operating costs. In this case, the Manager's Constraint on Revenues (VRG) is estimated on the basis of a reference benchmark and becomes the starting point for defining the structure of the tariff classes, in compliance with the TICSI provisions (Integrated Text for tariff classes, ARERA's Resolution n. 665/2017/R/idr). The proposed model implements the recent studies on optimization models for the definition of tariff classes in compliance with the constraints dictated by TICSI in the application of the Convergence mechanism, proposing itself as a support tool for the Managers and the local water regulatory Authority in the decision-making process.

Keywords: decision-making process, economic evaluation of projects, optimizing tools, urban water management, water tariff

Procedia PDF Downloads 119
1647 Double-Spear 1-H2-1 Oncolytic-Immunotherapy for Refractory and Relapsing High-Risk Human Neuroblastoma and Glioma

Authors: Lian Zeng

Abstract:

Double-Spear 1-H2-1 (DS1-H2-1) is an oncolytic virus and an innovative biological drug candidate. The chemical composition of the drug product is a live attenuated West Nile virus (WNV) containing the human T cell costimulator (CD86) gene. After intratumoral injection, the virus can rapidly self-replicate in the injected site and lyse/kill the tumor by repeated infection among tumor cells. We also established xenograft tumor models in mice to evaluate the drug candidate's efficacy on those tumors. The results from preclinical studies on transplanted tumors in immunodeficient mice showed that DS1-H2-1 had significant oncolytic effects on human-origin cancers: it completely (100%) shrieked human glioma; limited human neuroblastoma growth reached as high as 95% growth inhibition rate (%TGITW). The safety data of preclinical animal experiments confirmed that DS1-H2-1 is safe as a biological drug for clinical use. In the preclinical drug efficacy experiment, virus-drug administration with different doses did not show abnormal signs and disease symptoms in more than 300 tested mice, and no side effects or death occurred through various administration routes. Intravenous administration did not cause acute infectious disease or other side effects. However, the replication capacity of the virus in tumor tissue via intravenous administration is only 1% of that of direct intratumoral administration. The direct intratumoral administration of DS1-H2-1 had a higher rate of viral replication. Therefore, choosing direct intratumoral injection can ensure both efficacy and safety.

Keywords: oncolytic virus, WNV-CD86, immunotherapy drugs, glioma, neuroblastoma

Procedia PDF Downloads 132
1646 Implementing 3D Printing for 3D Digital Modeling in the Classroom

Authors: Saritdikhun Somasa

Abstract:

3D printing fabrication has empowered many artists in many fields. Artists who work in stop motion, 3D modeling, toy design, product design, sculpture, and fine arts become one-stop shop operations–where they can design, prototype, and distribute their designs for commercial or fine art purposes. The author has developed a digital sculpting course that fosters digital software, peripheral hardware, and 3D printing with traditional sculpting concept techniques to address the complexities of this multifaceted process, allowing the students to produce complex 3d-printed work. The author will detail the preparation and planning for pre- to post-process 3D printing elements, including software, materials, space, equipment, tools, and schedule consideration for small to medium figurine design statues in a semester-long class. In addition, the author provides insight into teaching challenges in the non-studio space that requires students to work intensively on post-printed models to assemble parts, finish, and refine the 3D printed surface. Even though this paper focuses on the 3D printing processes and techniques for small to medium design statue projects for the Digital Media program, the author hopes the paper will benefit other fields of study such as craft practices, product design, and fine-arts programs. Other schools that might implement 3D printing and fabrication in their programs will find helpful information in this paper, such as a teaching plan, choices of equipment and materials, adaptation for non-studio spaces, and putting together a complete and well-resolved project for students.

Keywords: 3D digital modeling, 3D digital sculpting, 3D modeling, 3D printing, 3D digital fabrication

Procedia PDF Downloads 104
1645 A Virtual Reality Simulation Tool for Reducing the Risk of Building Content during Earthquakes

Authors: Ali Asgary, Haopeng Zhou, Ghassem Tofighi

Abstract:

Use of virtual (VR), augmented reality (AR), and extended reality technologies for training and education has increased in recent years as more hardware and software tools have become available and accessible to larger groups of users. Similarly, the applications of these technologies in earthquake related training and education are on the rise. Several studies have reported promising results for the use of VR and AR for evacuation behaviour and training under earthquake situations. They simulate the impacts that earthquake has on buildings, buildings’ contents, and how building occupants and users can find safe spots or open paths to outside. Considering that considerable number of earthquake injuries and fatalities are linked to the behaviour, our goal is to use these technologies to reduce the impacts of building contents on people. Building on our artificial intelligence (AI) based indoor earthquake risk assessment application that enables users to use their mobile device to assess the risks associated with building contents during earthquakes, we develop a virtual reality application to demonstrate the behavior of different building contents during earthquakes, their associate moving, spreading, falling, and collapsing risks, and their risk mitigation methods. We integrate realistic seismic models, building contents behavior with and without risk mitigation measures in virtual reality environment. The application can be used for training of architects, interior design experts, and building users to enhance indoor safety of the buildings that can sustain earthquakes. This paper describes and demonstrates the application development background, structure, components, and usage.

Keywords: virtual reality, earthquake damage, building content, indoor risks, earthquake risk mitigation, interior design, unity game engine, oculus

Procedia PDF Downloads 105
1644 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques

Authors: Gizem Eser Erdek

Abstract:

This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.

Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet

Procedia PDF Downloads 77
1643 Application of Continuum Damage Concept to Simulation of the Interaction between Hydraulic Fractures and Natural Fractures

Authors: Anny Zambrano, German Gonzalez, Yair Quintero

Abstract:

The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures, the objective is representing the path and relation among this two fractures types and predict its complex behavior without the need to pre-define their direction as occurs in other finite element applications, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing, the fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, complex boundary conditions, strain hardening and softening, and strain based damage evolution in compression and tension. The complete governing equations are provided and the method is described in detail to permit readers to replicate all results. The model is compared to models that are published and available. Comparisons are focused in five interactions between natural fractures (NF) and hydraulic fractures: Fractured arrested at NF, crossing NF with or without offset, branching at intersecting NFs, branching at end of NF and NF dilation due to shear slippage. The most significant new finding is, that is not necessary to use pre-defined addresses propagation and stress condition can be evaluated as a dominant factor in the process. This is important because it can model in a more real way the generated complex hydraulic fractures, and be a valuable tool to predict potential problems and different geometries of the fracture network in the process of fracturing due to fluid injection.

Keywords: continuum damage, hydraulic fractures, natural fractures, complex fracture network, stiffness

Procedia PDF Downloads 343
1642 Visual Intelligence: Perception, Image and Manipulation in Visual Communication

Authors: Poojitha Vemula

Abstract:

Understanding how we use image manipulation to communicate through an audience’s perceptions and conceive visual intelligence. With the use of many software and high-end skills, designers have developed a third eye to combine two different visuals and create the desired image by using photoshop and other software skills. The purpose of visual intelligence is to convey a message to the targeted audience. For instance, the images of models are retouched on their skin to make it more convincing and draw attention from the audience. There are many ways of manipulating an image, such as double exposure, retouching photography inks or paint airbrushing and piecing photos together, or enhancing the brightness and contrast. To understand visual intelligence, a questionnaire survey as well as research was conducted on how image manipulation is used by both the audience and the designers. This depends on the message that needs to be conveyed by the brands. For instance, Fair & Lovely, a brightening cream for ladies use a lot of retouching and effects to show the dramatic change the cream takes effect on dark or dusky faces. Thus the designer’s role is to use their third eye to incorporate the message into visuals. The research and questionnaire survey concludes the perceptions and manipulations used in visual communication. However this is all to make an effortless communication between the designer and the audience by using the skills of the designer and the features provided by the software. The objective of visual intelligence is to covet the message of the brands that advertise their products or services by using visuals through softwares. Conveying a message through visual intelligence requires an audiences perceptions and understanding from the visuals created by the artists or designers. Visual intelligence determines how we use our technical skills to retouch and manipulate an image for a better understanding to convey the message to the targeted audience. This also bridges the communication between the brand and the audience.

Keywords: graphic design, visual communication, convey messages, photoshop, image manipulation

Procedia PDF Downloads 220
1641 Digital Athena – Contemporary Commentaries and Greek Mythology Explored through 3D Printing

Authors: Rose Lastovicka, Bernard Guy, Diana Burton

Abstract:

Greek myth and art acted as tools to think with, and a lens through which to explore complex topics as a form of social media. In particular, coins were a form of propaganda to communicate the wealth and power of the city-states they originated from as they circulated from person to person. From this, how can the application of 3D printing technologies explore the infusion of ancient forms with contemporary commentaries to promote discussion? The digital reconstruction of artifacts is a topic that has been researched by various groups all over the globe. Yet, the exploration of Greek myth through artifacts infused with contemporary issues is currently unexplored in this medium. Using the Stratasys J750 3D printer - a multi-material, full-colour 3D printer - a series of coins inspired by ancient Greek currency and myth was created to present commentaries on the adversities surrounding individuals in the LGBT+ community. Using the J750 as the medium for expression allows for complete control and precision of the models to create complex high-resolution iconography. The coins are printed with a hard, translucent material with coloured 3D visuals embedded into the coin to then be viewed in close contact by the audience. These coins as commentaries present an avenue for wider understanding by drawing perspectives not only from sources concerned with the contemporary LGBT+ community but also from sources exploring ancient homosexuality and the perception and regulation of it in antiquity. By displaying what are usually points of contention between anti- and pro-LGBT+ parties, this visual medium opens up a discussion to both parties, suggesting heritage can play a vital interpretative role in the contemporary world.

Keywords: 3D printing, design, Greek mythology, LGBT+ community

Procedia PDF Downloads 116
1640 Comparing Field Displacement History with Numerical Results to Estimate Geotechnical Parameters: Case Study of Arash-Esfandiar-Niayesh under Passing Tunnel, 2.5 Traffic Lane Tunnel, Tehran, Iran

Authors: A. Golshani, M. Gharizade Varnusefaderani, S. Majidian

Abstract:

Underground structures are of those structures that have uncertainty in design procedures. That is due to the complexity of soil condition around. Under passing tunnels are also such affected structures. Despite geotechnical site investigations, lots of uncertainties exist in soil properties due to unknown events. As results, it possibly causes conflicting settlements in numerical analysis with recorded values in the project. This paper aims to report a case study on a specific under passing tunnel constructed by New Austrian Tunnelling Method in Iran. The intended tunnel has an overburden of about 11.3m, the height of 12.2m and, the width of 14.4m with 2.5 traffic lane. The numerical modeling was developed by a 2D finite element program (PLAXIS Version 8). Comparing displacement histories at the ground surface during the entire installation of initial lining, the estimated surface settlement was about four times the field recorded one, which indicates that some local unknown events affect that value. Also, the displacement ratios were in a big difference between the numerical and field data. Consequently, running several numerical back analyses using laboratory and field tests data, the geotechnical parameters were accurately revised to match with the obtained monitoring data. Finally, it was found that usually the values of soil parameters are conservatively low-estimated up to 40 percent by typical engineering judgment. Additionally, it could be attributed to inappropriate constitutive models applied for the specific soil condition.

Keywords: NATM, surface displacement history, numerical back-analysis, geotechnical parameters

Procedia PDF Downloads 194
1639 Access to Sexual Reproductive Health (SRH) Education and Services to Deaf Adolescents in Wakiso, Uganda - The Ugandan Perspective

Authors: Racheal Ayanga, Nancy Katumba Muwangala, Jane Babirye, Harriet Kivumbi

Abstract:

Background: Deaf adolescents are vulnerable. Deafness limits their access to resources that are accessed by their hearing peers. There is minimal attention placed on the SRH needs of persons with disabilities, especially in developing countries. We sought to assess barriers to access of SRH education and services for deaf adolescents in Uganda. Methods: We performed a cross sectional study using a questionnaire on knowledge of and access to SRH education and services from a selected sample of deaf adolescents aged 13-19 years at Wakiso Secondary school for the deaf. A consecutive sample of eligible participants was asked to join the study after obtaining informed consent until the target sample size was reached. Results: From 01 Jul 2022 to 30 Jan 2023, 70 quantitative interviews were conducted. Participants’ mean age was 17 years, and 66% were female. 89% had heard about several components of SRH. 99% reported a need for education and services but had challenges with access 85% of the time. 54% reported receipt of education and services from government or private facilities, and the rest from friends, parents, siblings, teachers and the internet. Conclusion: Government needs to look into availing tailored, sustainable SRH education/services to deaf adolescents at health facilities and teach health workers sign language. SRH education to parents, teachers and communities of deaf adolescents improves access in hard-to-reach areas. Integration of services into routine health care is key in creating and improving models of access to wider communities of persons with disabilities to improve their mental health.

Keywords: sexual and reproductive health, deaf, adolescents, education, services, disabilities, mental health, hard-to-reach areas

Procedia PDF Downloads 85
1638 Statistical Modelling of Maximum Temperature in Rwanda Using Extreme Value Analysis

Authors: Emmanuel Iyamuremye, Edouard Singirankabo, Alexis Habineza, Yunvirusaba Nelson

Abstract:

Temperature is one of the most important climatic factors for crop production. However, severe temperatures cause drought, feverish and cold spells that have various consequences for human life, agriculture, and the environment in general. It is necessary to provide reliable information related to the incidents and the probability of such extreme events occurring. In the 21st century, the world faces a huge number of threats, especially from climate change, due to global warming and environmental degradation. The rise in temperature has a direct effect on the decrease in rainfall. This has an impact on crop growth and development, which in turn decreases crop yield and quality. Countries that are heavily dependent on agriculture use to suffer a lot and need to take preventive steps to overcome these challenges. The main objective of this study is to model the statistical behaviour of extreme maximum temperature values in Rwanda. To achieve such an objective, the daily temperature data spanned the period from January 2000 to December 2017 recorded at nine weather stations collected from the Rwanda Meteorological Agency were used. The two methods, namely the block maxima (BM) method and the Peaks Over Threshold (POT), were applied to model and analyse extreme temperature. Model parameters were estimated, while the extreme temperature return periods and confidence intervals were predicted. The model fit suggests Gumbel and Beta distributions to be the most appropriate models for the annual maximum of daily temperature. The results show that the temperature will continue to increase, as shown by estimated return levels.

Keywords: climate change, global warming, extreme value theory, rwanda, temperature, generalised extreme value distribution, generalised pareto distribution

Procedia PDF Downloads 183
1637 Window Analysis and Malmquist Index for Assessing Efficiency and Productivity Growth in a Pharmaceutical Industry

Authors: Abbas Al-Refaie, Ruba Najdawi, Nour Bata, Mohammad D. AL-Tahat

Abstract:

The pharmaceutical industry is an important component of health care systems throughout the world. Measurement of a production unit-performance is crucial in determining whether it has achieved its objectives or not. This paper applies data envelopment (DEA) window analysis to assess the efficiencies of two packaging lines; Allfill (new) and DP6, in the Penicillin plant in a Jordanian Medical Company in 2010. The CCR and BCC models are used to estimate the technical efficiency, pure technical efficiency, and scale efficiency. Further, the Malmquist productivity index is computed to measure then employed to assess productivity growth relative to a reference technology. Two primary issues are addressed in computation of Malmquist indices of productivity growth. The first issue is the measurement of productivity change over the period, while the second is to decompose changes in productivity into what are generally referred to as a ‘catching-up’ effect (efficiency change) and a ‘frontier shift’ effect (technological change). Results showed that DP6 line outperforms the Allfill in technical and pure technical efficiency. However, the Allfill line outperforms DP6 line in scale efficiency. The obtained efficiency values can guide production managers in taking effective decisions related to operation, management, and plant size. Moreover, both machines exhibit a clear fluctuations in technological change, which is the main reason for the positive total factor productivity change. That is, installing a new Allfill production line can be of great benefit to increasing productivity. In conclusions, the DEA window analysis combined with the Malmquist index are supportive measures in assessing efficiency and productivity in pharmaceutical industry.

Keywords: window analysis, malmquist index, efficiency, productivity

Procedia PDF Downloads 609
1636 Overview of the 2017 Fire Season in Amazon

Authors: Ana C. V. Freitas, Luciana B. M. Pires, Joao P. Martins

Abstract:

In recent years, fire dynamics in deforestation areas of tropical forests have received considerable attention because of their relationship to climate change. Climate models project great increases in the frequency and area of drought in the Amazon region, which may increase the occurrence of fires. This study analyzes the historical record number of fire outbreaks in 2017 using satellite-derived data sets of active fire detections, burned area, precipitation, and data of the Fire Program from the Center for Weather Forecasting and Climate Studies (CPTEC/INPE). A downward trend in the number of fire outbreaks occurred in the first half of 2017, in relation to the previous year. This decrease can be related to the fact that 2017 was not an El Niño year and, therefore, the observed rainfall and temperature in the Amazon region was close to normal conditions. Meanwhile, the worst period in history for fire outbreaks began with the subsequent arrival of the dry season. September of 2017 exceeded all monthly records for number of fire outbreaks per month in the entire series. This increase was mainly concentrated in Bolivia and in the states of Amazonas, northeastern Pará, northern Rondônia and Acre, regions with high densities of rural settlements, which strongly suggests that human action is the predominant factor, aggravated by the lack of precipitation during the dry season allowing the fires to spread and reach larger areas. Thus, deforestation in the Amazon is primarily a human-driven process: climate trends may be providing additional influences.

Keywords: Amazon forest, climate change, deforestation, human-driven process, fire outbreaks

Procedia PDF Downloads 128
1635 Injection of Bradykinin in Femoral Artery Elicits Cardiorespiratory Reflexes Involving Perivascular Afferents in Rat Models

Authors: Sanjeev K. Singh, Maloy B. Mandal, Revand R.

Abstract:

The physiology of baroreceptors and chemoreceptors present in large blood vessels of the heart is well known in regulation of cardiorespiratory functions. Since large blood vessels and peripheral blood vessels are of same mesodermal origin, therefore, involvement of the latter in regulation of cardiorespiratory system is expected. Role of perivascular nerves in mediating cardiorespiratory alterations produced after intra-arterial injection of a nociceptive agent (bradykinin) was examined in urethane anesthetized male rats. Respiratory frequency, blood pressure, and heart rate were recorded for 30 min after the retrograde injection of bradykinin/saline in the femoral artery. In addition, paw edema was determined and water content was expressed as percentage of wet weight. Injection of bradykinin produced immediate tachypnoeic, hypotensive and bradycardiac responses of shorter latency (5-8 s) favoring the neural mechanisms involved in it. Injection of equi-volume of saline did not produce any responses and served as time matched control. Paw edema was observed in the ipsilateral hind limb. Pretreatment with diclofenac sodium significantly attenuated the bradykinin-induced responses and also blocked the paw edema. Ipsilateral femoral and sciatic nerve sectioning attenuated bradykinin-induced responses significantly indicating the origin of responses from the local vascular bed. Administration of bradykinin in the segment of an artery produced reflex cardiorespiratory changes by stimulating the perivascular nociceptors involving prostaglandins. This is a novel study exhibiting the role of peripheral blood vessels in regulation of cardiorespiratory system.

Keywords: vasosensory reflex, cardiorespiratory changes, nociceptive agent, bradykinin, VR1 receptors

Procedia PDF Downloads 148
1634 Predictions of Thermo-Hydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings, abbreviated as GFBs, are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional, abbreviated as 3D, fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.

Keywords: fluid-structure interaction, multi-physics simulations, gas foil bearing, oil-free, transient thermo-hydrodynamic

Procedia PDF Downloads 163
1633 Current Methods for Drug Property Prediction in the Real World

Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh

Abstract:

Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.

Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning

Procedia PDF Downloads 81
1632 Digitizing Masterpieces in Italian Museums: Techniques, Challenges and Consequences from Giotto to Caravaggio

Authors: Ginevra Addis

Abstract:

The possibility of reproducing physical artifacts in a digital format is one of the opportunities offered by the technological advancements in information and communication most frequently promoted by museums. Indeed, the study and conservation of our cultural heritage have seen significant advancement due to the three-dimensional acquisition and modeling technology. A variety of laser scanning systems has been developed, based either on optical triangulation or on time-of-flight measurement, capable of producing digital 3D images of complex structures with high resolution and accuracy. It is necessary, however, to explore the challenges and opportunities that this practice brings within museums. The purpose of this paper is to understand what change is introduced by digital techniques in those museums that are hosting digital masterpieces. The methodology used will investigate three distinguished Italian exhibitions, related to the territory of Milan, trying to analyze the following issues about museum practices: 1) how digitizing art masterpieces increases the number of visitors; 2) what the need that calls for the digitization of artworks; 3) which techniques are most used; 4) what the setting is; 5) the consequences of a non-publication of hard copies of catalogues; 6) envision of these practices in the future. Findings will show how interconnection plays an important role in rebuilding a collection spread all over the world. Secondly how digital artwork duplication and extension of reality entail new forms of accessibility. Thirdly, that collection and preservation through digitization of images have both a social and educational mission. Fourthly, that convergence of the properties of different media (such as web, radio) is key to encourage people to get actively involved in digital exhibitions. The present analysis will suggest further research that should create museum models and interaction spaces that act as catalysts for innovation.

Keywords: digital masterpieces, education, interconnection, Italian museums, preservation

Procedia PDF Downloads 175
1631 Digitalization and High Audit Fees: An Empirical Study Applied to US Firms

Authors: Arpine Maghakyan

Abstract:

The purpose of this paper is to study the relationship between the level of industry digitalization and audit fees, especially, the relationship between Big 4 auditor fees and industry digitalization level. On the one hand, automation of business processes decreases internal control weakness and manual mistakes; increases work effectiveness and integrations. On the other hand, it may cause serious misstatements, high business risks or even bankruptcy, typically in early stages of automation. Incomplete automation can bring high audit risk especially if the auditor does not fully understand client’s business automation model. Higher audit risk consequently will cause higher audit fees. Higher audit fees for clients with high automation level are more highlighted in Big 4 auditor’s behavior. Using data of US firms from 2005-2015, we found that industry level digitalization is an interaction for the auditor quality on audit fees. Moreover, the choice of Big4 or non-Big4 is correlated with client’s industry digitalization level. Big4 client, which has higher digitalization level, pays more than one with low digitalization level. In addition, a high-digitalized firm that has Big 4 auditor pays higher audit fee than non-Big 4 client. We use audit fees and firm-specific variables from Audit Analytics and Compustat databases. We analyze collected data by using fixed effects regression methods and Wald tests for sensitivity check. We use fixed effects regression models for firms for determination of the connections between technology use in business and audit fees. We control for firm size, complexity, inherent risk, profitability and auditor quality. We chose fixed effects model as it makes possible to control for variables that have not or cannot be measured.

Keywords: audit fees, auditor quality, digitalization, Big4

Procedia PDF Downloads 302
1630 Deuterium Effect on the Growth of the Fungus Aspergillus Fumigatus and Candida Albicans

Authors: Farzad Doostishoar, Abdolreza Hasanzadeh, Seyed Amin Ayatolahi Mousavi

Abstract:

Introduction and Goals: Deuterium has different action from its isotopes hydrogen in chemical reactions and biochemical processes. It is not a significant difference in heavier atoms between the behavior of heavier isotope and the lighter One but for very lighter atoms it is significant . According to that most of the weight of all creatures body is water natural rate can be significant. In this article we want to study the effect of reduced deuterium on the fungus cell. If we saw the dependence of deuterium concentration of environment on the cells growth we can test this in invivo models too. Methods: First we measured deuterium concentration of the distillated water this analyze was operated by Arak’s heavy water company. Then the deuterium was diluted to ½ ¼ 1/8 1/16 by adding water free of deuterium for making media. In tree of samples the deuterium concentration was increased by adding D2O up to 10,50,100 times more concentrated. For candida albicans growth we used sabor medium and for aspergillus fomigatis growth we used sabor medium containing chloramphenicol. After culturing the funguses species we put the mediums for each species in the shaker incubator for 10 days in 25 centigrade. In different days and times the plates were studied morphologically and some microscopic characteristics were studied too. This experiments and cultures were repeated 3 times. Results: Statistical analyzes by paired-sample T test showed that aspergilus fomigatoos growth was decreased in concentration of 72 ppm( half deuterium concentration of negative control) significantly. In deuterium concentration reduction the growth reduce into the negative control significantly. The project results showed that candida albicans was sensitive to reduce and decrease of the deuterium in all concentrations.

Keywords: deuterium, cancer cell, growth, candida albicans

Procedia PDF Downloads 401
1629 DNA Double-Strand Break–Capturing Nuclear Envelope Tubules Drive DNA Repair

Authors: Mitra Shokrollahi, Mia Stanic, Anisha Hundal, Janet N. Y. Chan, Defne Urman, Chris A. Jordan, Anne Hakem, Roderic Espin, Jun Hao, Rehna Krishnan, Philipp G. Maass, Brendan C. Dickson, Manoor P. Hande, Miquel A. Pujana, Razqallah Hakem, Karim Mekhail

Abstract:

Current models suggest that DNA double-strand breaks (DSBs) can move to the nuclear periphery for repair. It is unclear to what extent human DSBs display such repositioning. Here we show that the human nuclear envelope localizes to DSBs in a manner depending on DNA damage response (DDR) kinases and cytoplasmic microtubules acetylated by α-tubulin acetyltransferase-1 (ATAT1). These factors collaborate with the linker of nucleoskeleton and cytoskeleton complex (LINC), nuclear pore complex (NPC) protein NUP153, the nuclear lamina and kinesins KIF5B and KIF13B to generate DSB-capturing nuclear envelope tubules (dsbNETs). dsbNETs are partly supported by nuclear actin filaments and the circadian factor PER1 and reversed by kinesin KIFC3. Although dsbNETs promote repair and survival, they are also co-opted during poly (ADP-ribose) polymerase (PARP) inhibition to restrain BRCA1-deficient breast cancer cells and are hyper-induced in cells expressing the aging-linked lamin A mutant progerin. In summary, our results advance understanding of nuclear structure-function relationships, uncover a nuclear-cytoplasmic DDR and identify dsbNETs as critical factors in genome organization and stability.

Keywords: DNA damage response, genome stability, nuclear envelope, cancer, age-related disorders

Procedia PDF Downloads 16
1628 A Secreted Protein Can Attenuate High Fat Diet Induced Obesity and Metabolic Syndrome in Mice

Authors: Abdul Soofi, Katherine Wolf, Egon Ranghini, Gregory Dressler

Abstract:

Obesity and its associated complications, such as insulin resistance and non-alcoholic fatty liver disease, are reaching epidemic proportions. In mice, the TGF-β superfamily is implicated in the regulation of white and brown adipose tissues differentiation. The Kielin/Chordin-like Protein (KCP) is a secreted regulator of the TGF-β superfamily pathways that can inhibit both TGF-β and Activin signals while enhancing the Bone Morphogenetic protein (BMP) signaling. However, the effects of KCP on metabolism and obesity have not been studied in animal models. Thus, we examined the effects of KCP loss or gain of function in mice that were maintained on either a regular or a high fat diet. Loss of KCP sensitized mice to obesity and associated complications such as hepatic steatosis and glucose intolerance. In contrast, transgenic mice that expressed KCP in the kidney, liver and adipose tissues were resistant to developing high fat diet induced obesity and had significantly reduced white adipose tissue. KCP over-expression was able to shift the pattern of Smad signaling in vivo, to increase the levels of P-Smad1 and decrease P-Smad3, resulting in resistance to high fat diet induced hepatic steatosis and glucose intolerance. In aging mice, loss of KCP promoted liver pathology even when mice were fed a normal diet. The data demonstrate that shifting the TGF-β superfamily signaling with a secreted inhibitor or enhancer can alter the physiology of adipose tissue to reduce obesity and can inhibit the initiation and progression of hepatic steatosis to significantly reduce the effects of high fat diet induced metabolic disease.

Keywords: adipose tissue, KCP, obesity, TGF-β, BMP, hepatic steatosis, metabolic syndrome

Procedia PDF Downloads 353
1627 Drape Simulation by Commercial Software and Subjective Assessment of Virtual Drape

Authors: Evrim Buyukaslan, Simona Jevsnik, Fatma Kalaoglu

Abstract:

Simulation of fabrics is more difficult than any other simulation due to complex mechanics of fabrics. Most of the virtual garment simulation software use mass-spring model and incorporate fabric mechanics into simulation models. The accuracy and fidelity of these virtual garment simulation software is a question mark. Drape is a subjective phenomenon and evaluation of drape has been studied since 1950’s. On the other hand, fabric and garment simulation is relatively new. Understanding drape perception of subjects when looking at fabric simulations is critical as virtual try-on becomes more of an issue by enhanced online apparel sales. Projected future of online apparel retailing is that users may view their avatars and try-on the garment on their avatars in the virtual environment. It is a well-known fact that users will not be eager to accept this innovative technology unless it is realistic enough. Therefore, it is essential to understand what users see when they are displaying fabrics in a virtual environment. Are they able to distinguish the differences between various fabrics in virtual environment? The purpose of this study is to investigate human perception when looking at a virtual fabric and determine the most visually noticeable drape parameter. To this end, five different fabrics are mechanically tested, and their drape simulations are generated by commercial garment simulation software (Optitex®). The simulation images are processed by an image analysis software to calculate drape parameters namely; drape coefficient, node severity, and peak angles. A questionnaire is developed to evaluate drape properties subjectively in a virtual environment. Drape simulation images are shown to 27 subjects and asked to rank the samples according to their questioned drape property. The answers are compared to the calculated drape parameters. The results show that subjects are quite sensitive to drape coefficient changes while they are not very sensitive to changes in node dimensions and node distributions.

Keywords: drape simulation, drape evaluation, fabric mechanics, virtual fabric

Procedia PDF Downloads 339
1626 Numerical Investigation of the Needle Opening Process in a High Pressure Gas Injector

Authors: Matthias Banholzer, Hagen Müller, Michael Pfitzner

Abstract:

Gas internal combustion engines are widely used as propulsion systems or in power plants to generate heat and electricity. While there are different types of injection methods including the manifold port fuel injection and the direct injection, the latter has more potential to increase the specific power by avoiding air displacement in the intake and to reduce combustion anomalies such as backfire or pre-ignition. During the opening process of the injector, multiple flow regimes occur: subsonic, transonic and supersonic. To cover the wide range of Mach numbers a compressible pressure-based solver is used. While the standard Pressure Implicit with Splitting of Operators (PISO) method is used for the coupling between velocity and pressure, a high-resolution non-oscillatory central scheme established by Kurganov and Tadmor calculates the convective fluxes. A blending function based on the local Mach- and CFL-number switches between the compressible and incompressible regimes of the developed model. As the considered operating points are well above the critical state of the used fluids, the ideal gas assumption is not valid anymore. For the real gas thermodynamics, the models based on the Soave-Redlich-Kwong equation of state were implemented. The caloric properties are corrected using a departure formalism, for the viscosity and the thermal conductivity the empirical correlation of Chung is used. For the injector geometry, the dimensions of a diesel injector were adapted. Simulations were performed using different nozzle and needle geometries and opening curves. It can be clearly seen that there is a significant influence of all three parameters.

Keywords: high pressure gas injection, hybrid solver, hydrogen injection, needle opening process, real-gas thermodynamics

Procedia PDF Downloads 461
1625 Seismic Assessment of Passive Control Steel Structure with Modified Parameter of Oil Damper

Authors: Ahmad Naqi

Abstract:

Today, the passively controlled buildings are extensively becoming popular due to its excellent lateral load resistance circumstance. Typically, these buildings are enhanced with a damping device that has high market demand. Some manufacturer falsified the damping device parameter during the production to achieve the market demand. Therefore, this paper evaluates the seismic performance of buildings equipped with damping devices, which their parameter modified to simulate the falsified devices, intentionally. For this purpose, three benchmark buildings of 4-, 10-, and 20-story were selected from JSSI (Japan Society of Seismic Isolation) manual. The buildings are special moment resisting steel frame with oil damper in the longitudinal direction only. For each benchmark buildings, two types of structural elements are designed to resist the lateral load with and without damping devices (hereafter, known as Trimmed & Conventional Building). The target building was modeled using STERA-3D, a finite element based software coded for study purpose. Practicing the software one can develop either three-dimensional Model (3DM) or Lumped Mass model (LMM). Firstly, the seismic performance of 3DM and LMM models was evaluated and found excellent coincide for the target buildings. The simplified model of LMM used in this study to produce 66 cases for both of the buildings. Then, the device parameters were modified by ± 40% and ±20% to predict many possible conditions of falsification. It is verified that the building which is design to sustain the lateral load with support of damping device (Trimmed Building) are much more under threat as a result of device falsification than those building strengthen by damping device (Conventional Building).

Keywords: passive control system, oil damper, seismic assessment, lumped mass model

Procedia PDF Downloads 114
1624 State and Determinant of Caregiver’s Mental Health in Thailand: A Household Level Analysis

Authors: Ruttana Phetsitong, Patama Vapattanawong, Malee Sunpuwan, Marc Voelker

Abstract:

The majority of care for older people at home in Thai society falls upon caregivers resulting in caregiver’s mental health problem. Beyond individual characteristics, household factors might have a profound effect on the caregiver’s mental health. But reliable data capturing this at the household level have been limited to date. The objectives of the present study were to explore the levels of Thai caregiver’s mental health and to investigate the factors affecting the mental health at household level. Data were obtained from the 2011 National Survey of Thai Older Persons conducted by the National Statistical Office of Thailand. Caregiver’s mental health was measured by using the 15- items-short version of the Thai Mental Health Indicator (TMHI-15) developed by the Department of Mental Health, the Ministry of Public Health. Multivariate logistic regression models were used to explore the impact of potential factors on caregiver’s mental health. The THMI-15 produced an overall average caregiver mental health score of 30.9 out of 45 (SD 5.3). The score can be categorized into good (34.02-45), fair (27.01-34), and poor (0-27). Duration of care for older people, household wealth, and functional dependency of the older people significantly predicted total caregiver’s mental health. Household economic factor was key in predicting better mental health. Compared to those poorest households, the adjusted effect of the fifth quintile household wealth was high (OR=2.34; 95%CI=1.47-3.73). The findings of this study provide a fuller picture to a better understanding of the level and factors that cause the mental health of Thai caregivers. Health care providers and policymakers should consider these factors when designing interventions aimed at alleviating caregiver’s psychological burden when provided care for older people at home.

Keywords: caregiver’s mental health, household, older people, Thailand

Procedia PDF Downloads 144
1623 An Exploration of Cross-culture Consumer Behaviour - The Characteristics of Chinese Consumers’ Decision Making in Europe

Authors: Yongsheng Guo, Xiaoxian Zhu, Mandella Osei-Assibey Bonsu

Abstract:

This study explores the effects of national culture on consumer behaviour by identifying the characteristics of Chinese consumers’ decision making in Europe. It offers a better understanding of how cultural factors affect consumers’ behaviour, and how consumers make decisions in other nations with different culture. It adopted a grounded theory approach and conducted twenty-four in-depth interviews. Grounded theory models are developed to link the causal conditions, process and consequences. Results reveal that some cultural factors including conservatism, emotionality, acquaintance community, long-term orientation and principles affect Chinese consumers when making purchase decisions in Europe. Most Chinese consumers plan and prepare their expenditure and stay in Europe as cultural learners, and purchase durable products or assets as investment, and share their experiences within a community. This study identified potential problems such as political and social environment, complex procedures, and restrictions. This study found that external factors influence on internal factors and then internal characters determine consumer behaviour. This study proposes that cultural traits developed in convergence evolution through social selection and Chinese consumers persist most characters but adapt some perceptions and actions overtime in other countries. This study suggests that cultural marketing could be adopted by companies to reflect consumers’ preferences. Agencies, shops, and the authorities could take actions to reduce the complexity and restrictions.

Keywords: national culture, consumer behaviour, decision making, cultural marketing

Procedia PDF Downloads 94
1622 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics

Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.

Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network

Procedia PDF Downloads 22
1621 Effect of One-Period of SEAS Exercises on Some Spinal Biomechanical and Postural Parameters in the Students with Idiopathic Scoliosis

Authors: Zandi Ahmad, Sokhanguei Yahya, Saboonchi Reza

Abstract:

Objective: The new and modern lifestyle, especially in the twenty-first century and lack of movement in spinal structure have made patients and the physicians in the field of health and also other insurance companies in the developed and developing countries worry more than before about the abnormalities of spinal column- this great healthcare problem. The high prevalence of spinal column in all age groups -from children to adults- and in all professions have led the researchers to the idea of giving an opportunity to all those who worry about the dangers threatening the spinal column. Therefore, one of the corrective methods for these patients is using SEAS exercises. Materials and Methods: This study aims at investigating the effect of one-period of SEAS exercises on some spinal biomechanical and postural parameters in the students with idiopathic scoliosis. According to the nature of the study and research objectives as well as the data collection methods, the current research is a semi-empirical survey. The research population is comprised of students with idiopathic scoliosis. A total number of 30 students were selected using available sampling and divided into two groups of control and SEAS exercises. Scoliometer was used for data collection. Descriptive statistics were used to categorize the findings. Kolmogorov-Smirnov statistical models were used to confirm that the distribution of the data is normal and T-test was used for effectiveness. Hypothesis testing was done using SPSS21. Conclusion: Results show that SEAS exercises have a significant effect in Adam’s Test. Therefore, according to the obtained results, SEAS exercises can be used to recover idiopathic scoliosis among the students. Further studies in larger samples and treatment, periods as well as more follow-up investigations appear to be essential to prove these effects.

Keywords: SEAS exercises, idiopathic scoliosis, Adam’s test, exercise

Procedia PDF Downloads 292