Search results for: teaching and learning empathy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8593

Search results for: teaching and learning empathy

3313 Development of Gamma Configuration Stirling Engine Using Polymeric and Metallic Additive Manufacturing for Education

Authors: J. Otegui, M. Agirre, M. A. Cestau, H. Erauskin

Abstract:

The increasing accessibility of mid-priced additive manufacturing (AM) systems offers a chance to incorporate this technology into engineering instruction. Furthermore, AM facilitates the creation of manufacturing designs, enhancing the efficiency of various machines. One example of these machines is the Stirling cycle engine. It encompasses complex thermodynamic machinery, revealing various aspects of mechanical engineering expertise upon closer inspection. In this publication, the application of Stirling Engines fabricated via additive manufacturing techniques will be showcased for the purpose of instructive design and product enhancement. The performance of a Stirling engine's conventional displacer and piston is contrasted. The outcomes of utilizing this instructional tool in teaching are demonstrated.

Keywords: 3D printing, additive manufacturing, mechanical design, stirling engine.

Procedia PDF Downloads 51
3312 The Struggle to teach/learn English as a Foreign Language in Turkiye: A Critical Report

Authors: Gizem Yilmazel

Abstract:

Turkiye has been facing failure in English language teaching despite long years of English studies during mandatory education. A body of research studying the reasons of the failure in the literature exists yet the problem has not been solved and English language education is still a phenomenon in Turkiye. The failure is mostly attributed to the methods used in English education (Grammar Translation Method), lack of exposure to the language, inability to practice the language, financial difficulties, the belief of abroad experience necessity, national examinations, and conservative institutional policies. The findings are evident and tangible yet the problem persists. This paper aims to bring the issue a critical perspective and discuss the reasons of the failure.

Keywords: EFL, failure, critical perspective, language education

Procedia PDF Downloads 54
3311 Application of Machine Learning on Google Earth Engine for Forest Fire Severity, Burned Area Mapping and Land Surface Temperature Analysis: Rajasthan, India

Authors: Alisha Sinha, Laxmi Kant Sharma

Abstract:

Forest fires are a recurring issue in many parts of the world, including India. These fires can have various causes, including human activities (such as agricultural burning, campfires, or discarded cigarettes) and natural factors (such as lightning). This study presents a comprehensive and advanced methodology for assessing wildfire susceptibility by integrating diverse environmental variables and leveraging cutting-edge machine learning techniques across Rajasthan, India. The primary goal of the study is to utilize Google Earth Engine to compare locations in Sariska National Park, Rajasthan (India), before and after forest fires. High-resolution satellite data were used to assess the amount and types of changes caused by forest fires. The present study meticulously analyzes various environmental variables, i.e., slope orientation, elevation, normalized difference vegetation index (NDVI), drainage density, precipitation, and temperature, to understand landscape characteristics and assess wildfire susceptibility. In addition, a sophisticated random forest regression model is used to predict land surface temperature based on a set of environmental parameters.

Keywords: wildfire susceptibility mapping, LST, random forest, GEE, MODIS, climatic parameters

Procedia PDF Downloads 22
3310 Evaluating the Service Quality and Customers’ Satisfaction for Lihpaoland in Taiwan

Authors: Wan-Yu Liu, Tiffany April Lin, Yu-Chieh Tang, Yi-Lin Wang, Chieh-Hui Li

Abstract:

As the national income in Taiwan has been raised, the life style of the public has also been changed, so that the tourism industry gradually moves from a service industry to an experience economy. The Lihpaoland is one of the most popular theme parks in Taiwan. However, the related works on performance of service quality of the park have been lacking since its re-operation in 2012. Therefore, this study investigates the quality of software/hardware facilities and services of the Lihpaoland, and aims to achieve the following three goals: 1) analyzing how various sample data of tourists leads to different results for service quality of LihpaoLand; 2) analyzing how tourists respond to the service tangibility, service reliability, service responsiveness, service guarantee, and service empathy of LihpaoLand; 3) according to the theoretical and empirical results, proposing how to improve the overall facilities and services of LihpaoLand, and hoping to provide suggestions to the LihpaoLand or other related businesses to make decision. The survey was conducted on the tourists to the LihpaoLand using convenience sampling, and 400 questionnaires were collected successfully. Analysis results show that tourists paid much attention to maintenance of amusement facilities and safety of the park, and were satisfied with them, which are great advantages of the park. However, transportation around the LihpaoLand was inadequate, and the price of the Fullon hotel (which is the hotel closest to the LihpaoLand) were not accepted by tourists – more promotion events are recommended. Additionally, the shows are not diversified, and should be improved with the highest priority. Tourists did not pay attention to service personnel’s clothing and the ticket price, but they were not satisfied with them. Hence, this study recommends to design more distinctive costumes and conduct ticket promotions. Accordingly, the suggestions made in this study for LihpaoLand are stated as follows: 1) Diversified amusement facilities should be provided to satisfy the needs at different ages. 2) Cheep but tasty catering and more distinctive souvenirs should be offered. 3) Diversified propaganda schemes should be strengthened to increase number of tourists. 4) Quality and professional of the service staff should be enhanced to acquire public praise and tourists revisiting. 5) Ticket promotions in peak seasons, low seasons, and special events should be conducted. 6) Proper traffic flows should be planned and combined with technologies to reduce waiting time of tourists. 7) The features of theme landscape in LihpaoLand should be strengthened to increase willingness of the tourists with special preferences to visit the park. 8) Ticket discounts or premier points card promotions should be adopted to reward the tourists with high loyalty.

Keywords: service quality, customers’ satisfaction, theme park, Taiwan

Procedia PDF Downloads 472
3309 Theoretical Lens Driven Strategies for Emotional Wellbeing of Parents and Children in COVID-19 Era

Authors: Anamika Devi

Abstract:

Based on Vygotsky’s cultural, historical theory and Hedegaard’s concept of transition, this study aims to investigate to propose strategies to maintain digital wellbeing of children and parents during and post COVID pandemic. Due COVID 19 pandemic, children and families have been facing new challenges and sudden changes in their everyday life. While children are juggling to adjust themselves in new circumstance of onsite and online learning settings, parents are juggling with their work-life balance. A number of papers have identified that the COVID-19 pandemic has affected the lives of many families around the world in many ways, for example, the stress level of many parents increased, families faced financial difficulties, uncertainty impacted on long term effects on their emotional and social wellbeing. After searching and doing an intensive literature review from 2020 and 2021, this study has found some scholarly articles provided solution or strategies of reducing stress levels of parents and children in this unprecedented time. However, most of them are not underpinned by proper theoretical lens to ensure they validity and success. Therefore, this study has proposed strategies that are underpinned by theoretical lens to ensure their impact on children’s and parents' emotional wellbeing during and post COVID-19 era. The strategies will highlight on activities for positive coping strategies to the best use of family values and digital technologies.

Keywords: onsite and online learning, strategies, emotional wellbeing, tips, and strategies, COVID19

Procedia PDF Downloads 173
3308 Object-Oriented Modeling Simulation and Control of Activated Sludge Process

Authors: J. Fernandez de Canete, P. Del Saz Orozco, I. Garcia-Moral, A. Akhrymenka

Abstract:

Object-oriented modeling is spreading in current simulation of wastewater treatments plants through the use of the individual components of the process and its relations to define the underlying dynamic equations. In this paper, we describe the use of the free-software OpenModelica simulation environment for the object-oriented modeling of an activated sludge process under feedback control. The performance of the controlled system was analyzed both under normal conditions and in the presence of disturbances. The object-oriented described approach represents a valuable tool in teaching provides a practical insight in wastewater process control field.

Keywords: object-oriented programming, activated sludge process, OpenModelica, feedback control

Procedia PDF Downloads 386
3307 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm

Authors: Zachary Huffman, Joana Rocha

Abstract:

Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.

Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations

Procedia PDF Downloads 135
3306 The Impact of Technology and Artificial Intelligence on Children in Autism

Authors: Dina Moheb Rashid Michael

Abstract:

A descriptive statistical analysis of the data showed that the most important factor evoking negative attitudes among teachers is student behavior. have been presented as useful models for understanding the risk factors and protective factors associated with the emergence of autistic traits. Although these "syndrome" forms of autism reach clinical thresholds, they appear to be distinctly different from the idiopathic or "non-syndrome" autism phenotype. Most teachers reported that kindergartens did not prepare them for the educational needs of children with autism, particularly in relation to non-verbal skills. The study is important and points the way for improving teacher inclusion education in Thailand. Inclusive education for students with autism is still in its infancy in Thailand. Although the number of autistic children in schools has increased significantly since the Thai government introduced the Education Regulations for Persons with Disabilities Act in 2008, there is a general lack of services for autistic students and their families. This quantitative study used the Teaching Skills and Readiness Scale for Students with Autism (APTSAS) to test the attitudes and readiness of 110 elementary school teachers when teaching students with autism in general education classrooms. To uncover the true nature of these co morbidities, it is necessary to expand the definition of autism to include the cognitive features of the disorder, and then apply this expanded conceptualization to examine patterns of autistic syndromes. This study used various established eye-tracking paradigms to assess the visual and attention performance of children with DS and FXS who meet the autism thresholds defined in the Social Communication Questionnaire. To study whether the autistic profiles of these children are associated with visual orientation difficulties ("sticky attention"), decreased social attention, and increased visual search performance, all of which are hallmarks of the idiopathic autistic child phenotype. Data will be collected from children with DS and FXS, aged 6 to 10 years, and two control groups matched for age and intellectual ability (i.e., children with idiopathic autism).In order to enable a comparison of visual attention profiles, cross-sectional analyzes of developmental trajectories are carried out. Significant differences in the visual-attentive processes underlying the presentation of autism in children with FXS and DS have been suggested, supporting the concept of syndrome specificity. The study provides insights into the complex heterogeneity associated with autism syndrome symptoms and autism itself, with clinical implications for the utility of autism intervention programs in DS and FXS populations.

Keywords: attitude, autism, teachers, sports activities, movement skills, motor skills

Procedia PDF Downloads 58
3305 Integrated Machine Learning Framework for At-Home Patients Personalized Risk Prediction Using Activities, Biometric, and Demographic Features

Authors: Claire Xu, Welton Wang, Manasvi Pinnaka, Anqi Pan, Michael Han

Abstract:

Hospitalizations account for one-third of the total health care spending in the US. Early risk detection and intervention can reduce this high cost and increase the satisfaction of both patients and physicians. Due to the lack of awareness of the potential arising risks in home environment, the opportunities for patients to seek early actions of clinical visits are dramatically reduced. This research aims to offer a highly personalized remote patients monitoring and risk assessment AI framework to identify the potentially preventable hospitalization for both acute as well as chronic diseases. A hybrid-AI framework is trained with data from clinical setting, patients surveys, as well as online databases. 20+ risk factors are analyzed ranging from activities, biometric info, demographic info, socio-economic info, hospitalization history, medication info, lifestyle info, etc. The AI model yields high performance of 87% accuracy and 88 sensitivity with 20+ features. This hybrid-AI framework is proven to be effective in identifying the potentially preventable hospitalization. Further, the high indicative features are identified by the models which guide us to a healthy lifestyle and early intervention suggestions.

Keywords: hospitalization prevention, machine learning, remote patient monitoring, risk prediction

Procedia PDF Downloads 237
3304 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm

Authors: G. Singer, M. Golan

Abstract:

Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.

Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension

Procedia PDF Downloads 101
3303 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: situation-awareness, smart home, IoT, machine learning, classifier

Procedia PDF Downloads 422
3302 The Status of English in the Israeli Academy

Authors: Ronit German, Alexandra Beytenbrat

Abstract:

Although English seems to be prevalent in every sphere of Israeli daily life, not many Israeli students have a sufficient level of writing and speaking in English which is necessary for academic studies. The inadequate level of English among Israeli students, almost the sole focus on teaching reading comprehension, and the need to adapt to the trends of the professional worldwide demands triggered a reform that requires to implement Common European Framework of Reference (CEFR) and English as a Medium of Instruction (EMI) courses in the Israeli academic institutions. However, it will be argued that this reform is challenging to implement. The fact that modern Hebrew is a revived language, and that English is L3 for more than 30% of the population, the diverse social and cultural students’ background, and psychological factors stand in the way of the new reform.

Keywords: CEFR, cultural diversity, EMI courses, English in Israel, reform

Procedia PDF Downloads 207
3301 Teaching Academic Vocabulary: A Recent and Old Approach

Authors: Sara Fine-Meltzer

Abstract:

An obvious, but ill-addressed hindrance to reading comprehension in academic English is poor vocabulary. Unfortunately, dealing with the problem is usually delayed until university entrance. It is the contention of this paper that the chore should be confronted much earlier and by using a very old-fashioned method. This presentation is accompanied by vocabulary lists for advanced level university students with explanations concerning the content and justification for the 500-word lists: how they change over time in accordance with evolving styles of academic writing. There are also sample quizzes and methods to ensure that the words are “absorbed” over time. There is a discussion of other vocabulary acquisition methods and conclusions drawn from the drawbacks of such methods. The paper concludes with the rationale for beginning the study of “academic” vocabulary earlier than is generally acceptable.

Keywords: academic vocabulary, old-fashioned methods, quizzes, vocabulary lists

Procedia PDF Downloads 124
3300 Implementation of Nutritional Awareness Programme on Eating Habits of Primary School Children

Authors: Gulcin Satir, Ahmet Yildirim

Abstract:

Globally, including Turkey, health problems associated with malnutrition and nutrient deficiencies in childhood will remain major public health problems in future. Nutrition is a major environmental influence on physical and mental growth and development in early life. Many studies support the fact that nutritional knowledge makes contribution to wellbeing of children and their school performance. The purpose of this study was to examine nutritional knowledge and eating habits of primary school children and to investigate differences in these variables by socioeconomic status. A quasi-experimental one group pretest/posttest design study was conducted in five primary schools totaling 200 children aging 9-10 years in grade 4 to determine the effect of nutritional awareness programme on eating habits of primary school children. The schools were chosen according to parents’ social and demographic characteristics. The implemented nutritional awareness education programme focused on healthy lifestyle such as beneficial foods, eating habits, personal hygiene, physical activity and the programme consisted of eight lessons. The teaching approaches used included interactive teaching, role-playing, demonstration, small group discussions, questioning, and feedback. The lessons were given twice a week for four weeks totaling eight lessons. All lessons lasted 45-60 minutes and first 5 minutes of this was pre-assessment and last 5 minutes post assessment evaluation. The obtained data were analyzed for normality, and the distribution of the variables was tested by the Kolmogorov-Smirnov test. Paired t-test was used to evaluate the effectiveness of education programme and to compare the above-mentioned variables in each school separately before and after the lessons. The result of the paired t-test conducted separately for each school showed that on average after eight lessons, there was a 25-32% increase in nutritional knowledge of students regardless of the school they attend to and this rate was significant (P < 0.01). This shows that increase in nutritional awareness in these five schools having different socio-economic status was similar to each other. This study suggests that having children involved directly in lessons help to achieve nutritional awareness leading to healthy eating habits. It is concluded that nutritional awareness is a valuable tool to change eating habits. Study findings will provide information for developing nutrition education programmes for the healthy life and obesity prevention in children.

Keywords: children, nutritional awareness, obesity, socioeconomic status

Procedia PDF Downloads 146
3299 Testing a Motivational Model of Physical Education on Contextual Outcomes and Total Moderate to Vigorous Physical Activity of Middle School Students

Authors: Arto Grasten

Abstract:

Given the rising trend in obesity in children and youth, age-related decline in moderate- to- vigorous-intensity physical activity (MVPA) in several Western, African, and Asian countries in addition to limited evidence of behavioral, affective, cognitive outcomes in physical education, it is important to clarify the motivational processes in physical education classes behind total MVPA engagement. The present study examined the full sequence of the Hierarchical Model of Motivation in physical education including motivational climate, basic psychological needs, intrinsic motivation, contextual behavior, affect, cognition, total MVPA, and associated links to body mass index (BMI) and gender differences. A cross-sectional data comprised self-reports and objective assessments of 770 middle school students (Mage = 13.99 ± .81 years, 52% of girls) in North-East Finland. In order to test the associations between motivational climate, psychological needs, intrinsic motivation, cognition, behavior, affect, and total MVPA, a path model was implemented. Indirect effects between motivational climate and cognition, behavior, affect and total MVPA were tested by setting basic needs and intrinsic motivation as mediators into the model. The findings showed that direct and indirect paths for girls and boys associated with different contextual outcomes and girls’ indirect paths were not related with total MVPA. Precisely, task-involving climate-mediated by physical competence and intrinsic motivation related to enjoyment, importance, and graded assessments within girls, whereas task-involving climate associated with enjoyment and importance via competence and autonomy, and total MVPA via autonomy, intrinsic motivation, and importance within boys. Physical education assessments appeared to be essential in motivating students to participate in greater total MVPA. BMI was negatively linked with competence and relatedness only among girls. Although, the current and previous empirical findings supported task-involving teaching methods in physical education, in some cases, ego-involving climate should not be totally avoided. This may indicate that girls and boys perceive physical education classes in a different way. Therefore, both task- and ego-involving teaching practices can be useful ways of driving behavior in physical education classes.

Keywords: achievement goal theory, assessment, enjoyment, hierarchical model of motivation, physical activity, self-determination theory

Procedia PDF Downloads 281
3298 The Impact of Autism on Child's behavior and Attitude

Authors: Mariam Atef Zakaria Faltas

Abstract:

A descriptive statistical analysis of the data showed that the most important factor evoking negative attitudes among teachers is student behavior. have been presented as useful models for understanding the risk factors and protective factors associated with the emergence of autistic traits. Although these "syndrome" forms of autism reach clinical thresholds, they appear to be distinctly different from the idiopathic or "non-syndrome" autism phenotype. Most teachers reported that kindergartens did not prepare them for the educational needs of children with autism, particularly in relation to non-verbal skills. The study is important and points the way for improving teacher inclusion education in Thailand. Inclusive education for students with autism is still in its infancy in Thailand. Although the number of autistic children in schools has increased significantly since the Thai government introduced the Education Regulations for Persons with Disabilities Act in 2008, there is a general lack of services for autistic students and their families. This quantitative study used the Teaching Skills and Readiness Scale for Students with Autism (APTSAS) to test the attitudes and readiness of 110 elementary school teachers when teaching students with autism in general education classrooms. To uncover the true nature of these co morbidities, it is necessary to expand the definition of autism to include the cognitive features of the disorder, and then apply this expanded conceptualization to examine patterns of autistic syndromes. This study used various established eye-tracking paradigms to assess the visual and attention performance of children with DS and FXS who meet the autism thresholds defined in the Social Communication Questionnaire. To study whether the autistic profiles of these children are associated with visual orientation difficulties ("sticky attention"), decreased social attention, and increased visual search performance, all of which are hallmarks of the idiopathic autistic child phenotype. Data will be collected from children with DS and FXS, aged 6 to 10 years, and two control groups matched for age and intellectual ability (i.e., children with idiopathic autism).In order to enable a comparison of visual attention profiles, cross-sectional analyzes of developmental trajectories are carried out. Significant differences in the visual-attentive processes underlying the presentation of autism in children with FXS and DS have been suggested, supporting the concept of syndrome specificity. The study provides insights into the complex heterogeneity associated with autism syndrome symptoms and autism itself, with clinical implications for the utility of autism intervention programs in DS and FXS populations.

Keywords: attitude, autism, teachers, sports activities, movement skills, motor skills

Procedia PDF Downloads 57
3297 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 110
3296 The Impact of Artificial Intelligence on Autism Attitudes and Laws

Authors: Randa Reda Luke Waheeb

Abstract:

A descriptive statistical analysis of the data showed that the most important factor evoking negative attitudes among teachers is student behavior. have been presented as useful models for understanding the risk factors and protective factors associated with the emergence of autistic traits. Although these "syndrome" forms of autism reach clinical thresholds, they appear to be distinctly different from the idiopathic or "non-syndrome" autism phenotype. Most teachers reported that kindergartens did not prepare them for the educational needs of children with autism, particularly in relation to non-verbal skills. The study is important and points the way for improving teacher inclusion education in Thailand. Inclusive education for students with autism is still in its infancy in Thailand. Although the number of autistic children in schools has increased significantly since the Thai government introduced the Education Regulations for Persons with Disabilities Act in 2008, there is a general lack of services for autistic students and their families. This quantitative study used the Teaching Skills and Readiness Scale for Students with Autism (APTSAS) to test the attitudes and readiness of 110 elementary school teachers when teaching students with autism in general education classrooms. To uncover the true nature of these co morbidities, it is necessary to expand the definition of autism to include the cognitive features of the disorder, and then apply this expanded conceptualization to examine patterns of autistic syndromes. This study used various established eye-tracking paradigms to assess the visual and attention performance of children with DS and FXS who meet the autism thresholds defined in the Social Communication Questionnaire. To study whether the autistic profiles of these children are associated with visual orientation difficulties ("sticky attention"), decreased social attention, and increased visual search performance, all of which are hallmarks of the idiopathic autistic child phenotype. Data will be collected from children with DS and FXS, aged 6 to 10 years, and two control groups matched for age and intellectual ability (i.e., children with idiopathic autism).In order to enable a comparison of visual attention profiles, cross-sectional analyzes of developmental trajectories are carried out. Significant differences in the visual-attentive processes underlying the presentation of autism in children with FXS and DS have been suggested, supporting the concept of syndrome specificity. The study provides insights into the complex heterogeneity associated with autism syndrome symptoms and autism itself, with clinical implications for the utility of autism intervention programs in DS and FXS populations.

Keywords: attitude, autism, teachers, sports activities, movement skills, motor skills

Procedia PDF Downloads 56
3295 The Impact of Artificial Intelligence on Autism Attitudes and Laws

Authors: Amany Nosshy Fawzy George

Abstract:

A descriptive statistical analysis of the data showed that the most important factor evoking negative attitudes among teachers is student behavior. have been presented as useful models for understanding the risk factors and protective factors associated with the emergence of autistic traits. Although these "syndrome" forms of autism reach clinical thresholds, they appear to be distinctly different from the idiopathic or "non-syndrome" autism phenotype. Most teachers reported that kindergartens did not prepare them for the educational needs of children with autism, particularly in relation to non-verbal skills. The study is important and points the way for improving teacher inclusion education in Thailand. Inclusive education for students with autism is still in its infancy in Thailand. Although the number of autistic children in schools has increased significantly since the Thai government introduced the Education Regulations for Persons with Disabilities Act in 2008, there is a general lack of services for autistic students and their families. This quantitative study used the Teaching Skills and Readiness Scale for Students with Autism (APTSAS) to test the attitudes and readiness of 110 elementary school teachers when teaching students with autism in general education classrooms. To uncover the true nature of these co morbidities, it is necessary to expand the definition of autism to include the cognitive features of the disorder, and then apply this expanded conceptualization to examine patterns of autistic syndromes. This study used various established eye-tracking paradigms to assess the visual and attention performance of children with DS and FXS who meet the autism thresholds defined in the Social Communication Questionnaire. To study whether the autistic profiles of these children are associated with visual orientation difficulties ("sticky attention"), decreased social attention, and increased visual search performance, all of which are hallmarks of the idiopathic autistic child phenotype. Data will be collected from children with DS and FXS, aged 6 to 10 years, and two control groups matched for age and intellectual ability (i.e., children with idiopathic autism).In order to enable a comparison of visual attention profiles, cross-sectional analyzes of developmental trajectories are carried out. Significant differences in the visual-attentive processes underlying the presentation of autism in children with FXS and DS have been suggested, supporting the concept of syndrome specificity. The study provides insights into the complex heterogeneity associated with autism syndrome symptoms and autism itself, with clinical implications for the utility of autism intervention programs in DS and FXS populations.

Keywords: attitude, autism, teachers, sports activities, movement skills, motor skills

Procedia PDF Downloads 51
3294 The Impact of Artificial Intelligence on Autism Attitudes and Laws

Authors: Abanoub Youssry Anwar Sadek

Abstract:

A descriptive statistical analysis of the data showed that the most important factor evoking negative attitudes among teachers is student behavior. have been presented as useful models for understanding the risk factors and protective factors associated with the emergence of autistic traits. Although these "syndrome" forms of autism reach clinical thresholds, they appear to be distinctly different from the idiopathic or "non-syndrome" autism phenotype. Most teachers reported that kindergartens did not prepare them for the educational needs of children with autism, particularly in relation to non-verbal skills. The study is important and points the way for improving teacher inclusion education in Thailand. Inclusive education for students with autism is still in its infancy in Thailand. Although the number of autistic children in schools has increased significantly since the Thai government introduced the Education Regulations for Persons with Disabilities Act in 2008, there is a general lack of services for autistic students and their families. This quantitative study used the Teaching Skills and Readiness Scale for Students with Autism (APTSAS) to test the attitudes and readiness of 110 elementary school teachers when teaching students with autism in general education classrooms. To uncover the true nature of these co morbidities, it is necessary to expand the definition of autism to include the cognitive features of the disorder, and then apply this expanded conceptualization to examine patterns of autistic syndromes. This study used various established eye-tracking paradigms to assess the visual and attention performance of children with DS and FXS who meet the autism thresholds defined in the Social Communication Questionnaire. To study whether the autistic profiles of these children are associated with visual orientation difficulties ("sticky attention"), decreased social attention, and increased visual search performance, all of which are hallmarks of the idiopathic autistic child phenotype. Data will be collected from children with DS and FXS, aged 6 to 10 years, and two control groups matched for age and intellectual ability (i.e., children with idiopathic autism).In order to enable a comparison of visual attention profiles, cross-sectional analyzes of developmental trajectories are carried out. Significant differences in the visual-attentive processes underlying the presentation of autism in children with FXS and DS have been suggested, supporting the concept of syndrome specificity. The study provides insights into the complex heterogeneity associated with autism syndrome symptoms and autism itself, with clinical implications for the utility of autism intervention programs in DS and FXS populations.

Keywords: attitude, autism, teachers, sports activities, movement skills, motor skills

Procedia PDF Downloads 48
3293 The Impact of Artificial Intelligence on Autism Attitudes and Laws

Authors: Wassim Azmy Abdalla Ishak

Abstract:

A descriptive statistical analysis of the data showed that the most important factor evoking negative attitudes among teachers is student behavior. have been presented as useful models for understanding the risk factors and protective factors associated with the emergence of autistic traits. Although these "syndrome" forms of autism reach clinical thresholds, they appear to be distinctly different from the idiopathic or "non-syndrome" autism phenotype. Most teachers reported that kindergartens did not prepare them for the educational needs of children with autism, particularly in relation to non-verbal skills. The study is important and points the way for improving teacher inclusion education in Thailand. Inclusive education for students with autism is still in its infancy in Thailand. Although the number of autistic children in schools has increased significantly since the Thai government introduced the Education Regulations for Persons with Disabilities Act in 2008, there is a general lack of services for autistic students and their families. This quantitative study used the Teaching Skills and Readiness Scale for Students with Autism (APTSAS) to test the attitudes and readiness of 110 elementary school teachers when teaching students with autism in general education classrooms. To uncover the true nature of these co morbidities, it is necessary to expand the definition of autism to include the cognitive features of the disorder, and then apply this expanded conceptualization to examine patterns of autistic syndromes. This study used various established eye-tracking paradigms to assess the visual and attention performance of children with DS and FXS who meet the autism thresholds defined in the Social Communication Questionnaire. To study whether the autistic profiles of these children are associated with visual orientation difficulties ("sticky attention"), decreased social attention, and increased visual search performance, all of which are hallmarks of the idiopathic autistic child phenotype. Data will be collected from children with DS and FXS, aged 6 to 10 years, and two control groups matched for age and intellectual ability (i.e., children with idiopathic autism).In order to enable a comparison of visual attention profiles, cross-sectional analyzes of developmental trajectories are carried out. Significant differences in the visual-attentive processes underlying the presentation of autism in children with FXS and DS have been suggested, supporting the concept of syndrome specificity. The study provides insights into the complex heterogeneity associated with autism syndrome symptoms and autism itself, with clinical implications for the utility of autism intervention programs in DS and FXS populations

Keywords: attitude, autism, teachers, sports activities, movement skills, motor skills

Procedia PDF Downloads 42
3292 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis

Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin

Abstract:

In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.

Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry

Procedia PDF Downloads 546
3291 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition

Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun

Abstract:

Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.

Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained

Procedia PDF Downloads 79
3290 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network

Procedia PDF Downloads 139
3289 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence

Authors: Abdul Basit Kiani, Maryam Kiani

Abstract:

Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.

Keywords: Javascript, machine learning, artificial intelligence, web development

Procedia PDF Downloads 81
3288 The Impact of Artificial Intelligence on Autism Attitudes and Laws

Authors: Narges Arsanious Kamel Arsanious

Abstract:

A descriptive statistical analysis of the data showed that the most important factor evoking negative attitudes among teachers is student behavior. have been presented as useful models for understanding the risk factors and protective factors associated with the emergence of autistic traits. Although these "syndrome" forms of autism reach clinical thresholds, they appear to be distinctly different from the idiopathic or "non-syndrome" autism phenotype. Most teachers reported that kindergartens did not prepare them for the educational needs of children with autism, particularly in relation to non-verbal skills. The study is important and points the way for improving teacher inclusion education in Thailand. Inclusive education for students with autism is still in its infancy in Thailand. Although the number of autistic children in schools has increased significantly since the Thai government introduced the Education Regulations for Persons with Disabilities Act in 2008, there is a general lack of services for autistic students and their families. This quantitative study used the Teaching Skills and Readiness Scale for Students with Autism (APTSAS) to test the attitudes and readiness of 110 elementary school teachers when teaching students with autism in general education classrooms. To uncover the true nature of these co morbidities, it is necessary to expand the definition of autism to include the cognitive features of the disorder, and then apply this expanded conceptualization to examine patterns of autistic syndromes. This study used various established eye-tracking paradigms to assess the visual and attention performance of children with DS and FXS who meet the autism thresholds defined in the Social Communication Questionnaire. To study whether the autistic profiles of these children are associated with visual orientation difficulties ("sticky attention"), decreased social attention, and increased visual search performance, all of which are hallmarks of the idiopathic autistic child phenotype. Data will be collected from children with DS and FXS, aged 6 to 10 years, and two control groups matched for age and intellectual ability (i.e., children with idiopathic autism).In order to enable a comparison of visual attention profiles, cross-sectional analyzes of developmental trajectories are carried out. Significant differences in the visual-attentive processes underlying the presentation of autism in children with FXS and DS have been suggested, supporting the concept of syndrome specificity. The study provides insights into the complex heterogeneity associated with autism syndrome symptoms and autism itself, with clinical implications for the utility of autism intervention programs in DS and FXS populations.

Keywords: attitude, autism, teachers, sports activities, movement skills, motor skills

Procedia PDF Downloads 60
3287 The Impact of Artificial Intelligence on Autism Attitudes and Laws

Authors: Narges Arsanious Kamel Arsanious

Abstract:

A descriptive statistical analysis of the data showed that the most important factor evoking negative attitudes among teachers is student behavior. It have been presented as useful models for understanding the risk factors and protective factors associated with the emergence of autistic traits. Although these ‘syndrome’ forms of autism reach clinical thresholds, they appear to be distinctly different from the idiopathic or ‘non-syndrome’ autism phenotype. Most teachers reported that kindergartens did not prepare them for the educational needs of children with autism, particularly in relation to non-verbal skills. The study is important and points the way for improving teacher inclusion education in Thailand. Inclusive education for students with autism is still in its infancy in Thailand. Although the number of autistic children in schools has increased significantly since the Thai government introduced the Education Regulations for Persons with Disabilities Act in 2008, there is a general lack of services for autistic students and their families. This quantitative study used the Teaching Skills and Readiness Scale for Students with Autism (APTSAS) to test the attitudes and readiness of 110 elementary school teachers when teaching students with autism in general education classrooms. To uncover the true nature of these co morbidities, it is necessary to expand the definition of autism to include the cognitive features of the disorder, and then apply this expanded conceptualization to examine patterns of autistic syndromes. This study used various established eye-tracking paradigms to assess the visual and attention performance of children with DS and FXS who meet the autism thresholds defined in the Social Communication Questionnaire. To study whether the autistic profiles of these children are associated with visual orientation difficulties (sticky attention), decreased social attention, and increased visual search performance, all of which are hallmarks of the idiopathic autistic child phenotype. Data will be collected from children with DS and FXS, aged 6 to 10 years, and two control groups matched for age and intellectual ability (i.e., children with idiopathic autism). In order to enable a comparison of visual attention profiles, cross-sectional analyzes of developmental trajectories are carried out. Significant differences in the visual-attentive processes underlying the presentation of autism in children with FXS and DS have been suggested, supporting the concept of syndrome specificity. The study provides insights into the complex heterogeneity associated with autism syndrome symptoms and autism itself, with clinical implications for the utility of autism intervention programs in DS and FXS populations.

Keywords: attitude, autism, teachers, sports activities, movement skills, motor skills

Procedia PDF Downloads 47
3286 Redesigning Clinical and Nursing Informatics Capstones

Authors: Sue S. Feldman

Abstract:

As clinical and nursing informatics mature, an area that has gotten a lot of attention is the value capstone projects. Capstones are meant to address authentic and complex domain-specific problems. While capstone projects have not always been essential in graduate clinical and nursing informatics education, employers are wanting to see evidence of the prospective employee's knowledge and skills as an indication of employability. Capstones can be organized in many ways: a single course over a single semester, multiple courses over multiple semesters, as a targeted demonstration of skills, as a synthesis of prior knowledge and skills, mentored by one single person or mentored by various people, submitted as an assignment or presented in front of a panel. Because of the potential for capstones to enhance the educational experience, and as a mechanism for application of knowledge and demonstration of skills, a rigorous capstone can accelerate a graduate's potential in the workforce. In 2016, the capstone at the University of Alabama at Birmingham (UAB) could feel the external forces of a maturing Clinical and Nursing Informatics discipline. While the program had a capstone course for many years, it was lacking the depth of knowledge and demonstration of skills being asked for by those hiring in a maturing Informatics field. Since the program is online, all capstones were always in the online environment. While this modality did not change, other contributors to instruction modality changed. Pre-2016, the instruction modality was self-guided. Students checked in with a single instructor, and that instructor monitored progress across all capstones toward a PowerPoint and written paper deliverable. At the time, the enrollment was few, and the maturity had not yet pushed hard enough. By 2017, doubling enrollment and the increased demand of a more rigorously trained workforce led to restructuring the capstone so that graduates would have and retain the skills learned in the capstone process. There were three major changes: the capstone was broken up into a 3-course sequence (meaning it lasted about 10 months instead of 14 weeks), there were many chunks of deliverables, and each faculty had a cadre of about 5 students to advise through the capstone process. Literature suggests that the chunking, breaking up complex projects (i.e., the capstone in one summer) into smaller, more manageable chunks (i.e., chunks of the capstone across 3 semesters), can increase and sustain learning while allowing for increased rigor. By doing this, the teaching responsibility was shared across faculty with each semester course being taught by a different faculty member. This change facilitated delving much deeper in instruction and produced a significantly more rigorous final deliverable. Having students advised across the faculty seemed like the right thing to do. It not only shared the load, but also shared the success of students. Furthermore, it meant that students could be placed with an academic advisor who had expertise in their capstone area, further increasing the rigor of the entire capstone process and project and increasing student knowledge and skills.

Keywords: capstones, clinical informatics, health informatics, informatics

Procedia PDF Downloads 133
3285 Improving the Quality of Higher Education for Students with Disability in Universities of Pakistan

Authors: Nasir Sulman

Abstract:

In Pakistan, the inclusion of persons with disabilities in higher education institutions has significantly been increased with every passing year and anyone can observe a sizeable number of these students in each faculty. The study executes to conduct a baseline survey for measuring faculty understanding about the special needs, experiences of students with disabilities and support provided by university administration in order to teach these students effectively. The researcher has used mixed methods and the University of Karachi was selected through non-probability-based sampling method. This university is one of the largest universities in Pakistan where more than 40,000 students have been enrolled. Data was gathered through a questionnaire and focused group discussion from three stakeholders including students with disabilities, faculty members and members of the university administration. The key findings show that students with disabilities experience a number of problems related to accommodating their special needs. However, the most encouraging factors identified are the attitude, support, and motivation they received from various faculty members and university administration. On the basis of the findings of the study the researcher has prepared a faculty guidebook and established a ‘Model Learning Assistance Centre for Students with Disabilities’ in the Department of Special Education, University of Karachi. Both these efforts will be helpful for improving the support services for students with disabilities to strengthen the existing laws, policies, and practices in institutions of higher education.

Keywords: persons with disabilities, higher education, learning assistance center, faculty guidebook

Procedia PDF Downloads 152
3284 Integrating Microcontroller-Based Projects in a Human-Computer Interaction Course

Authors: Miguel Angel Garcia-Ruiz, Pedro Cesar Santana-Mancilla, Laura Sanely Gaytan-Lugo

Abstract:

This paper describes the design and application of a short in-class project conducted in Algoma University’s Human-Computer Interaction (HCI) course taught at the Bachelor of Computer Science. The project was based on the Maker Movement (people using and reusing electronic components and everyday materials to tinker with technology and make interactive applications), where students applied low-cost and easy-to-use electronic components, the Arduino Uno microcontroller board, software tools, and everyday objects. Students collaborated in small teams by completing hands-on activities with them, making an interactive walking cane for blind people. At the end of the course, students filled out a Technology Acceptance Model version 2 (TAM2) questionnaire where they evaluated microcontroller boards’ applications in HCI classes. We also asked them about applying the Maker Movement in HCI classes. Results showed overall students’ positive opinions and response about using microcontroller boards in HCI classes. We strongly suggest that every HCI course should include practical activities related to tinkering with technology such as applying microcontroller boards, where students actively and constructively participate in teams for achieving learning objectives.

Keywords: maker movement, microcontrollers, learning, projects, course, technology acceptance

Procedia PDF Downloads 174