Search results for: relative biological effectiveness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8584

Search results for: relative biological effectiveness

3304 Static and Dynamic Analysis of Microcantilever Beam

Authors: S. B. Kerur, B. S. Murgayya

Abstract:

The development of micro and nano particle is challenging task and the study of the behavior of material at the micro level is gaining importance as their behavior at micro/nano level is different. These micro particle are being used as a sensing element to measure and detects the hazardous chemical, gases, explosives and biological agents. In the present study, finite element method is used for static and dynamic analysis of simple and composite cantilever beams of different shapes. The present FE model is validated with available analytical results and various parameters like shape, materials properties, damped and undamped conditions are considered for the numerical study. The results show the effects of shape change on the natural frequency and as these are used with fluid for chemical applications, the effect of damping due to viscous nature of fluid are simulated by considering different damping coefficient effect on the dynamic behavior of cantilever beams. The obtained results show the effect of these parameters can be effectively utilized based on system requirements.

Keywords: micro, FEM, dynamic, cantilever beam

Procedia PDF Downloads 383
3303 3D Linear and Cyclic Homo-Peptide Crystals Forged by Supramolecular Swelling Self-Assembly

Authors: Wenliang Song, Yu Zhang, Hua Jin, Il Kim

Abstract:

The self-assembly of the polypeptide (PP) into well-defined structures at different length scales is both biomimetic relevant and fundamentally interesting. Although there are various reports of nanostructures fabricated by the self-assembly of various PPs, directed self-assembly of PP into three-dimensional (3D) hierarchical structure has proven to be difficult, despite their importance for biological applications. Herein, an efficient method has been developed through living polymerization of phenylalanine N-Carboxy anhydride (NCA) towards the linear and cyclic polyphenylalanine, and the new invented swelling methodology can form diverse hierarchical polypeptide crystals. The solvent-dependent self-assembly behaviors of these homopolymers were characterized by high-resolution imaging tools such as atomic force microscopy, transmission electron microscopy, scanning electron microscope. The linear and cyclic polypeptide formed 3D nano hierarchical shapes, such as a sphere, cubic, stratiform and hexagonal star in different solvents. Notably, a crystalline packing model was proposed to explain the formation of 3D nanostructures based on the various diffraction patterns, looking forward to give an insight for their dissimilar shape inflection during the self-assembly process.

Keywords: self-assembly, polypeptide, bio-polymer, crystalline polymer

Procedia PDF Downloads 240
3302 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm

Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio

Abstract:

The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.

Keywords: algorithm, CoAP, DoS, IoT, machine learning

Procedia PDF Downloads 80
3301 Exact Vibration Analysis of a Rectangular Nano-Plate Using Nonlocal Modified Sinusoidal Shear Deformation Theory

Authors: Korosh Khorshidi, Mohammad Khodadadi

Abstract:

In this paper, exact close form solution for out of plate free flexural vibration of moderately thick rectangular nanoplates are presented based on nonlocal modified trigonometric shear deformation theory, with assumptions of the Levy's type boundary conditions, for the first time. The aim of this study is to evaluate the effect of small-scale parameters on the frequency parameters of the moderately thick rectangular nano-plates. To describe the effects of small-scale parameters on vibrations of rectangular nanoplates, the Eringen theory is used. The Levy's type boundary conditions are combination of six different boundary conditions; specifically, two opposite edges are simply supported and any of the other two edges can be simply supported, clamped or free. Governing equations of motion and boundary conditions of the plate are derived by using the Hamilton’s principle. The present analytical solution can be obtained with any required accuracy and can be used as benchmark. Numerical results are presented to illustrate the effectiveness of the proposed method compared to other methods reported in the literature. Finally, the effect of boundary conditions, aspect ratios, small scale parameter and thickness ratios on nondimensional natural frequency parameters and frequency ratios are examined and discussed in detail.

Keywords: exact solution, nonlocal modified sinusoidal shear deformation theory, out of plane vibration, moderately thick rectangular plate

Procedia PDF Downloads 388
3300 Readout Development of a LGAD-based Hybrid Detector for Microdosimetry (HDM)

Authors: Pierobon Enrico, Missiaggia Marta, Castelluzzo Michele, Tommasino Francesco, Ricci Leonardo, Scifoni Emanuele, Vincezo Monaco, Boscardin Maurizio, La Tessa Chiara

Abstract:

Clinical outcomes collected over the past three decades have suggested that ion therapy has the potential to be a treatment modality superior to conventional radiation for several types of cancer, including recurrences, as well as for other diseases. Although the results have been encouraging, numerous treatment uncertainties remain a major obstacle to the full exploitation of particle radiotherapy. To overcome therapy uncertainties optimizing treatment outcome, the best possible radiation quality description is of paramount importance linking radiation physical dose to biological effects. Microdosimetry was developed as a tool to improve the description of radiation quality. By recording the energy deposition at the micrometric scale (the typical size of a cell nucleus), this approach takes into account the non-deterministic nature of atomic and nuclear processes and creates a direct link between the dose deposited by radiation and the biological effect induced. Microdosimeters measure the spectrum of lineal energy y, defined as the energy deposition in the detector divided by most probable track length travelled by radiation. The latter is provided by the so-called “Mean Chord Length” (MCL) approximation, and it is related to the detector geometry. To improve the characterization of the radiation field quality, we define a new quantity replacing the MCL with the actual particle track length inside the microdosimeter. In order to measure this new quantity, we propose a two-stage detector consisting of a commercial Tissue Equivalent Proportional Counter (TEPC) and 4 layers of Low Gain Avalanche Detectors (LGADs) strips. The TEPC detector records the energy deposition in a region equivalent to 2 um of tissue, while the LGADs are very suitable for particle tracking because of the thickness thinnable down to tens of micrometers and fast response to ionizing radiation. The concept of HDM has been investigated and validated with Monte Carlo simulations. Currently, a dedicated readout is under development. This two stages detector will require two different systems to join complementary information for each event: energy deposition in the TEPC and respective track length recorded by LGADs tracker. This challenge is being addressed by implementing SoC (System on Chip) technology, relying on Field Programmable Gated Arrays (FPGAs) based on the Zynq architecture. TEPC readout consists of three different signal amplification legs and is carried out thanks to 3 ADCs mounted on a FPGA board. LGADs activated strip signal is processed thanks to dedicated chips, and finally, the activated strip is stored relying again on FPGA-based solutions. In this work, we will provide a detailed description of HDM geometry and the SoC solutions that we are implementing for the readout.

Keywords: particle tracking, ion therapy, low gain avalanche diode, tissue equivalent proportional counter, microdosimetry

Procedia PDF Downloads 175
3299 Focus-Latent Dirichlet Allocation for Aspect-Level Opinion Mining

Authors: Mohsen Farhadloo, Majid Farhadloo

Abstract:

Aspect-level opinion mining that aims at discovering aspects (aspect identification) and their corresponding ratings (sentiment identification) from customer reviews have increasingly attracted attention of researchers and practitioners as it provides valuable insights about products/services from customer's points of view. Instead of addressing aspect identification and sentiment identification in two separate steps, it is possible to simultaneously identify both aspects and sentiments. In recent years many graphical models based on Latent Dirichlet Allocation (LDA) have been proposed to solve both aspect and sentiment identifications in a single step. Although LDA models have been effective tools for the statistical analysis of document collections, they also have shortcomings in addressing some unique characteristics of opinion mining. Our goal in this paper is to address one of the limitations of topic models to date; that is, they fail to directly model the associations among topics. Indeed in many text corpora, it is natural to expect that subsets of the latent topics have higher probabilities. We propose a probabilistic graphical model called focus-LDA, to better capture the associations among topics when applied to aspect-level opinion mining. Our experiments on real-life data sets demonstrate the improved effectiveness of the focus-LDA model in terms of the accuracy of the predictive distributions over held out documents. Furthermore, we demonstrate qualitatively that the focus-LDA topic model provides a natural way of visualizing and exploring unstructured collection of textual data.

Keywords: aspect-level opinion mining, document modeling, Latent Dirichlet Allocation, LDA, sentiment analysis

Procedia PDF Downloads 94
3298 Fibroblast Compatibility of Core-Shell Coaxially Electrospun Hybrid Poly(ε-Caprolactone)/Chitosan Scaffolds

Authors: Hilal Turkoglu Sasmazel, Ozan Ozkan, Seda Surucu

Abstract:

Tissue engineering is the field of treating defects caused by injuries, trauma or acute/chronic diseases by using artificial scaffolds that mimic the extracellular matrix (ECM), the natural biological support for the tissues and cells within the body. The main aspects of a successful artificial scaffold are (i) large surface area in order to provide multiple anchorage points for cells to attach, (ii) suitable porosity in order to achieve 3 dimensional growth of the cells within the scaffold as well as proper transport of nutrition, biosignals and waste and (iii) physical, chemical and biological compatibility of the material in order to obtain viability throughout the healing process. By hybrid scaffolds where two or more different materials were combined with advanced fabrication techniques into complex structures, it is possible to combine the advantages of individual materials into one single structure while eliminating the disadvantages of each. Adding this to the complex structure provided by advanced fabrication techniques enables obtaining the desired aspects of a successful artificial tissue scaffold. In this study, fibroblast compatibility of poly(ε-caprolactone) (PCL)/chitosan core-shell electrospun hybrid scaffolds with proper mechanical, chemical and physical properties successfully developed in our previous study was investigated. Standard 7-day cell culture was carried out with L929 fibroblast cell line. The viability of the cells cultured with the scaffolds was monitored with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay for every 48 h starting with 24 h after the initial seeding. In this assay, blank commercial tissue culture polystyrene (TCPS) Petri dishes, single electrospun PCL and single electrospun chitosan mats were used as control in order to compare and contrast the performance of the hybrid scaffolds. The adhesion, proliferation, spread and growth of the cells on/within the scaffolds were observed visually on the 3rd and the 7th days of the culture period with confocal laser scanning microscopy (CSLM) and scanning electron microscopy (SEM). The viability assay showed that the hybrid scaffolds caused no toxicity for fibroblast cells and provided a steady increase in cell viability, effectively doubling the cell density for every 48 h for the course of 7 days, as compared to TCPS, single electrospun PCL or chitosan mats. The cell viability on the hybrid scaffold was ~2 fold better compared to TCPS because of its 3D ECM-like structure compared to 2D flat surface of commercially cell compatible TCPS, and the performance was ~2 fold and ~10 fold better compared to single PCL and single chitosan mats, respectively, even though both fabricated similarly with electrospinning as non-woven fibrous structures, because single PCL and chitosan mats were either too hydrophobic or too hydrophilic to maintain cell attachment points. The viability results were verified with visual images obtained with CSLM and SEM, in which cells found to achieve characteristic spindle-like fibroblast shape and spread on the surface as well within the pores successfully at high densities.

Keywords: chitosan, core-shell, fibroblast, electrospinning, PCL

Procedia PDF Downloads 176
3297 Comparison Between Genetic Algorithms and Particle Swarm Optimization Optimized Proportional Integral Derirative and PSS for Single Machine Infinite System

Authors: Benalia Nadia, Zerzouri Nora, Ben Si Ali Nadia

Abstract:

Abstract: Among the many different modern heuristic optimization methods, genetic algorithms (GA) and the particle swarm optimization (PSO) technique have been attracting a lot of interest. The GA has gained popularity in academia and business mostly because to its simplicity, ability to solve highly nonlinear mixed integer optimization problems that are typical of complex engineering systems, and intuitiveness. The mechanics of the PSO methodology, a relatively recent heuristic search tool, are modeled after the swarming or cooperative behavior of biological groups. It is suitable to compare the performance of the two techniques since they both aim to solve a particular objective function but make use of distinct computing methods. In this article, PSO and GA optimization approaches are used for the parameter tuning of the power system stabilizer and Proportional integral derivative regulator. Load angle and rotor speed variations in the single machine infinite bus bar system is used to measure the performance of the suggested solution.

Keywords: SMIB, genetic algorithm, PSO, transient stability, power system stabilizer, PID

Procedia PDF Downloads 84
3296 A Case Study of Low Head Hydropower Opportunities at Existing Infrastructure in South Africa

Authors: Ione Loots, Marco van Dijk, Jay Bhagwan

Abstract:

Historically, South Africa had various small-scale hydropower installations in remote areas that were not incorporated in the national electricity grid. Unfortunately, in the 1960s most of these plants were decommissioned when Eskom, the national power utility, rapidly expanded its grid and capability to produce cheap, reliable, coal-fired electricity. This situation persisted until 2008, when rolling power cuts started to affect all citizens. This, together with the rising monetary and environmental cost of coal-based power generation, has sparked new interest in small-scale hydropower development, especially in remote areas or at locations (like wastewater treatment works) that could not afford to be without electricity for long periods at a time. Even though South Africa does not have the same, large-scale, hydropower potential as some other African countries, significant potential for micro- and small-scale hydropower is hidden in various places. As an example, large quantities of raw and potable water are conveyed daily under either pressurized or gravity conditions over large distances and elevations. Due to the relative water scarcity in the country, South Africa also has more than 4900 registered dams of varying capacities. However, institutional capacity and skills have not been maintained in recent years and therefore the identification of hydropower potential, as well as the development of micro- and small-scale hydropower plants has not gained significant momentum. An assessment model and decision support system for low head hydropower development has been developed to assist designers and decision makers with first-order potential analysis. As a result, various potential sites were identified and many of these sites were situated at existing infrastructure like weirs, barrages or pipelines. One reason for the specific interest in existing infrastructure is the fact that capital expenditure could be minimized and another is the reduced negative environmental impact compared to greenfield sites. This paper will explore the case study of retrofitting an unconventional and innovative hydropower plant to the outlet of a wastewater treatment works in South Africa.

Keywords: low head hydropower, retrofitting, small-scale hydropower, wastewater treatment works

Procedia PDF Downloads 252
3295 Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in Rural and Urban of Central Taiwan

Authors: Shih Yu Pan, Pao Chen Hung, Chuan Yao Lin, Charles C.-K. Chou, Yu Chi Lin, Kai Hsien Chi

Abstract:

This study analyzed 16 atmospheric PAHs species which were controlled by USEPA and IARC. To measure the concentration of PAHs, four rural sampling sites and two urban sampling sites were selected in Central Taiwan during spring and summer. In central Taiwan, the rural sampling stations were located in the downstream of Da-An River, Da-Jang River, Wu River and Chuo-shui River. On the other hand, the urban sampling sites were located in Taichung district and close to the roadside. Ambient air samples of both vapor phase and particle phase of PAHs compounds were collected using high volume sampling trains (Analitica). The sampling media were polyurethane foam (PUF) with XAD2 and quartz fiber filters. Diagnostic ratio, Principal component analysis (PCA), Positive Matrix Factorization (PMF) models were used to evaluate the apportionment of PAHs in the atmosphere and speculate the relative contribution of various emission sources. Because of the high temperature and low wind speed, high PAHs concentration in the atmosphere was observed. The total PAHs concentration, especially in vapor phase, had significant change during summer. During the sampling periods the total PAHs concentration of atmospheric at four rural and two urban sampling sites in spring and summer were 3.70±0.40 ng/m3,3.40±0.63 ng/m3,5.22±1.24 ng/m3,7.23±0.37 ng/m3,7.46±2.36 ng/m3,6.21±0.55 ng/m3 ; 15.0± 0.14 ng/m3,18.8±8.05 ng/m3,20.2±8.58 ng/m3,16.1±3.75 ng/m3,29.8±10.4 ng/m3,35.3±11.8 ng/m3, respectively. In order to identify PAHs sources, we used diagnostic ratio to classify the emission sources. The potential sources were diesel combustion and gasoline combustion in spring and summer, respectively. According to the principal component analysis (PCA), the PC1 and PC2 had 23.8%, 20.4% variance and 21.3%, 17.1% variance in spring and summer, respectively. Especially high molecular weight PAHs (BaP, IND, BghiP, Flu, Phe, Flt, Pyr) were dominated in spring when low molecular weight PAHs (AcPy, Ant, Acp, Flu) because of the dominating high temperatures were dominated in the summer. Analysis by using PMF model found the sources of PAHs in spring were stationary sources (34%), vehicle emissions (24%), coal combustion (23%) and petrochemical fuel gas (19%), while in summer the emission sources were petrochemical fuel gas (34%), the natural environment of volatile organic compounds (29%), coal combustion (19%) and stationary sources (18%).

Keywords: PAHs, source identification, diagnostic ratio, principal component analysis, positive matrix factorization

Procedia PDF Downloads 267
3294 Effect of Hydraulic Residence Time on Aromatic Petrochemical Wastewater Treatment Using Pilot-Scale Submerged Membrane Bioreactor

Authors: Fatemeh Yousefi, Narges Fallah, Mohsen Kian, Mehrzad Pakzadeh

Abstract:

The petrochemical complex releases wastewater, which is rich in organic pollutants and could not be treated easily. Treatment of the wastewater from a petrochemical industry has been investigated using a submerged membrane bioreactor (MBR). For this purpose, a pilot-scale submerged MBR with a flat-sheet ultrafiltration membrane was used for treatment of petrochemical wastewater according to Bandar Imam Petrochemical complex (BIPC) Aromatic plant. The testing system ran continuously (24-h) over 6 months. Trials on different membrane fluxes and hydraulic retention time (HRT) were conducted and the performance evaluation of the system was done. During the 167 days operation of the MBR at hydraulic retention time (HRT) of 18, 12, 6, and 3 and at an infinite sludge retention time (SRT), the MBR effluent quality consistently met the requirement for discharge to the environment. A fluxes of 6.51 and 13.02 L m-2 h-1 (LMH) was sustainable and HRT of 6 and 12 h corresponding to these fluxes were applicable. Membrane permeability could be fully recovered after cleaning. In addition, there was no foaming issue in the process. It was concluded that it was feasible to treat the wastewater using submersed MBR technology.

Keywords: membrane bioreactor (MBR), petrochemical wastewater, COD removal, biological treatment

Procedia PDF Downloads 520
3293 Synthesis of Deformed Nuclei 260Rf, 261Rf and 262Rf in the Decay of 266Rf*Formed via Different Fusion Reactions: Entrance Channel Effects

Authors: Niyti, Aman Deep, Rajesh Kharab, Sahila Chopra, Raj. K. Gupta

Abstract:

Relatively long-lived transactinide elements (i.e., elements with atomic number Z≥104) up to Z = 108 have been produced in nuclear reactions between low Z projectiles (C to Al) and actinide targets. Cross sections have been observed to decrease steeply with increasing Z. Recently, production cross sections of several picobarns have been reported for comparatively neutron-rich nuclides of 112 through 118 produced via hot fusion reactions with 48Ca and actinide targets. Some of those heavy nuclides are reported to have lifetimes on the order of seconds or longer. The relatively high cross sections in these hot fusion reactions are not fully understood and this has renewed interest in systematic studies of heavy-ion reactions with actinide targets. The main aim of this work is to understand the dynamics hot fusion reactions 18O+ 248Cm and 22Ne+244Pu (carried out at RIKEN and TASCA respectively) using the collective clusterization technique, carried out by undertaking the decay of the compound nucleus 266Rf∗ into 4n, 5n and 6n neutron evaporation channels. Here we extend our earlier study of the excitation functions (EFs) of 266Rf∗, formed in fusion reaction 18O+248Cm, based on Dynamical Cluster-decay Model (DCM) using the pocket formula for nuclear proximity potential, to the use of other nuclear interaction potentials derived from Skyrme energy density formalism (SEDF) based on semiclassical extended Thomas Fermi (ETF) approach and also study entrance channel effects by considering the synthesis of 266Rf* in 22Ne+244Pu reaction. The Skyrme forces used are the old force SIII, and new forces GSkI and KDE0(v1). Here, the EFs for the production of 260Rf, 261Rf and 262Rf isotope via 6n, 5n and 4n decay channel from the 266Rf∗ compound nucleus are studied at Elab = 88.2 to 125 MeV, including quadrupole deformations β2i and ‘hot-optimum’ orientations θi. The calculations are made within the DCM where the neck-length ∆R is the only parameter representing the relative separation distance between two fragments and/or clusters Ai which assimilates the neck formation effects.

Keywords: entrance channel effects, fusion reactions, skyrme force, superheavy nucleus

Procedia PDF Downloads 253
3292 Thermodynamic Performance of a Low-Cost House Coated with Transparent Infrared Reflective Paint

Authors: Ochuko K. Overen, Edson L. Meyer

Abstract:

Uncontrolled heat transfer between the inner and outer space of low-cost housings through the thermal envelope result in indoor thermal discomfort. As a result, an excessive amount of energy is consumed for space heating and cooling. Thermo-optical properties are the ability of paints to reduce the rate of heat transfer through the thermal envelope. The aim of this study is to analyze the thermal performance of a low-cost house with its walls inner surface coated with transparent infrared reflective paint. The thermo-optical properties of the paint were analyzed using Scanning Electron Microscopy/ Energy Dispersive X-ray spectroscopy (SEM/EDX), Fourier Transform Infra-Red (FTIR) and thermal photographic technique. Meteorological indoor and ambient parameters such as; air temperature, relative humidity, solar radiation, wind speed and direction of a low-cost house in Golf-course settlement, South Africa were monitored. The monitoring period covers both winter and summer period before and after coating. The thermal performance of the coated walls was evaluated using time lag and decrement factor. The SEM image shows that the coat is transparent to light. The presence of Al as Al2O and other elements were revealed by the EDX spectrum. Before coating, the average decrement factor of the walls in summer was found to be 0.773 with a corresponding time lag of 1.3 hours. In winter, the average decrement factor and corresponding time lag were 0.467 and 1.6 hours, respectively. After coating, the average decrement factor and corresponding time lag were 0.533 and 2.3 hour, respectively in summer. In winter, an average decrement factor of 1.120 and corresponding time lag of 3 hours was observed. The findings show that the performance of the coats is influenced by the seasons. With a 74% reduction in decrement factor and 1.4 time lag increase in winter, it implies that the coatings have more ability to retain heat within the inner space of the house than preventing heat flow into the house. In conclusion, the results have shown that transparent infrared reflective paint has the ability to reduce the propagation of heat flux through building walls. Hence, it can serve as a remedy to the poor thermal performance of low-cost housings in South Africa.

Keywords: energy efficiency, decrement factor, low-cost housing, paints, rural development, thermal comfort, time lag

Procedia PDF Downloads 284
3291 Analyzing Factors Impacting COVID-19 Vaccination Rates

Authors: Dongseok Cho, Mitchell Driedger, Sera Han, Noman Khan, Mohammed Elmorsy, Mohamad El-Hajj

Abstract:

Since the approval of the COVID-19 vaccine in late 2020, vaccination rates have varied around the globe. Access to a vaccine supply, mandated vaccination policy, and vaccine hesitancy contribute to these rates. This study used COVID-19 vaccination data from Our World in Data and the Multilateral Leaders Task Force on COVID-19 to create two COVID-19 vaccination indices. The first index is the Vaccine Utilization Index (VUI), which measures how effectively each country has utilized its vaccine supply to doubly vaccinate its population. The second index is the Vaccination Acceleration Index (VAI), which evaluates how efficiently each country vaccinated its population within its first 150 days. Pearson correlations were created between these indices and country indicators obtained from the World Bank. The results of these correlations identify countries with stronger health indicators, such as lower mortality rates, lower age dependency ratios, and higher rates of immunization to other diseases, displaying higher VUI and VAI scores than countries with lesser values. VAI scores are also positively correlated to Governance and Economic indicators, such as regulatory quality, control of corruption, and GDP per capita. As represented by the VUI, proper utilization of the COVID-19 vaccine supply by country is observed in countries that display excellence in health practices. A country’s motivation to accelerate its vaccination rates within the first 150 days of vaccinating, as represented by the VAI, was largely a product of the governing body’s effectiveness and economic status, as well as overall excellence in health practises.

Keywords: data mining, Pearson correlation, COVID-19, vaccination rates and hesitancy

Procedia PDF Downloads 114
3290 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes

Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali

Abstract:

Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.

Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture

Procedia PDF Downloads 54
3289 Chemopreventive Efficacy of Andrographolide in Rat Colon Carcinogenesis Model Using Aberrant Crypt Foci (ACF) as Endpoint Marker

Authors: Maryam Hajrezaie, Mahmood Ameen Abdulla, Nazia Abdul Majid, Hapipa Mohd Ali, Pouya Hassandarvish, Maryam Zahedi Fard

Abstract:

Background: Colon cancer is one of the most prevalent cancers in the world and is the third leading cause of death among cancers in both males and females. The incidence of colon cancer is ranked fourth among all cancers but varies in different parts of the world. Cancer chemoprevention is defined as the use of natural or synthetic compounds capable of inducing biological mechanisms necessary to preserve genomic fidelity. Andrographolide is the major labdane diterpenoidal constituent of the plant Andrographis paniculata (family Acanthaceae), used extensively in the traditional medicine. Extracts of the plant and their constituents are reported to exhibit a wide spectrum of biological activities of therapeutic importance. Laboratory animal model studies have provided evidence that Andrographolide play a role in inhibiting the risk of certain cancers. Objective: Our aim was to evaluate the chemopreventive efficacy of the Andrographolide in the AOM induced rat model. Methods: To evaluate inhibitory properties of andrographolide on colonic aberrant crypt foci (ACF), five groups of 7-week-old male rats were used. Group 1 (control group) were fed with 10% Tween 20 once a day, Group 2 (cancer control) rats were intra-peritoneally injected with 15 mg/kg Azoxymethan, Gropu 3 (drug control) rats were injected with 15 mg/kg azoxymethan and 5-Flourouracil, Group 4 and 5 (experimental groups) were fed with 10 and 20 mg/kg andrographolide each once a day. After 1 week, the treatment group rats received subcutaneous injections of azoxymethane, 15 mg/kg body weight, once weekly for 2 weeks. Control rats were continued on Tween 20 feeding once a day and experimental groups 10 and 20 mg/kg andrographolide feeding once a day for 8 weeks. All rats were sacrificed 8 weeks after the azoxymethane treatment. Colons were evaluated grossly and histopathologically for ACF. Results: Administration of 10 mg/kg and 20 mg/kg andrographolide were found to be effectively chemoprotective, as evidenced microscopily and biochemically. Andrographolide suppressed total colonic ACF formation up to 40% to 60%, respectively, when compared with control group. Pre-treatment with andrographolide, significantly reduced the impact of AOM toxicity on plasma protein and urea levels as well as on plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and gamma-glutamyl transpeptidase (GGT) activities. Grossly, colorectal specimens revealed that andrographolide treatments decreased the mean score of number of crypts in AOM-treated rats. Importantly, rats fed andrographolide showed 75% inhibition of foci containing four or more aberrant crypts. The results also showed a significant increase in glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), and Prostaglandin E2 (PGE2) activities and a decrease in malondialdehyde (MDA) level. Histologically all treatment groups showed a significant decrease of dysplasia as compared to control group. Immunohistochemical staining showed up-regulation of Hsp70 and down-regulation of Bax proteins. Conclusion: The current study demonstrated that Andrographolide reduce the number of ACF. According to these data, Andrographolide might be a promising chemoprotective activity, in a model of AOM-induced in ACF.

Keywords: chemopreventive, andrographolide, colon cancer, aberrant crypt foci (ACF)

Procedia PDF Downloads 429
3288 Literature Review of the Management of Parry Romberg Syndrome with Fillers

Authors: Sana Ilyas

Abstract:

Parry-Romberg syndrome is a rare condition clinically defined by slowly progressive atrophy of the skin and soft tissues. This usually effects one side of the face, although a few cases have been documented of bilateral presentation. It is more prevalent in females and usually affects the left side of the face. The syndrome can also be accompanied by neurological abnormalities. It usually occurs in the first two decades of life with a variable rate of progression. The aetiology is unknown, and the disease eventually stabilises. The treatment options usually involve surgical management. The least invasive of these options is the management of facial asymmetry, associated with Parry Romberg syndrome, through the use of tissue fillers. This paper will review the existing literature on the management of Parry Romberg syndrome with tissue filler. Aim: The aim of the study is to explore the current published literature for the management of Parry Romberg syndrome with fillers. It is to assess the development that has been made in this method of management, its benefits and limitations, and its effectiveness for the management of Parry Romberg syndrome. Methodology: There was a thorough assessment of the current literature published on this topic. PubMed database was used for search of the published literature on this method of the management. Papers were analysed and compared with one another to assess the success and limitation of the management of Parry Romberg with dermal fillers Results and Conclusion: Case reports of the use of tissue fillers discuss the varying degrees of success with the treatment. However, this procedure has it’s limitation, which are discussed in the paper in detail. However, it is still the least invasive of all the surgical options for the management of Parry Romberg Syndrome, and therefore, it is important to explore this option with patients, as they may be more comfortable with pursuingtreatment that is less invasive and can still improve their facial asymmetry

Keywords: dermal fillers, facial asymmetry, parry romberg syndrome, tissue fillers

Procedia PDF Downloads 87
3287 A Novel Photocrosslinkable and Cytocompatible Chitosan Coating for TI6AL4V Surfaces

Authors: D. Zujur, J. Moret, D. Rodriguez, L. Cruz, J. Lira, L. Gil, E. Dominguez, J. F. Alvarez-Barreto

Abstract:

In this work, chitosan (CH) has been used to produce a novel coating for Ti6Al4V, the most widely used alloy in orthopedic implants, so as to improve the biological tissue response at the metallic surface. The Ti6Al4V surface was sandblasted with alumina particles and observed by SEM. Chitosan was chemically modified, via crodiimide chemistry, with lactobionic and 4-azidebenzoic acid to make it soluble at physiological pH and photo-crosslinkable, respectively. The reaction was verified by FTIR, NMR, and UV/vis spectroscopy. Ti6Al4V surfaces were coated with solutions of the modified CH and exposed to UV light, causing the polymer crosslinking, and formation of a hydrogel on the surface. The crosslinking reaction was monitored by FTIR at different exposure times. Coating morphology was observed by SEM. The coating´s cytocompatibility was determined in vitro through the culture of rat bone marrow´s mesenchymal stem cells, using an MTT assay. The results show that the developed coating is cytocompatible, easy to apply and could be used for further studies in the encapsulation of bioactive molecules to improve osteogenic potential at the tissue-implant interface.

Keywords: chitosan, photo-crosslinking, Ti6Al4V, bioactive coating, hydrogel

Procedia PDF Downloads 326
3286 Distangling Biological Noise in Cellular Images with a Focus on Explainability

Authors: Manik Sharma, Ganapathy Krishnamurthi

Abstract:

The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.

Keywords: cellular images, genetic perturbations, deep-learning, explainability

Procedia PDF Downloads 112
3285 Effects of Boron Compounds in Rabbits Fed High Protein and Energy Diet: A Metabolomic and Transcriptomic Approach

Authors: Nuri Başpınar, Abdullah Başoğlu, Özgür Özdemir, Çağlayan Özel, FundaTerzi, Özgür Yaman

Abstract:

Current research is targeting new molecular mechanisms that underlie non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders like nonalcoholic steatohepatitis (NASH). Forty New Zealand White rabbits have been used and fed a high protein (HP) and energy diet based on grains and containing 11.76 MJ/kg. Boron added to 3 experimental groups’ drinking waters (30 mg boron/L) as boron compounds. Biochemical analysis including boron levels, and nuclear magnetic resonance (NMR) based metabolomics evaluation, and mRNA expression of peroxisome proliferator-activated receptor (PPAR) family were performed. LDL-cholesterol concentrations alone were decreased in all the experimental groups. Boron levels in serum and feces were increased. Content of acetate was in about 2x higher for anhydrous borax group, at least 3x higher for boric acid group. PPARα mRNA expression was significantly decreased in boric acid group. Anhydrous borax attenuated mRNA levels of PPARα, which was further suppressed by boric acid. Boron supplementation decreased the degenerative alterations in hepatocytes. Except borax group other boron groups did not have a pronounced change in tubular epithels of kidney. In conclusion, high protein and energy diet leads hepatocytes’ degenerative changes which can be prevented by boron supplementation. Boric acid seems to precede in this effectiveness.

Keywords: high protein and energy diet, boron, metabolomics, transcriptomic

Procedia PDF Downloads 627
3284 Preparation of Wireless Networks and Security; Challenges in Efficient Accession of Encrypted Data in Healthcare

Authors: M. Zayoud, S. Oueida, S. Ionescu, P. AbiChar

Abstract:

Background: Wireless sensor network is encompassed of diversified tools of information technology, which is widely applied in a range of domains, including military surveillance, weather forecasting, and earthquake forecasting. Strengthened grounds are always developed for wireless sensor networks, which usually emerges security issues during professional application. Thus, essential technological tools are necessary to be assessed for secure aggregation of data. Moreover, such practices have to be incorporated in the healthcare practices that shall be serving in the best of the mutual interest Objective: Aggregation of encrypted data has been assessed through homomorphic stream cipher to assure its effectiveness along with providing the optimum solutions to the field of healthcare. Methods: An experimental design has been incorporated, which utilized newly developed cipher along with CPU-constrained devices. Modular additions have also been employed to evaluate the nature of aggregated data. The processes of homomorphic stream cipher have been highlighted through different sensors and modular additions. Results: Homomorphic stream cipher has been recognized as simple and secure process, which has allowed efficient aggregation of encrypted data. In addition, the application has led its way to the improvisation of the healthcare practices. Statistical values can be easily computed through the aggregation on the basis of selected cipher. Sensed data in accordance with variance, mean, and standard deviation has also been computed through the selected tool. Conclusion: It can be concluded that homomorphic stream cipher can be an ideal tool for appropriate aggregation of data. Alongside, it shall also provide the best solutions to the healthcare sector.

Keywords: aggregation, cipher, homomorphic stream, encryption

Procedia PDF Downloads 261
3283 Identification and Prioritisation of Students Requiring Literacy Intervention and Subsequent Communication with Key Stakeholders

Authors: Emilie Zimet

Abstract:

During networking and NCCD moderation meetings, best practices for identifying students who require Literacy Intervention are often discussed. Once these students are identified, consideration is given to the most effective process for prioritising those who have the greatest need for Literacy Support and the allocation of resources, tracking of intervention effectiveness and communicating with teachers/external providers/parents. Through a workshop, the group will investigate best practices to identify students who require literacy support and strategies to communicate and track their progress. In groups, participants will examine what they do in their settings and then compare with other models, including the researcher’s model, to decide the most effective path to identification and communication. Participants will complete a worksheet at the beginning of the session to deeply consider their current approaches. The participants will be asked to critically analyse their own identification processes for Literacy Intervention, ensuring students are not overlooked if they fall into the borderline category. A cut-off for students to access intervention will be considered so as not to place strain on already stretched resources along with the most effective allocation of resources. Furthermore, communicating learning needs and differentiation strategies to staff is paramount to the success of an intervention, and participants will look at the frequency of communication to share such strategies and updates. At the end of the session, the group will look at creating or evolving models that allow for best practices for the identification and communication of Literacy Interventions. The proposed outcome for this research is to develop a model of identification of students requiring Literacy Intervention that incorporates the allocation of resources and communication to key stakeholders. This will be done by pooling information and discussing a variety of models used in the participant's school settings.

Keywords: identification, student selection, communication, special education, school policy, planning for intervention

Procedia PDF Downloads 47
3282 Analysis of the Level of Production Failures by Implementing New Assembly Line

Authors: Joanna Kochanska, Dagmara Gornicka, Anna Burduk

Abstract:

The article examines the process of implementing a new assembly line in a manufacturing enterprise of the household appliances industry area. At the initial stages of the project, a decision was made that one of its foundations should be the concept of lean management. Because of that, eliminating as many errors as possible in the first phases of its functioning was emphasized. During the start-up of the line, there were identified and documented all production losses (from serious machine failures, through any unplanned downtime, to micro-stops and quality defects). During 6 weeks (line start-up period), all errors resulting from problems in various areas were analyzed. These areas were, among the others, production, logistics, quality, and organization. The aim of the work was to analyze the occurrence of production failures during the initial phase of starting up the line and to propose a method for determining their critical level during its full functionality. There was examined the repeatability of the production losses in various areas and at different levels at such an early stage of implementation, by using the methods of statistical process control. Based on the Pareto analysis, there were identified the weakest points in order to focus improvement actions on them. The next step was to examine the effectiveness of the actions undertaken to reduce the level of recorded losses. Based on the obtained results, there was proposed a method for determining the critical failures level in the studied areas. The developed coefficient can be used as an alarm in case of imbalance of the production, which is caused by the increased failures level in production and production support processes in the period of the standardized functioning of the line.

Keywords: production failures, level of production losses, new production line implementation, assembly line, statistical process control

Procedia PDF Downloads 128
3281 Effectiveness of Catalysis in Ozonation for the Removal of Herbizide 2,4 Dichlorophenoxyacetic Acid from Contaminated Water

Authors: S. Shanthi

Abstract:

Catalyzed oxidation processes show extraordinary guarantee for application in numerous wastewater treatment ranges. Advanced oxidation processes are emerging innovation that might be utilized for particular objectives in wastewater treatment. This research work provides a solution for removal a refractory organic compound 2,4-dichlorophenoxyaceticacid a common water pollutant. All studies were done in batch mode in a constantly stirred reactor. Alternative ozonation processes catalysed by transition metals or granular activated carbon have been investigated for degradation of organics. Catalytic ozonation under study are homogeneous catalytic ozonation, which is based on ozone activation by transition metal ions present in aqueous solution, and secondly as heterogeneous catalytic ozonation in the presence of Granular Activated Carbon (GAC). The present studies reveal that heterogeneous catalytic ozonation using GAC favour the ozonation of 2,4-dichlorophenoxyaceticacid by increasing the rate of ozonation and a much higher degradation of substrates were obtained in a given time. Be that it may, Fe2+and Fe3+ ions decreased the rate of degradation of 2,4-dichlorophenoxyaceticacid indicating that it acts as a negative catalyst. In case of heterogeneous catalytic ozonation using GAC catalyst it was found that during the initial 5 minutes of contact solution concentration decreased significantly as the pollutants were adsorbed initially. Thereafter the substrate started getting oxidized and ozonation became a dominates the treatment process. The exhausted GAC was found to be regenerated in situ. The percentage reduction of the substrate was maximum achieved in minimum possible time when GAC catalyst is employed.

Keywords: ozonation, homogeneous catalysis, heterogeneous catalysis, granular activated carbon

Procedia PDF Downloads 250
3280 Cellulose Nanocrystals from Melon Plant Residues: A Sustainable and Renewable Source

Authors: Asiya Rezzouq, Mehdi El Bouchti, Omar Cherkaoui, Sanaa Majid, Souad Zyade

Abstract:

In recent years, there has been a steady increase in the exploration of new renewable and non-conventional sources for the production of biodegradable nanomaterials. Nature harbours valuable cellulose-rich materials that have so far been under-exploited and can be used to create cellulose derivatives such as cellulose microfibres (CMFs) and cellulose nanocrystals (CNCs). These unconventional sources have considerable potential as alternatives to conventional sources such as wood and cotton. By using agricultural waste to produce these cellulose derivatives, we are responding to the global call for sustainable solutions to environmental and economic challenges. Responsible management of agricultural waste is increasingly crucial to reducing the environmental consequences of its disposal, including soil and water pollution, while making efficient use of these untapped resources. In this study, the main objective was to extract cellulose nanocrystals (CNC) from melon plant residues using methods that are both efficient and sustainable. To achieve this high-quality extraction, we followed a well-defined protocol involving several key steps: pre-treatment of the residues by grinding, filtration and chemical purification to obtain high-quality (CMF) with a yield of 52% relative to the initial mass of the melon plant residue. Acid hydrolysis was then carried out using phosphoric acid and sulphuric acid to convert (CMF) into cellulose nanocrystals. The extracted cellulose nanocrystals were subjected to in-depth characterization using advanced techniques such as transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The resulting cellulose nanocrystals have exceptional properties, including a large specific surface area, high thermal stability and high mechanical strength, making them suitable for a variety of applications, including as reinforcements for composite materials. In summary, the study highlights the potential for recovering agricultural melon waste to produce high-quality cellulose nanocrystals with promising applications in industry, nanotechnology, and biotechnology, thereby contributing to environmental and economic sustainability.

Keywords: cellulose, melon plant residues, cellulose nanocrystals, properties, applications, composite materials

Procedia PDF Downloads 56
3279 An Improved Robust Algorithm Based on Cubature Kalman Filter for Single-Frequency Global Navigation Satellite System/Inertial Navigation Tightly Coupled System

Authors: Hao Wang, Shuguo Pan

Abstract:

The Global Navigation Satellite System (GNSS) signal received by the dynamic vehicle in the harsh environment will be frequently interfered with and blocked, which generates gross error affecting the positioning accuracy of the GNSS/Inertial Navigation System (INS) integrated navigation. Therefore, this paper put forward an improved robust Cubature Kalman filter (CKF) algorithm for single-frequency GNSS/INS tightly coupled system ambiguity resolution. Firstly, the dynamic model and measurement model of a single-frequency GNSS/INS tightly coupled system was established, and the method for GNSS integer ambiguity resolution with INS aided is studied. Then, we analyzed the influence of pseudo-range observation with gross error on GNSS/INS integrated positioning accuracy. To reduce the influence of outliers, this paper improved the CKF algorithm and realized an intelligent selection of robust strategies by judging the ill-conditioned matrix. Finally, a field navigation test was performed to demonstrate the effectiveness of the proposed algorithm based on the double-differenced solution mode. The experiment has proved the improved robust algorithm can greatly weaken the influence of separate, continuous, and hybrid observation anomalies for enhancing the reliability and accuracy of GNSS/INS tightly coupled navigation solutions.

Keywords: GNSS/INS integrated navigation, ambiguity resolution, Cubature Kalman filter, Robust algorithm

Procedia PDF Downloads 100
3278 Effective Student Engaging Strategies to Enhance Academic Learning in Middle Eastern Classrooms: An Action Research Approach

Authors: Anjum Afrooze

Abstract:

The curriculum at General Sciences department in Prince Sultan University includes ‘Physical science’ for Computer Science, Information Technology and Business courses. Students are apathetic towards Physical Science and question, as to, ‘How this course is related to their majors?’ English is not a native language for the students and also for many instructors. More than sixty percent of the students come from institutions where English is not the medium of instruction, which makes student learning and academic achievement challenging. After observing the less enthusiastic student cohort for two consecutive semesters, the instructor was keen to find effective strategies to enhance learning and further encourage deep learning by engaging students in different tasks to empower them with necessary skills and motivate them. This study is participatory action research, in which instructor designs effective tasks to engage students in their learning. The study is conducted through two semesters with a total of 200 students. The effectiveness of this approach is studied using questionnaire at the end of each semester and teacher observation. Major outcomes of this study were overall improvement in students attitude towards science learning, enhancement of multiple skills like note taking, problem solving, language proficiency and also fortifying confidence. This process transformed instructor into engaging and reflecting practitioner. Also, these strategies were implemented by other instructors teaching the course and proved effective in opening a path to changes in related areas of the course curriculum. However, refinement in the strategies could be done based on student evaluation and instructors observation.

Keywords: group activity, language proficiency, reasoning skills, science learning

Procedia PDF Downloads 145
3277 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques

Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara

Abstract:

In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.

Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN

Procedia PDF Downloads 80
3276 Microarray Gene Expression Data Dimensionality Reduction Using PCA

Authors: Fuad M. Alkoot

Abstract:

Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.

Keywords: PCA, gene expression, dimensionality reduction, classification, autism

Procedia PDF Downloads 560
3275 Predicting Success and Failure in Drug Development Using Text Analysis

Authors: Zhi Hao Chow, Cian Mulligan, Jack Walsh, Antonio Garzon Vico, Dimitar Krastev

Abstract:

Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy.

Keywords: data analysis, drug development, sentiment analysis, text-mining

Procedia PDF Downloads 158