Search results for: nonprofit organizations-national data maturity index (NDI)
22403 Non Interferometric Quantitative Phase Imaging of Yeast Cells
Authors: P. Praveen Kumar, P. Vimal Prabhu, Renu John
Abstract:
In biology most microscopy specimens, in particular living cells are transparent. In cell imaging, it is hard to create an image of a cell which is transparent with a very small refractive index change with respect to the surrounding media. Various techniques like addition of staining and contrast agents, markers have been applied in the past for creating contrast. Many of the staining agents or markers are not applicable to live cell imaging as they are toxic. In this paper, we report theoretical and experimental results from quantitative phase imaging of yeast cells with a commercial bright field microscope. We reconstruct the phase of cells non-interferometrically based on the transport of intensity equations (TIE). This technique estimates the axial derivative from positive through-focus intensity measurements. This technique allows phase imaging using a regular microscope with white light illumination. We demonstrate nano-metric depth sensitivity in imaging live yeast cells using this technique. Experimental results will be shown in the paper demonstrating the capability of the technique in 3-D volume estimation of living cells. This real-time imaging technique would be highly promising in real-time digital pathology applications, screening of pathogens and staging of diseases like malaria as it does not need any pre-processing of samples.Keywords: axial derivative, non-interferometric imaging, quantitative phase imaging, transport of intensity equation
Procedia PDF Downloads 38422402 A Survey on a Critical Infrastructure Monitoring Using Wireless Sensor Networks
Authors: Khelifa Benahmed, Tarek Benahmed
Abstract:
There are diverse applications of wireless sensor networks (WSNs) in the real world, typically invoking some kind of monitoring, tracking, or controlling activities. In an application, a WSN is deployed over the area of interest to sense and detect the events and collect data through their sensors in a geographical area and transmit the collected data to a Base Station (BS). This paper presents an overview of the research solutions available in the field of environmental monitoring applications, more precisely the problems of critical area monitoring using wireless sensor networks.Keywords: critical infrastructure monitoring, environment monitoring, event region detection, wireless sensor networks
Procedia PDF Downloads 35122401 A Leaf-Patchable Reflectance Meter for in situ Continuous Monitoring of Chlorophyll Content
Authors: Kaiyi Zhang, Wenlong Li, Haicheng Li, Yifei Luo, Zheng Li, Xiaoshi Wang, Xiaodong Chen
Abstract:
Plant wearable sensors facilitate the real-time monitoring of plant physiological status. In situ monitoring of the plant chlorophyll content over days could provide valuable information on the photosynthetic capacity, nitrogen content, and general plant health. However, it cannot be achieved by current chlorophyll measuring methods. Here, a miniaturized and plant-wearable chlorophyll meter was developed for rapid, non-destructive, in situ, and long-term chlorophyll monitoring. This reflectance-based chlorophyll sensor with 1.5 mm thickness and 0.2 g weight (1000 times lighter than the commercial chlorophyll meter), includes a light emitting diode (LED) and two symmetric photodetectors (PDs) on a flexible substrate and is patched onto the leaf upper epidermis with a conformal light guiding layer. A chlorophyll content index (CCI) calculated based on this sensor shows a better linear relationship with the leaf chlorophyll content (r² > 0.9) than the traditional chlorophyll meter. This meter can wirelessly communicate with a smartphone to monitor the leaf chlorophyll change under various stresses and indicate the unhealthy status of plants for long-term application of plants under various stresses earlier than chlorophyll meter and naked-eye observation. This wearable chlorophyll sensing patch is promising in smart and precision agriculture.Keywords: plant wearable sensors, reflectance-based measurements, chlorophyll content monitoring, smart agriculture
Procedia PDF Downloads 11522400 Development of an NIR Sorting Machine, an Experimental Study in Detecting Internal Disorder and Quality of Apple Fruitpple Fruit
Authors: Eid Alharbi, Yaser Miaji
Abstract:
The quality level for fresh fruits is very important for the fruit industries. In presents study, an automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.Keywords: mechatronics, NIR, fruit quality, spectroscopic technology, mechatronic design
Procedia PDF Downloads 39022399 A Low Power Consumption Routing Protocol Based on a Meta-Heuristics
Authors: Kaddi Mohammed, Benahmed Khelifa D. Benatiallah
Abstract:
A sensor network consists of a large number of sensors deployed in areas to monitor and communicate with each other through a wireless medium. The collected routing data in the network consumes most of the energy of the sensor nodes. For this purpose, multiple routing approaches have been proposed to conserve energy resource at the sensors and to overcome the challenges of its limitation. In this work, we propose a new low energy consumption routing protocol for wireless sensor networks based on a meta-heuristic methods. Our protocol is to operate more fairly energy when routing captured data to the base station.Keywords: WSN, routing, energy, heuristic
Procedia PDF Downloads 34322398 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data
Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour
Abstract:
Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.Keywords: physical activity, machine learning, under 5s, disability, accelerometer
Procedia PDF Downloads 21022397 Exploring Teacher Verbal Feedback on Postgraduate Students' Performances in Presentations in English
Authors: Nattawadee Sinpattanawong, Yaowaret Tharawoot
Abstract:
This is an analytic and descriptive classroom-centered research, the purpose of which is to explore teacher verbal feedback on postgraduate students’ performances in presentations in English in an English for Specific Purposes (ESP) postgraduate classroom. The participants are a Thai female teacher, two Thai female postgraduate students, and two foreign male postgraduate students. The current study draws on both classroom observation and interview data. The class focused on the students’ presentations and the teacher’s providing verbal feedback on them was observed nine times with audio recording and taking notes. For the interviews, the teacher was interviewed about linkages between her verbal feedback and each student’s presentation skills in English. For the data analysis, the audio files from the observations were transcribed and analyzed both quantitatively and qualitatively. The quantitative approach addressed the frequencies and percentages of content of the teacher’s verbal feedback for each student’s performances based on eight presentation factors (content, structure, grammar, coherence, vocabulary, speaking skills, involving the audience, and self-presentation). Based on the quantitative data including the interview data, a qualitative analysis of the transcripts was made to describe the occurrences of several content of verbal feedback for each student’s presentation performances. The study’s findings may help teachers to reflect on their providing verbal feedback based on various students’ performances in presentation in English. They also help students who have similar characteristics to the students in the present study when giving a presentation in English improve their presentation performances by applying the teacher’s verbal feedback content.Keywords: teacher verbal feedback, presentation factors, presentation in English, presentation performances
Procedia PDF Downloads 14922396 Applications of Digital Tools, Satellite Images and Geographic Information Systems in Data Collection of Greenhouses in Guatemala
Authors: Maria A. Castillo H., Andres R. Leandro, Jose F. Bienvenido B.
Abstract:
During the last 20 years, the globalization of economies, population growth, and the increase in the consumption of fresh agricultural products have generated greater demand for ornamentals, flowers, fresh fruits, and vegetables, mainly from tropical areas. This market situation has demanded greater competitiveness and control over production, with more efficient protected agriculture technologies, which provide greater productivity and allow us to guarantee the quality and quantity that is required in a constant and sustainable way. Guatemala, located in the north of Central America, is one of the largest exporters of agricultural products in the region and exports fresh vegetables, flowers, fruits, ornamental plants, and foliage, most of which were grown in greenhouses. Although there are no official agricultural statistics on greenhouse production, several thesis works, and congress reports have presented consistent estimates. A wide range of protection structures and roofing materials are used, from the most basic and simple ones for rain control to highly technical and automated structures connected with remote sensors for monitoring and control of crops. With this breadth of technological models, it is necessary to analyze georeferenced data related to the cultivated area, to the different existing models, and to the covering materials, integrated with altitude, climate, and soil data. The georeferenced registration of the production units, the data collection with digital tools, the use of satellite images, and geographic information systems (GIS) provide reliable tools to elaborate more complete, agile, and dynamic information maps. This study details a methodology proposed for gathering georeferenced data of high protection structures (greenhouses) in Guatemala, structured in four phases: diagnosis of available information, the definition of the geographic frame, selection of satellite images, and integration with an information system geographic (GIS). It especially takes account of the actual lack of complete data in order to obtain a reliable decision-making system; this gap is solved through the proposed methodology. A summary of the results is presented in each phase, and finally, an evaluation with some improvements and tentative recommendations for further research is added. The main contribution of this study is to propose a methodology that allows to reduce the gap of georeferenced data in protected agriculture in this specific area where data is not generally available and to provide data of better quality, traceability, accuracy, and certainty for the strategic agricultural decision öaking, applicable to other crops, production models and similar/neighboring geographic areas.Keywords: greenhouses, protected agriculture, GIS, Guatemala, satellite image, digital tools, precision agriculture
Procedia PDF Downloads 19422395 A Study of the Resistance of Protective Glove Materials to Metalworking Fluids
Authors: Nguyen-Tri Phuong, Triki Ennouri, Gauvin Chantal, Tuduri Ludovic, Vu-Khanh Toan
Abstract:
Hand injuries due to mechanical hazards such as cuts and punctures are major risks and concerns for several occupational groups, particularly for workers in the metal manufacturing sector and mechanical automotive services. Personal protective equipment such as gloves or clothing is necessary for many professionals to protect against a variety of occupational hazards, which arise daily in their work environments. In many working places such as metal manufacturing or automotive services, mechanical hazards often occur together with industrial contaminants, particularly metalworking fluids (MWFs). The presence of these contaminants could modify the properties of gloves made from polymeric materials and thus increase the risk of hand injuries for workers. The focus of this study is to determine the swelling characteristics and the resistance of six polymer membranes when they are contaminated with several industrial metalworking fluids. These polymer membranes, commonly used in protective gloves, are nitrile, neoprene, vinyl, butyl, polyurethane and latex rubbers. Changes swelling index were continuously followed during the contamination procedure to compare the performance of each polymer under different conditions. The modification of the samples surface, tensile properties during the contamination process was also investigated. The effect of temperature on mechanical properties and morphology of material was also examined.Keywords: metalworking fluid, swelling behavior, protective glove materials, elastomers
Procedia PDF Downloads 39322394 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System
Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu
Abstract:
The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter
Procedia PDF Downloads 25222393 Geodesign Application for Bio-Swale Design: A Data-Driven Design Approach for a Case Site in Ottawa Street North in Hamilton, Ontario, Canada
Authors: Adele Pierre, Nadia Amoroso
Abstract:
Changing climate patterns are resulting in increased in storm severity, challenging traditional methods of managing stormwater runoff. This research compares a system of bioswales to existing curb and gutter infrastructure in a post-industrial streetscape of Hamilton, Ontario. Using the geodesign process, including rule-based set parameters and an integrated approach combining geospatial information with stakeholder input, a section of Ottawa St. North was modelled to show how green infrastructure can ease the burden on aging, combined sewer systems. Qualitative data was gathered from residents of the neighbourhood through field notes, and quantitative geospatial data through GIS and site analysis. Parametric modelling was used to generate multiple design scenarios, each visualizing resulting impacts on stormwater runoff along with their calculations. The selected design scenarios offered both an aesthetically pleasing urban bioswale street-scape system while minimizing and controlling stormwater runoff. Interactive maps, videos and the 3D model were presented for stakeholder comment via ESRI’s (Environmental System Research Institute) web-scene. The results of the study demonstrate powerful tools that can assist landscape architects in designing, collaborating and communicating stormwater strategies.Keywords: bioswale, geodesign, data-driven and rule-based design, geodesign, GIS, stormwater management
Procedia PDF Downloads 18122392 Aeromagnetic Data Interpretation and Source Body Evaluation Using Standard Euler Deconvolution Technique in Obudu Area, Southeastern Nigeria
Authors: Chidiebere C. Agoha, Chukwuebuka N. Onwubuariri, Collins U.amasike, Tochukwu I. Mgbeojedo, Joy O. Njoku, Lawson J. Osaki, Ifeyinwa J. Ofoh, Francis B. Akiang, Dominic N. Anuforo
Abstract:
In order to interpret the airborne magnetic data and evaluate the approximate location, depth, and geometry of the magnetic sources within Obudu area using the standard Euler deconvolution method, very high-resolution aeromagnetic data over the area was acquired, processed digitally and analyzed using Oasis Montaj 8.5 software. Data analysis and enhancement techniques, including reduction to the equator, horizontal derivative, first and second vertical derivatives, upward continuation and regional-residual separation, were carried out for the purpose of detailed data Interpretation. Standard Euler deconvolution for structural indices of 0, 1, 2, and 3 was also carried out and respective maps were obtained using the Euler deconvolution algorithm. Results show that the total magnetic intensity ranges from -122.9nT to 147.0nT, regional intensity varies between -106.9nT to 137.0nT, while residual intensity ranges between -51.5nT to 44.9nT clearly indicating the masking effect of deep-seated structures over surface and shallow subsurface magnetic materials. Results also indicated that the positive residual anomalies have an NE-SW orientation, which coincides with the trend of major geologic structures in the area. Euler deconvolution for all the considered structural indices has depth to magnetic sources ranging from the surface to more than 2000m. Interpretation of the various structural indices revealed the locations and depths of the source bodies and the existence of geologic models, including sills, dykes, pipes, and spherical structures. This area is characterized by intrusive and very shallow basement materials and represents an excellent prospect for solid mineral exploration and development.Keywords: Euler deconvolution, horizontal derivative, Obudu, structural indices
Procedia PDF Downloads 8122391 Network Analysis of Genes Involved in the Biosynthesis of Medicinally Important Naphthodianthrone Derivatives of Hypericum perforatum
Authors: Nafiseh Noormohammadi, Ahmad Sobhani Najafabadi
Abstract:
Hypericins (hypericin and pseudohypericin) are natural napthodianthrone derivatives produced by Hypericum perforatum (St. John’s Wort), which have many medicinal properties such as antitumor, antineoplastic, antiviral, and antidepressant activities. Production and accumulation of hypericin in the plant are influenced by both genetic and environmental conditions. Despite the existence of different high-throughput data on the plant, genetic dimensions of hypericin biosynthesis have not yet been completely understood. In this research, 21 high-quality RNA-seq data on different parts of the plant were integrated into metabolic data to reconstruct a coexpression network. Results showed that a cluster of 30 transcripts was correlated with total hypericin. The identified transcripts were divided into three main groups based on their functions, including hypericin biosynthesis genes, transporters, detoxification genes, and transcription factors (TFs). In the biosynthetic group, different isoforms of polyketide synthase (PKSs) and phenolic oxidative coupling proteins (POCPs) were identified. Phylogenetic analysis of protein sequences integrated into gene expression analysis showed that some of the POCPs seem to be very important in the biosynthetic pathway of hypericin. In the TFs group, six TFs were correlated with total hypericin. qPCR analysis of these six TFs confirmed that three of them were highly correlated. The identified genes in this research are a rich resource for further studies on the molecular breeding of H. perforatum in order to obtain varieties with high hypericin production.Keywords: hypericin, St. John’s Wort, data mining, transcription factors, secondary metabolites
Procedia PDF Downloads 9322390 Chemical Life Cycle Alternative Assessment as a Green Chemical Substitution Framework: A Feasibility Study
Authors: Sami Ayad, Mengshan Lee
Abstract:
The Sustainable Development Goals (SDGs) were designed to be the best possible blueprint to achieve peace, prosperity, and overall, a better and more sustainable future for the Earth and all its people, and such a blueprint is needed more than ever. The SDGs face many hurdles that will prevent them from becoming a reality, one of such hurdles, arguably, is the chemical pollution and unintended chemical impacts generated through the production of various goods and resources that we consume. Chemical Alternatives Assessment has proven to be a viable solution for chemical pollution management in terms of filtering out hazardous chemicals for a greener alternative. However, the current substitution practice lacks crucial quantitative datasets (exposures and life cycle impacts) to ensure no unintended trade-offs occur in the substitution process. A Chemical Life Cycle Alternative Assessment (CLiCAA) framework is proposed as a reliable and replicable alternative to Life Cycle Based Alternative Assessment (LCAA) as it integrates chemical molecular structure analysis and Chemical Life Cycle Collaborative (CLiCC) web-based tool to fill in data gaps that the former frameworks suffer from. The CLiCAA framework consists of a four filtering layers, the first two being mandatory, with the final two being optional assessment and data extrapolation steps. Each layer includes relevant impact categories of each chemical, ranging from human to environmental impacts, that will be assessed and aggregated into unique scores for overall comparable results, with little to no data. A feasibility study will demonstrate the efficiency and accuracy of CLiCAA whilst bridging both cancer potency and exposure limit data, hoping to provide the necessary categorical impact information for every firm possible, especially those disadvantaged in terms of research and resource management.Keywords: chemical alternative assessment, LCA, LCAA, CLiCC, CLiCAA, chemical substitution framework, cancer potency data, chemical molecular structure analysis
Procedia PDF Downloads 9222389 Adolescent and Adult Hip Dysplasia on Plain Radiographs. Analysis of Measurements and Attempt for Optimization of Diagnostic and Performance Approaches for Patients with Periacetabular Osteotomy (PAO).
Authors: Naum Simanovsky MD, Michael Zaidman MD, Vladimir Goldman MD.
Abstract:
105 plain AP radiographs of normal adult pelvises (210 hips) were evaluated. Different measurements of normal and dysplastic hip joints in 45 patients were analyzed. Attempt was made to establish reproducible, easy applicable in practice approach for evaluation and follow up of patients with hip dysplasia. The youngest of our patients was 11 years and the oldest was 47 years. Only one of our patients needed conversion to total hip replacement (THR) during ten years of follow-up. It was emphasized that selected set of measurements was built for purpose to serve, especially those who’s scheduled or undergone PAO. This approach was based on concept of acetabulum-femoral head complex and importance of reliable reference points of measurements. Comparative analysis of measured parameters between normal and dysplastic hips was performed. Among 10 selected parameters, we use already well established such as lateral center edge angle and head extrusion index, but to serve specific group of patients with PAO, new parameters were considered such as complex lateralization and complex proximal migration. By our opinion proposed approach is easy applicable in busy clinical practice, satisfactorily delineate hip pathology and give to surgeon who’s going to perform PAO guidelines in condensed form. It is also useful tools for postoperative follow up after PAO.Keywords: periacetabular osteotomy, plain radiograph’s measurements, adolescents, adult
Procedia PDF Downloads 6722388 Efficient Filtering of Graph Based Data Using Graph Partitioning
Authors: Nileshkumar Vaishnav, Aditya Tatu
Abstract:
An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.Keywords: graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing
Procedia PDF Downloads 31122387 The Influence of Students’ Learning Factor and Parents’ Involvement in Their Learning and Suspension: The Application of Big Data Analysis of Internet of Things Technology
Authors: Chih Ming Kung
Abstract:
This study is an empirical study examining the enrollment rate and dropout rate of students from the perspectives of students’ learning, parents’ involvement and the learning process. Methods: Using the data collected from the entry website of Internet of Things (IoT), parents’ participation and the installation pattern of exit poll website, an investigation was conducted. Results: This study discovered that in the aspect of the degree of involvement, the attractiveness of courses, self-performance and departmental loyalty exerts significant influences on the four aspects: psychological benefits, physical benefits, social benefits and educational benefits of learning benefits. Parents’ participation also exerts a significant influence on the learning benefits. A suitable tool on the cloud was designed to collect the dynamic big data of students’ learning process. Conclusion: This research’s results can be valuable references for the government when making and promoting related policies, with more macro view and consideration. It is also expected to be contributory to schools for the practical study of promotion for enrollment.Keywords: students’ learning factor, parents’ involvement, involvement, technology
Procedia PDF Downloads 14622386 Navigating Complex Communication Dynamics in Qualitative Research
Authors: Kimberly M. Cacciato, Steven J. Singer, Allison R. Shapiro, Julianna F. Kamenakis
Abstract:
This study examines the dynamics of communication among researchers and participants who have various levels of hearing, use multiple languages, have various disabilities, and who come from different social strata. This qualitative methodological study focuses on the strategies employed in an ethnographic research study examining the communication choices of six sets of parents who have Deaf-Disabled children. The participating families varied in their communication strategies and preferences including the use of American Sign Language (ASL), visual-gestural communication, multiple spoken languages, and pidgin forms of each of these. The research team consisted of two undergraduate students proficient in ASL and a Deaf principal investigator (PI) who uses ASL and speech as his main modes of communication. A third Hard-of-Hearing undergraduate student fluent in ASL served as an objective facilitator of the data analysis. The team created reflexive journals by audio recording, free writing, and responding to team-generated prompts. They discussed interactions between the members of the research team, their evolving relationships, and various social and linguistic power differentials. The researchers reflected on communication during data collection, their experiences with one another, and their experiences with the participating families. Reflexive journals totaled over 150 pages. The outside research assistant reviewed the journals and developed follow up open-ended questions and prods to further enrich the data. The PI and outside research assistant used NVivo qualitative research software to conduct open inductive coding of the data. They chunked the data individually into broad categories through multiple readings and recognized recurring concepts. They compared their categories, discussed them, and decided which they would develop. The researchers continued to read, reduce, and define the categories until they were able to develop themes from the data. The research team found that the various communication backgrounds and skills present greatly influenced the dynamics between the members of the research team and with the participants of the study. Specifically, the following themes emerged: (1) students as communication facilitators and interpreters as barriers to natural interaction, (2) varied language use simultaneously complicated and enriched data collection, and (3) ASL proficiency and professional position resulted in a social hierarchy among researchers and participants. In the discussion, the researchers reflected on their backgrounds and internal biases of analyzing the data found and how social norms or expectations affected the perceptions of the researchers in writing their journals. Through this study, the research team found that communication and language skills require significant consideration when working with multiple and complex communication modes. The researchers had to continually assess and adjust their data collection methods to meet the communication needs of the team members and participants. In doing so, the researchers aimed to create an accessible research setting that yielded rich data but learned that this often required compromises from one or more of the research constituents.Keywords: American Sign Language, complex communication, deaf-disabled, methodology
Procedia PDF Downloads 11822385 Using Discriminant Analysis to Forecast Crime Rate in Nigeria
Authors: O. P. Popoola, O. A. Alawode, M. O. Olayiwola, A. M. Oladele
Abstract:
This research work is based on using discriminant analysis to forecast crime rate in Nigeria between 1996 and 2008. The work is interested in how gender (male and female) relates to offences committed against the government, against other properties, disturbance in public places, murder/robbery offences and other offences. The data used was collected from the National Bureau of Statistics (NBS). SPSS, the statistical package was used to analyse the data. Time plot was plotted on all the 29 offences gotten from the raw data. Eigenvalues and Multivariate tests, Wilks’ Lambda, standardized canonical discriminant function coefficients and the predicted classifications were estimated. The research shows that the distribution of the scores from each function is standardized to have a mean O and a standard deviation of 1. The magnitudes of the coefficients indicate how strongly the discriminating variable affects the score. In the predicted group membership, 172 cases that were predicted to commit crime against Government group, 66 were correctly predicted and 106 were incorrectly predicted. After going through the predicted classifications, we found out that most groups numbers that were correctly predicted were less than those that were incorrectly predicted.Keywords: discriminant analysis, DA, multivariate analysis of variance, MANOVA, canonical correlation, and Wilks’ Lambda
Procedia PDF Downloads 46822384 The Influence of Hydrogen Addition to Natural Gas Networks on Gas Appliances
Authors: Yitong Xie, Chaokui Qin, Zhiguang Chen, Shuangqian Guo
Abstract:
Injecting hydrogen, a competitive carbon-free energy carrier, into existing natural gas networks has become a promising step toward alleviating global warming. Considering the differences in properties of hydrogen and natural gas, there is very little evidence showing how many degrees of hydrogen admixture can be accepted and how to adjust appliances to adapt to gas constituents' variation. The lack of this type of analysis provides more uncertainty in injecting hydrogen into networks because of the short the basis of burner design and adjustment. First, the properties of methane and hydrogen were compared for a comprehensive analysis of the impact of hydrogen addition to methane. As the main determinant of flame stability, the burning velocity was adopted for hydrogen addition analysis. Burning velocities for hydrogen-enriched natural gas with different hydrogen percentages and equivalence ratios were calculated by the software CHEMKIN. Interchangeability methods, including single index methods, multi indices methods, and diagram methods, were adopted to determine the limit of hydrogen percentage. Cooktops and water heaters were experimentally tested in the laboratory. Flame structures of different hydrogen percentages and equivalence ratios were observed and photographed. Besides, the change in heat efficiency, burner temperature, emission by hydrogen percentage, and equivalence ratio was studied. The experiment methodologies and results in this paper provide an important basis for the introduction of hydrogen into gas pipelines and the adjustment of gas appliances.Keywords: hydrogen, methane, combustion, appliances, interchangeability
Procedia PDF Downloads 9122383 A Study of Behavioral Phenomena Using an Artificial Neural Network
Authors: Yudhajit Datta
Abstract:
Will is a phenomenon that has puzzled humanity for a long time. It is a belief that Will Power of an individual affects the success achieved by an individual in life. It is thought that a person endowed with great will power can overcome even the most crippling setbacks of life while a person with a weak will cannot make the most of life even the greatest assets. Behavioral aspects of the human experience such as will are rarely subjected to quantitative study owing to the numerous uncontrollable parameters involved. This work is an attempt to subject the phenomena of will to the test of an artificial neural network. The claim being tested is that will power of an individual largely determines success achieved in life. In the study, an attempt is made to incorporate the behavioral phenomenon of will into a computational model using data pertaining to the success of individuals obtained from an experiment. A neural network is to be trained using data based upon part of the model, and subsequently used to make predictions regarding will corresponding to data points of success. If the prediction is in agreement with the model values, the model is to be retained as a candidate. Ultimately, the best-fit model from among the many different candidates is to be selected, and used for studying the correlation between success and will.Keywords: will power, will, success, apathy factor, random factor, characteristic function, life story
Procedia PDF Downloads 37922382 The Effect of Fetal Movement Counting on Maternal Antenatal Attachment
Authors: Esra Güney, Tuba Uçar
Abstract:
Aim: This study has been conducted for the purpose of determining the effects of fetal movement counting on antenatal maternal attachment. Material and Method: This research was conducted on the basis of the real test model with the pre-test /post-test control groups. The study population consists of pregnant women registered in the six different Family Health Centers located in the central Malatya districts of Yeşilyurt and Battalgazi. When power analysis is done, the sample size was calculated for each group of at least 55 pregnant women (55 tests, 55 controls). The data were collected by using Personal Information Form and MAAS (Maternal Antenatal Attachment Scale) between July 2015-June 2016. Fetal movement counting training was given to pregnant women by researchers in the experimental group after the pre-test data collection. No intervention was applied to the control group. Post-test data for both groups were collected after four weeks. Data were evaluated with percentage, chi-square arithmetic average, chi-square test and as for the dependent and independent group’s t test. Result: In the MAAS, the pre-test average of total scores in the experimental group is 70.78±6.78, control group is also 71.58±7.54 and so there was no significant difference in mean scores between the two groups (p>0.05). MAAS post-test average of total scores in the experimental group is 78.41±6.65, control group is also is 72.25±7.16 and so the mean scores between groups were found to have statistically significant difference (p<0.05). Conclusion: It was determined that fetal movement counting increases the maternal antenatal attachments.Keywords: antenatal maternal attachment, fetal movement counting, pregnancy, midwifery
Procedia PDF Downloads 27222381 Impact of Financial Inclusion on Gender Inequality: An Empirical Examination
Authors: Sumanta Kumar Saha, Jie Qin
Abstract:
This study analyzes the impact of financial inclusion on gender inequality in 126 countries belonging to different income groups during the 2005–2019 period. Due to its positive influence on poverty alleviation, economic growth, women empowerment, and income inequality reduction, financial inclusion may help reduce gender equality. This study constructs a novel composite financial inclusion index and applies both fixed-effect panel estimation and instrumental variable approach to examine the impact of financial inclusion on gender inequality. The results indicate that financial inclusion can reduce gender inequality in developing and low- and lower-middle-income countries, but not in higher-income countries. The impact is not always immediate. Past financial inclusion initiatives have a significant influence on future gender inequality. Financial inclusion is also significant if the poverty level is high and women's access to financial services is low compared to men. When the poverty level is low, or women have equal access to financial services, financial inclusion does not significantly affect gender inequality. The study finds that compulsory education and improvement in institutional quality promote gender equality in developing countries apart from financial inclusion. The study proposes that lower-income countries use financial inclusion initiatives to improve gender equality. Other countries need to focus on other aspects such as promoting educational support and institutional quality improvements to achieve gender equality.Keywords: financial inclusion, gender inequality, institutional quality, women empowerment
Procedia PDF Downloads 12922380 Implementation of Invisible Digital Watermarking
Authors: V. Monisha, D. Sindhuja, M. Sowmiya
Abstract:
Over the decade, the applications about multimedia have been developed rapidly. The advancement in the communication field at the faster pace, it is necessary to protect the data during transmission. Thus, security of multimedia contents becomes a vital issue, and it is a need for protecting the digital content against malfunctions. Digital watermarking becomes the solution for the copyright protection and authentication of data in the network. In multimedia applications, embedded watermarks should be robust, and imperceptible. For improving robustness, the discrete wavelet transform is used. Both encoding and extraction algorithm can be done using MATLAB R2012a. In this Discrete wavelet transform (DWT) domain of digital image, watermarking algorithm is used, and hardware implementation can be done on Xilinx based FPGA.Keywords: digital watermarking, DWT, robustness, FPGA
Procedia PDF Downloads 41322379 Semi-Supervised Learning Using Pseudo F Measure
Authors: Mahesh Balan U, Rohith Srinivaas Mohanakrishnan, Venkat Subramanian
Abstract:
Positive and unlabeled learning (PU) has gained more attention in both academic and industry research literature recently because of its relevance to existing business problems today. Yet, there still seems to be some existing challenges in terms of validating the performance of PU learning, as the actual truth of unlabeled data points is still unknown in contrast to a binary classification where we know the truth. In this study, we propose a novel PU learning technique based on the Pseudo-F measure, where we address this research gap. In this approach, we train the PU model to discriminate the probability distribution of the positive and unlabeled in the validation and spy data. The predicted probabilities of the PU model have a two-fold validation – (a) the predicted probabilities of reliable positives and predicted positives should be from the same distribution; (b) the predicted probabilities of predicted positives and predicted unlabeled should be from a different distribution. We experimented with this approach on a credit marketing case study in one of the world’s biggest fintech platforms and found evidence for benchmarking performance and backtested using historical data. This study contributes to the existing literature on semi-supervised learning.Keywords: PU learning, semi-supervised learning, pseudo f measure, classification
Procedia PDF Downloads 23522378 Islamic Banking and Finance in Nigeria: Challenges and Opportunities
Authors: Ya'u Saidu
Abstract:
The introduction of the non-interest banking system in Nigeria was part of the regulators efforts to increase the inclusion of other stakeholders into the financial sector who have stayed out of the sector for some reasons. However, the concept has been misunderstood by various stakeholders within the country where some view it as a Muslim affair which exclude the non-Muslims from gaining despite its existence in advance countries of the world. This paper attempts to fill-in the gap created by the literature especially with regards to the proper education and enlightenment of the Nigerian citizens. Survey research method was employed where primary data was collected using questionnaire and convenience sampling was used to select 100 respondents. The data was analysed using Chi-square. It was found that lack of knowledge on Islamic banking has significant effect on its prospects.Keywords: finance, non-interest, sustainability, enlightenment
Procedia PDF Downloads 44722377 Preparation of Activated Carbon Fibers (ACF) Impregnated with Ionic Silver Particles from Cotton Woven Waste and Its Performance as Antibacterial Agent
Authors: Jonathan Andres Pullas Navarrete, Ernesto Hale de la Torre Chauvin
Abstract:
In this work, the antibacterial effect of activated carbon fibers (ACF) impregnated with ionic silver particles was studied. ACF were prepared from samples of cotton woven wastes (cotton based fabrics 5x10 cm) by applying a chemical activation procedure with H3PO4. This treatment was performed using several H3PO4: Cotton based fabrics weight ratios (1:2–2:1), temperatures (600–900 ºC) and activation times (0.5–2 h). The ACF obtained under the best activation conditions showed BET surface area of 1103 m2/g; this result along with iodine index demonstrated the microporous nature of the fibers herein obtained. Then, the obtained fibers were impregnated with ionic silver particles by immersion in 0.1 and 0.5 M AgNO3 solutions followed by drying and thermal decomposition in order to fix the silver particles in the structure of ACF. It was determined that the presence of Ag ions lowered the BET surface area of the ACF in approximately 17 % due to the obstruction of the porosities along the carbonized structure. Finally, the antibacterial effect of the ACF impregnated with silver was studied through direct counting method for coliforms. The antibacterial activity of the impregnated fibers was demonstrated, and it was attributed to the strongly inhibition of bacteria growth because of chemical properties of the particles of silver inside the ACF. This behavior was demonstrated at concentrations of silver as low as 0.035 % w/w.Keywords: activated carbon, adsorption, antibacterial activity, coliforms, surface area
Procedia PDF Downloads 28222376 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks
Authors: Ahmed M. Ashteyat
Abstract:
Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling
Procedia PDF Downloads 53422375 Capacity Loss of Urban Arterial Roads under the Influence of Bus Stop
Authors: Sai Chand, Ashish Dhamaniya, Satish Chandra
Abstract:
Curbside bus stops are provided on urban roads when sufficient land is not available to construct bus bays. The present study demonstrates the effect of curbside bus stops on midblock capacity of an urban arterial road. Data were collected on seven sections of 6-lane urban arterial roads in New Delhi. Three sections were selected without any side friction to estimate the base value of capacity. Remaining four sections were with curbside bus stop. Speed and volume data were collected in field and these data were used to estimate the capacity of a section. The average base midblock capacity of a 6–lane divided urban road was found to be 6314 PCU/hr which was further referred as base capacity. Effect of curbside bus stop on midblock capacity of urban road was evaluated by comparing the capacity of a section with curbside bus stop with that of the base capacity. Finally, a mathematical relation has been developed between bus frequency and capacity loss. Also a relation has been suggested between dwell time and capacity loss. The developed relations would be very useful for practising engineers to estimate capacity loss due to bus stop.Keywords: bus frequency, bus stops, capacity loss, urban arterial
Procedia PDF Downloads 35022374 An Analysis of the Relation between Need for Psychological Help and Psychological Symptoms
Authors: İsmail Ay
Abstract:
In this study, it was aimed to determine the relations between need for psychological help and psychological symptoms. The sample of the study consists of 530 university students getting educated in University of Atatürk in 2015-2016 academic years. Need for Psychological Help Scale and Brief Symptom Inventory were used to collect data in the study. In data analysis, correlation analysis and structural equation model with latent variables were used. Normality and homogeneity analyses were used to analyze the basic conditions of parametric tests. The findings obtained from the study show that as the psychological symptoms increase, need for psychological help also increases. The findings obtained through the study were approached according to the literature.Keywords: psychological symptoms, need for psychological help, structural equation model, correlation
Procedia PDF Downloads 368