Search results for: communicative learning
2203 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning
Procedia PDF Downloads 1512202 Moving beyond Learner Outcomes: Culturally Responsive Recruitment, Training and Workforce Development
Authors: Tanya Greathosue, Adrianna Taylor, Lori Darnel, Eileen Starr, Susie Ryder, Julie Clockston, Dawn Matera Bassett, Jess Retrum
Abstract:
The United States has an identified need to improve the social work mental and behavioral health workforce shortage with a focus on culturally diverse and responsive mental and behavioral health practitioners to adequately serve its rapidly growing multicultural communities. The U.S. is experiencing rapid demographic changes. Ensuring that mental and behavioral health services are effective and accessible for diverse communities is essential for improving overall health outcomes. In response to this need, we developed a training program focused on interdisciplinary collaboration, evidence-based practices, and culturally responsive services. The success of the training program, funded by the Health Resource Service Administration (HRSA) Behavioral Health Workforce Education and Training (BHWET), has provided the foundation for stage two of our programming. In addition to HRSA/BHWET, we are receiving funding from Colorado Access, a state workforce development initiative, and Kaiser Permanente, a healthcare provider network in the United States. We have moved beyond improved learner outcomes to increasing recruitment of historically excluded, disproportionately mistreated learners, mentorship of students to improve retention, and successful, culturally responsive, diverse workforce development. These authors will utilize a pretest-posttest comparison group design and trend analysis to evaluate the success of the training program. Comparison groups will be matched based on age, gender identification, race, income, as well as prior experience in the field, and time in the degree program. This article describes our culturally responsive training program. Our goals are to increase the recruitment and retention of historically excluded, disproportionately mistreated learners. We achieve this by integrating cultural humility and sensitivity training into educational curricula for our scholars who participate in cohort classroom and seminar learning. Additionally, we provide our community partners who serve as internship sites with ongoing continuing education on how to promote and develop inclusive and supportive work environments for our learners. This work will be of value to mental and behavioral health care practitioners who serve historically excluded and mistreated populations. Participants will learn about culturally informed best practices to increase recruitment and retention of culturally diverse learners. Additionally, participants will hear how to create a culturally responsive training program that encourages an inclusive community for their learners through cohort learning, mentoring, community networking, and critical accountability.Keywords: culturally diverse mental health practitioners, recruitment, mentorship, workforce development, underserved clinics, professional development
Procedia PDF Downloads 232201 Efficient Management through Predicting of Use E-Management within Higher Educational Institutions
Authors: S. Maddi Muhammed, Paul Davis, John Geraghty, Mabruk Derbesh
Abstract:
This study discusses the probability of using electronic management in higher education institutions in Libya. This could be as sampled by creating an electronic gate at the faculties of Engineering and Computing "Information Technology" at Zaytuna University or any other university in Libya. As we all know, the competitive advantage amongst universities is based on their ability to use information technology efficiently and broadly. Universities today value information technology as part of the quality control and assurance and a ranking criterion for a range of services including e-learning and e-Registration. This could be done by developing email systems, electronic or virtual libraries, electronic cards, and other services provided to all students, faculty or staff. This paper discusses a range of important topics that explain how to apply the gate "E" with the faculties at Zaytuna University, Bani Walid colleges in Libya.Keywords: e-management, educational institutions (EI), Libya, Zaytuna, information technology
Procedia PDF Downloads 4562200 Image Instance Segmentation Using Modified Mask R-CNN
Authors: Avatharam Ganivada, Krishna Shah
Abstract:
The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision
Procedia PDF Downloads 732199 Smoker Recognition from Lung X-Ray Images Using Convolutional Neural Network
Authors: Moumita Chanda, Md. Fazlul Karim Patwary
Abstract:
Smoking is one of the most popular recreational drug use behaviors, and it contributes to birth defects, COPD, heart attacks, and erectile dysfunction. To completely eradicate this disease, it is imperative that it be identified and treated. Numerous smoking cessation programs have been created, and they demonstrate how beneficial it may be to help someone stop smoking at the ideal time. A tomography meter is an effective smoking detector. Other wearables, such as RF-based proximity sensors worn on the collar and wrist to detect when the hand is close to the mouth, have been proposed in the past, but they are not impervious to deceptive variables. In this study, we create a machine that can discriminate between smokers and non-smokers in real-time with high sensitivity and specificity by watching and collecting the human lung and analyzing the X-ray data using machine learning. If it has the highest accuracy, this machine could be utilized in a hospital, in the selection of candidates for the army or police, or in university entrance.Keywords: CNN, smoker detection, non-smoker detection, OpenCV, artificial Intelligence, X-ray Image detection
Procedia PDF Downloads 842198 English as a Foreign Language for Deaf Students in the K-12 Schools in Turkey: A Policy Analysis
Authors: Cigdem Fidan
Abstract:
Deaf students in Turkey generally do not have access to foreign language classes. However, the knowledge of foreign languages, especially English, is important for them to access knowledge and other opportunities in the globalizing world. In addition, learning any language including foreign languages is a basic linguistic human right. This study applies critical discourse analysis to examine language ideologies, perceptions of deafness and current language and education policies used for deaf education in Turkey. The findings show that representation of deafness as a disability in policy documents, ignorance the role of sign languages in education and lack of policies that support foreign language education for the deaf may result in inaccessibility of foreign language education for deaf students in Turkey. The paper concludes with recommendations for policymakers, practitioners, and advocates for the deaf.Keywords: deaf learners, English as a foreign language, language policy, linguistic human rights
Procedia PDF Downloads 3812197 Development of a Social Assistive Robot for Elderly Care
Authors: Edwin Foo, Woei Wen, Lui, Meijun Zhao, Shigeru Kuchii, Chin Sai Wong, Chung Sern Goh, Yi Hao He
Abstract:
This presentation presents an elderly care and assistive social robot development work. We named this robot JOS and he is restricted to table top operation. JOS is designed to have a maximum volume of 3600 cm3 with its base restricted to 250 mm and his mission is to provide companion, assist and help the elderly. In order for JOS to accomplish his mission, he will be equipped with perception, reaction and cognition capability. His appearance will be not human like but more towards cute and approachable type. JOS will also be designed to be neutral gender. However, the robot will still have eyes, eyelid and a mouth. For his eyes and eyelids, they will be built entirely with Robotis Dynamixel AX18 motor. To realize this complex task, JOS will be also be equipped with micro-phone array, vision camera and Intel i5 NUC computer and a powered by a 12 V lithium battery that will be self-charging. His face is constructed using 1 motor each for the eyelid, 2 motors for the eyeballs, 3 motors for the neck mechanism and 1 motor for the lips movement. The vision senor will be house on JOS forehead and the microphone array will be somewhere below the mouth. For the vision system, Omron latest OKAO vision sensor is used. It is a compact and versatile sensor that is only 60mm by 40mm in size and operates with only 5V supply. In addition, OKAO vision sensor is capable of identifying the user and recognizing the expression of the user. With these functions, JOS is able to track and identify the user. If he cannot recognize the user, JOS will ask the user if he would want him to remember the user. If yes, JOS will store the user information together with the capture face image into a database. This will allow JOS to recognize the user the next time the user is with JOS. In addition, JOS is also able to interpret the mood of the user through the facial expression of the user. This will allow the robot to understand the user mood and behavior and react according. Machine learning will be later incorporated to learn the behavior of the user so as to understand the mood of the user and requirement better. For the speech system, Microsoft speech and grammar engine is used for the speech recognition. In order to use the speech engine, we need to build up a speech grammar database that captures the commonly used words by the elderly. This database is built from research journals and literature on elderly speech and also interviewing elderly what do they want to robot to assist them with. Using the result from the interview and research from journal, we are able to derive a set of common words the elderly frequently used to request for the help. It is from this set that we build up our grammar database. In situation where there is more than one person near JOS, he is able to identify the person who is talking to him through an in-house developed microphone array structure. In order to make the robot more interacting, we have also included the capability for the robot to express his emotion to the user through the facial expressions by changing the position and movement of the eyelids and mouth. All robot emotions will be in response to the user mood and request. Lastly, we are expecting to complete this phase of project and test it with elderly and also delirium patient by Feb 2015.Keywords: social robot, vision, elderly care, machine learning
Procedia PDF Downloads 4412196 Islamic Geometric Design: Infinite Point or Creativity through Compass and Digital
Authors: Ridzuan Hussin, Mohd Zaihidee Arshad
Abstract:
The creativity of earlier artists and sculptors in designing geometric is extraordinary provided with only a compass. Indeed, geometric in Islamic art and design are unique and have their own aesthetic values. In order to further understand geometric, self-learning with the approach of hands on would be appropriate. For this study, Islamic themed geometric designed and created, concerning only; i. The Square Repetition Unit and √2, ii. The Hexagonal Repetition Unit and √3 and iii. Double Hexagon. The aim of this research is to evaluate the creativity of Islamic geometric pattern artworks, through Fundamental Arts and Gestalt theory. Data was collected using specific tasks, and this research intends to identify the difference of Islamic geometric between 21 untitled selected geometric artworks (conventional design method), and 25 digital untitled geometric pattern artworks method. The evaluation of creativity, colors, layout, pattern and unity is known to be of utmost importance, although there are differences in the conventional or the digital approach.Keywords: Islamic geometric design, Gestalt, fundamentals of art, patterns
Procedia PDF Downloads 2492195 The Impact of Artificial Intelligence on the Behavior of Children and Autism
Authors: Sara Fayez Fawzy Mikhael
Abstract:
Inclusive education services for students with Autism remains in its early developmental stages in Thailand. Despite many more children with autism are attending schools since the Thai government introduced the Education Provision for People with Disabilities Act in 2008, the services students with autism and their families receive are generally lacking. This quantitative study used Attitude and Preparedness to Teach Students with Autism Scale (APTSAS) to investigate 110 primary school teachers’ attitude and preparedness to teach students with autism in the general education classroom. Descriptive statistical analysis of the data found that student behavior was the most significant factor in building teachers’ negative attitudes students with autism. The majority of teachers also indicated that their pre-service education did not prepare them to meet the learning needs of children with autism in particular, those who are non-verbal. The study is significant and provides direction for enhancing teacher education for inclusivity in Thailand.Keywords: attitude, autism, teachers, thailandsports activates, movement skills, motor skills
Procedia PDF Downloads 1002194 Prediction of Dubai Financial Market Stocks Movement Using K-Nearest Neighbor and Support Vector Regression
Authors: Abdulla D. Alblooshi
Abstract:
The stock market is a representation of human behavior and psychology, such as fear, greed, and discipline. Those are manifested in the form of price movements during the trading sessions. Therefore, predicting the stock movement and prices is a challenging effort. However, those trading sessions produce a large amount of data that can be utilized to train an AI agent for the purpose of predicting the stock movement. Predicting the stock market price action will be advantageous. In this paper, the stock movement data of three DFM listed stocks are studied using historical price movements and technical indicators value and used to train an agent using KNN and SVM methods to predict the future price movement. MATLAB Toolbox and a simple script is written to process and classify the information and output the prediction. It will also compare the different learning methods and parameters s using metrics like RMSE, MAE, and R².Keywords: KNN, ANN, style, SVM, stocks, technical indicators, RSI, MACD, moving averages, RMSE, MAE
Procedia PDF Downloads 1712193 The Impact of Artificial Intelligence on Autism Attitude and Skills
Authors: Samwail Fahmi Francis Yacoub
Abstract:
Inclusive education services for students with Autism remains in its early developmental stages in Thailand. Despite many more children with autism are attending schools since the Thai government introduced the Education Provision for People with Disabilities Act in 2008, the services students with autism and their families receive are generally lacking. This quantitative study used Attitude and Preparedness to Teach Students with Autism Scale (APTSAS) to investigate 110 primary school teachers’ attitude and preparedness to teach students with autism in the general education classroom. Descriptive statistical analysis of the data found that student behavior was the most significant factor in building teachers’ negative attitudes students with autism. The majority of teachers also indicated that their pre-service education did not prepare them to meet the learning needs of children with autism in particular, those who are non-verbal. The study is significant and provides direction for enhancing teacher education for inclusivity in Thailand.Keywords: attitude, autism, teachers, movement skills, motor skills, children, behavior.
Procedia PDF Downloads 522192 Recognition of Noisy Words Using the Time Delay Neural Networks Approach
Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha
Abstract:
This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.Keywords: TDNN, neural networks, noise, speech recognition
Procedia PDF Downloads 2892191 Comparison of the Effectiveness of Communication between the Traditional Lecture and IELS
Authors: Ahmed R. Althobaiti, Malcolm Munro
Abstract:
Communication and effective information exchange within technology has become a crucial part of delivering knowledge to students during the learning process. It enables better understanding, builds trust, respect and increase the knowledge between students. This paper examines the communication between undergraduate students and their lecturers during the Traditional lecture and in using the Interactive Electronic Lecture System (IELS). The IELS is an application that offers a set of components, which support the effective communication between students, themselves and their lecturers. Moreover, this paper highlights the communication skills such as sender, receiver, channel and feedback. It will show how the IELS creates a rich communication environment between its users and how they communicate effectively. To examine and check the effectiveness of communication an experiment has been conducted for groups of users; students and lecturers. The first group communicated during the Traditional lecture while the second group communicated by the IELS application. The result showed that there was an effective communication between the second group more than the first group.Keywords: communication, effective information exchange, lecture, student
Procedia PDF Downloads 4042190 New Approach for Load Modeling
Authors: Slim Chokri
Abstract:
Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression
Procedia PDF Downloads 4352189 Accelerating Personalization Using Digital Tools to Drive Circular Fashion
Authors: Shamini Dhana, G. Subrahmanya VRK Rao
Abstract:
The fashion industry is advancing towards a mindset of zero waste, personalization, creativity, and circularity. The trend of upcycling clothing and materials into personalized fashion is being demanded by the next generation. There is a need for a digital tool to accelerate the process towards mass customization. Dhana’s D/Sphere fashion technology platform uses digital tools to accelerate upcycling. In essence, advanced fashion garments can be designed and developed via reuse, repurposing, recreating activities, and using existing fabric and circulating materials. The D/Sphere platform has the following objectives: to provide (1) An opportunity to develop modern fashion using existing, finished materials and clothing without chemicals or water consumption; (2) The potential for an everyday customer and designer to use the medium of fashion for creative expression; (3) A solution to address the global textile waste generated by pre- and post-consumer fashion; (4) A solution to reduce carbon emissions, water, and energy consumption with the participation of all stakeholders; (5) An opportunity for brands, manufacturers, retailers to work towards zero-waste designs and as an alternative revenue stream. Other benefits of this alternative approach include sustainability metrics, trend prediction, facilitation of disassembly and remanufacture deep learning, and hyperheuristics for high accuracy. A design tool for mass personalization and customization utilizing existing circulating materials and deadstock, targeted to fashion stakeholders will lower environmental costs, increase revenues through up to date upcycled apparel, produce less textile waste during the cut-sew-stitch process, and provide a real design solution for the end customer to be part of circular fashion. The broader impact of this technology will result in a different mindset to circular fashion, increase the value of the product through multiple life cycles, find alternatives towards zero waste, and reduce the textile waste that ends up in landfills. This technology platform will be of interest to brands and companies that have the responsibility to reduce their environmental impact and contribution to climate change as it pertains to the fashion and apparel industry. Today, over 70% of the $3 trillion fashion and apparel industry ends up in landfills. To this extent, the industry needs such alternative techniques to both address global textile waste as well as provide an opportunity to include all stakeholders and drive circular fashion with new personalized products. This type of modern systems thinking is currently being explored around the world by the private sector, organizations, research institutions, and governments. This technological innovation using digital tools has the potential to revolutionize the way we look at communication, capabilities, and collaborative opportunities amongst stakeholders in the development of new personalized and customized products, as well as its positive impacts on society, our environment, and global climate change.Keywords: circular fashion, deep learning, digital technology platform, personalization
Procedia PDF Downloads 662188 Overview of the Public Service Executive Training System in Hungary
Authors: Csilla Paksi-Petró
Abstract:
The Hungarian national public administration training system providing continuous, lifelong further training to some ten thousand executives in public administration was launched in 2014, adding skills and competency development to the previous training solutions, which had a mainly legal and professional approach. The executive training system is being continuously developed since tackling the existing qualitative, and quantitative challenges calls for the introduction of novel, innovative solutions. With a gap-filling character, this study presents, in brief, the last eight years of system of executive training in public administration, supported by the outcomes of the author's empirical research, makes suggestions for the possible directions of its further development. Through this article, the reader may obtain an overview of the current Hungarian civil service further training system, its institution system, the method of its application, its target groups, its results, and its development prospects. By reading the article, the reader will get acquainted with the good practices of the Hungarian civil service further training system.Keywords: coaching, e-learning, executive development, further-training
Procedia PDF Downloads 1212187 The Current Use of Computer Technology in Arabic Language
Authors: Saad Alkahtani
Abstract:
This study aims to identify the extent to which the faculty members who teach Arabic to speakers of other languages in Arabic language institutes at Saudi universities use computer technologies such as language laboratories, websites, software programs, and learning management system (LMS). It also seeks to identify critical difficulties that hinder the use of these technologies by faculty members. The population of the study consisted of 103 faculty members in four Arabic language institutes at Saudi universities. The results of the study showed a disparity in the use of computer technologies in teaching Arabic to non-native speakers. The means of degree of use ranged from 1.20 through 2.83. The study also identified difficulties limiting the use of computer technology in teaching Arabic. And the means of averages of difficulty of use ranged from 1.50 to 2.89. The differences were not statistically significant among the institutes (at 0.05).Keywords: Arabic language programs, computer technology, using technology in teaching Arabic language, Arabic as a second language, computer skills
Procedia PDF Downloads 4622186 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks
Procedia PDF Downloads 2822185 Coupling Large Language Models with Disaster Knowledge Graphs for Intelligent Construction
Authors: Zhengrong Wu, Haibo Yang
Abstract:
In the context of escalating global climate change and environmental degradation, the complexity and frequency of natural disasters are continually increasing. Confronted with an abundance of information regarding natural disasters, traditional knowledge graph construction methods, which heavily rely on grammatical rules and prior knowledge, demonstrate suboptimal performance in processing complex, multi-source disaster information. This study, drawing upon past natural disaster reports, disaster-related literature in both English and Chinese, and data from various disaster monitoring stations, constructs question-answer templates based on large language models. Utilizing the P-Tune method, the ChatGLM2-6B model is fine-tuned, leading to the development of a disaster knowledge graph based on large language models. This serves as a knowledge database support for disaster emergency response.Keywords: large language model, knowledge graph, disaster, deep learning
Procedia PDF Downloads 562184 In-service High School Teachers’ Experiences On Blended Teaching Approach Of Mathematics
Authors: Lukholo Raxangana
Abstract:
Fourth Industrial Revolution (4IR)-era teaching offers in-service mathematics teachers opportunities to use blended approaches to engage learners while teaching mathematics. This study explores in-service high school teachers' experiences with a blended teaching approach to mathematics. This qualitative case study involved eight pre-service teachers from four selected schools in the Sedibeng West District of the Gauteng Province. The study used the community of inquiry model as its analytical framework for data analysis. Data collection was through semi-structured interviews and focus-group discussions to explore in-service teachers' experiences with the influence of blended teaching (BT) on learning mathematics. The study results are the impact of load-shedding, benefits of BT, and perceptions of in-service and hindrances of BT. Based on these findings, the study recommends that further research should focus on developing data-free BT tools to assist during load-shedding, regardless of location.Keywords: bended teaching, teachers, in-service, and mathematics
Procedia PDF Downloads 582183 Trait of Sales Professionals
Authors: Yuichi Morita, Yoshiteru Nakamori
Abstract:
In car dealer business of Japan, a sale professional is a key factor of company’s success. We hypothesize that, if a corporation knows what is the sales professionals’ trait of its corporation’s business field, it will be easier for a corporation to secure and nurture sales persons effectively. The lean human resources management will ensure business success and good performance of corporations, especially small and medium ones. The goal of the paper is to determine the traits of sales professionals for small-and medium-size car dealers, using chi-square test and the variable rough set model. As a result, the results illustrate that experience of job change, learning ability and product knowledge are important, and an academic background, building a career with internal transfer, experience of the leader and self-development are not important to be a sale professional. Also, we illustrate sales professionals’ traits are persistence, humility, improvisation and passion at business.Keywords: traits of sales professionals, variable precision rough sets theory, sales professional, sales professionals
Procedia PDF Downloads 3822182 Message Passing Neural Network (MPNN) Approach to Multiphase Diffusion in Reservoirs for Well Interconnection Assessments
Authors: Margarita Mayoral-Villa, J. Klapp, L. Di G. Sigalotti, J. E. V. Guzmán
Abstract:
Automated learning techniques are widely applied in the energy sector to address challenging problems from a practical point of view. To this end, we discuss the implementation of a Message Passing algorithm (MPNN)within a Graph Neural Network(GNN)to leverage the neighborhood of a set of nodes during the aggregation process. This approach enables the characterization of multiphase diffusion processes in the reservoir, such that the flow paths underlying the interconnections between multiple wells may be inferred from previously available data on flow rates and bottomhole pressures. The results thus obtained compare favorably with the predictions produced by the Reduced Order Capacitance-Resistance Models (CRM) and suggest the potential of MPNNs to enhance the robustness of the forecasts while improving the computational efficiency.Keywords: multiphase diffusion, message passing neural network, well interconnection, interwell connectivity, graph neural network, capacitance-resistance models
Procedia PDF Downloads 1492181 Malaysian ESL Writing Process: A Comparison with England’s
Authors: Henry Nicholas Lee, George Thomas, Juliana Johari, Carmilla Freddie, Caroline Val Madin
Abstract:
Research in comparative and international education often provides value-laden views of an education system within and in between other countries. These views are frequently used by policy makers or educators to explore similarities and differences for, among others, benchmarking purposes. In this study, a comparison is made between Malaysia and England, focusing on the process of writing children went through to create a text, using a multimodal theoretical framework to analyse this comparison. The main purpose is political in nature as it served as an answer to Malaysia’s call for benchmarking of best practices for language learning. Furthermore, the focus on writing in this study adds into more empirical findings about early writers’ writing development and writing improvement, especially for children at the ages of 5-9. In research, comparative studies in English as a Second Language (ESL) writing pedagogy – particularly in Malaysia since the introduction of the Standard- based English Language Curriculum (KSSR) in 2011 as a draft and its full implementation in 2017; reviewed 2018 KSSR-CEFR aligned – has not been done comparatively. In theory, a multimodal theoretical framework somehow allows a logical comparison between first language and ESL which would provide useful insights to illuminate the writing process between Malaysia and England. The comparisons are not representative because of the different school systems in both countries. So far, the literature informs us that the curriculum for language learning is very much emphasised on children’s linguistic abilities, which include their proficiency and mastery of the language, its conventions, and technicalities. However, recent empirical findings suggested that literacy in its concepts and characters need change. In view of this suggestion, the comparison will look at how the process of writing is implemented through the five modes of communication: linguistic, visual, aural, spatial, and gestural. This project draws on data from Malaysia and England, involving 10 teachers, 26 classroom observations, 20 lesson plans, 20 interviews, and 20 brief conversations with teachers. The research focused upon 20 primary children of different genders aged 5-9, and in addition to primary data descriptions, 40 children’s works, 40 brief classroom conversations, 30 classroom photographs, and 30 school compound photographs were undertaken to investigate teachers and children’s use of modes and semiotic resources to design a text. The data were analysed by means of within-case analysis, cross-case analysis, and constant comparative analysis, with an initial stage of data categorisation, followed by general and specific coding, which clustered the data into thematic groups. The study highlights the importance of teachers’ and children’s engagement and interaction with various modes of communication, an adaptation from the English approaches to teaching writing within the KSSR framework and providing ‘voice’ to ESL writers to ensure that both have access to the knowledge and skills required to make decisions in developing multimodal texts and artefacts.Keywords: comparative education, early writers, KSSR, multimodal theoretical framework, writing development
Procedia PDF Downloads 682180 Nature of Science in Physics Textbooks – Example of Quebec Province
Authors: Brahim El Fadil
Abstract:
The nature of science as a solution (NOS) to life problems is well established in school activities the world over. However, this study reveals the lack of representation of the NOS in science textbooks used in Quebec Province. A content analysis method was adopted to analyze the NOS in relation to optics knowledge and teaching-learning activities in Grade 9 science and technology textbooks and Grade 11 physics textbooks. The selected textbooks were approved and authorized by the Provincial Ministry of Education. Our analysis points out that most of these editions provided a poor representation of NOS. None of them indicates that scientific knowledge is subject to change, even though the history of optics reveals evolutionary and revolutionary changes. Moreover, the analysis shows that textbooks place little emphasis on the discussion of scientific laws and theories. Few of them argue that scientific inquiries are required to gain a deep understanding of scientific concepts. Moreover, they rarely present empirical evidence to support their arguments.Keywords: nature of science, history of optics, geometrical theory of optics, wave theory of optics
Procedia PDF Downloads 772179 Unveiling Drought Dynamics in the Cuneo District, Italy: A Machine Learning-Enhanced Hydrological Modelling Approach
Authors: Mohammadamin Hashemi, Mohammadreza Kashizadeh
Abstract:
Droughts pose a significant threat to sustainable water resource management, agriculture, and socioeconomic sectors, particularly in the field of climate change. This study investigates drought simulation using rainfall-runoff modelling in the Cuneo district, Italy, over the past 60-year period. The study leverages the TUW model, a lumped conceptual rainfall-runoff model with a semi-distributed operation capability. Similar in structure to the widely used Hydrologiska Byråns Vattenbalansavdelning (HBV) model, the TUW model operates on daily timesteps for input and output data specific to each catchment. It incorporates essential routines for snow accumulation and melting, soil moisture storage, and streamflow generation. Multiple catchments' discharge data within the Cuneo district form the basis for thorough model calibration employing the Kling-Gupta Efficiency (KGE) metric. A crucial metric for reliable drought analysis is one that can accurately represent low-flow events during drought periods. This ensures that the model provides a realistic picture of water availability during these critical times. Subsequent validation of monthly discharge simulations thoroughly evaluates overall model performance. Beyond model development, the investigation delves into drought analysis using the robust Standardized Runoff Index (SRI). This index allows for precise characterization of drought occurrences within the study area. A meticulous comparison of observed and simulated discharge data is conducted, with particular focus on low-flow events that characterize droughts. Additionally, the study explores the complex interplay between land characteristics (e.g., soil type, vegetation cover) and climate variables (e.g., precipitation, temperature) that influence the severity and duration of hydrological droughts. The study's findings demonstrate successful calibration of the TUW model across most catchments, achieving commendable model efficiency. Comparative analysis between simulated and observed discharge data reveals significant agreement, especially during critical low-flow periods. This agreement is further supported by the Pareto coefficient, a statistical measure of goodness-of-fit. The drought analysis provides critical insights into the duration, intensity, and severity of drought events within the Cuneo district. This newfound understanding of spatial and temporal drought dynamics offers valuable information for water resource management strategies and drought mitigation efforts. This research deepens our understanding of drought dynamics in the Cuneo region. Future research directions include refining hydrological modelling techniques and exploring future drought projections under various climate change scenarios.Keywords: hydrologic extremes, hydrological drought, hydrological modelling, machine learning, rainfall-runoff modelling
Procedia PDF Downloads 412178 Pre-Grade R Numerosity Levels and Gaps: A Case of South African Learners in the Eastern Cape
Authors: Nellie Nosisi Feza
Abstract:
Developing young students' number sense is a priority if the aim is to build a rich mathematical foundation for successful schooling and future innovative careers. Capturing students’ interests is crucial while mediating counting concepts. This paper reports South African young children number concepts demonstrated before entering the reception class. It indicates the diverse knowledge attained in different settings before entering formal schooling. The findings indicate that their start is uneven with fully and partly attained number concepts. The findings suggest pre-schooling stimulation that provides rich mathematical experiences and purposeful play towards the attainment of core foundational concepts. Literature directs practice on important core concepts that are foundational in developing number sense.Keywords: numeracy, learning trajectories, innate abilities, counting, Grade R/reception class
Procedia PDF Downloads 1132177 Prediction of the Thermodynamic Properties of Hydrocarbons Using Gaussian Process Regression
Authors: N. Alhazmi
Abstract:
Knowing the thermodynamics properties of hydrocarbons is vital when it comes to analyzing the related chemical reaction outcomes and understanding the reaction process, especially in terms of petrochemical industrial applications, combustions, and catalytic reactions. However, measuring the thermodynamics properties experimentally is time-consuming and costly. In this paper, Gaussian process regression (GPR) has been used to directly predict the main thermodynamic properties - standard enthalpy of formation, standard entropy, and heat capacity -for more than 360 cyclic and non-cyclic alkanes, alkenes, and alkynes. A simple workflow has been proposed that can be applied to directly predict the main properties of any hydrocarbon by knowing its descriptors and chemical structure and can be generalized to predict the main properties of any material. The model was evaluated by calculating the statistical error R², which was more than 0.9794 for all the predicted properties.Keywords: thermodynamic, Gaussian process regression, hydrocarbons, regression, supervised learning, entropy, enthalpy, heat capacity
Procedia PDF Downloads 2222176 Boost for Online Language Course through Peer Evaluation
Authors: Kirsi Korkealehto
Abstract:
The purpose of this research was to investigate how the peer evaluation concept was perceived by language teachers developing online language courses. The online language courses in question were developed in language teacher teams within a nationwide KiVAKO-project funded by the Finnish Ministry of Education and Culture. The participants of the project were 86 language teachers of 26 higher education institutions in Finland. The KiVAKO-project aims to strengthen the language capital at higher education institutions by building a nationwide online language course offering on a shared platform. All higher education students can study the courses regardless of their home institutions. The project covers the following languages: Chinese, Estonian, Finnish Sign Language, French, German, Italian, Japanese, Korean, Portuguese, Russian, and Spanish on the levels CEFR A1-C1. The courses were piloted in the autumn term of 2019, and an online peer evaluation session was organised for all project participating teachers in spring 2020. The peer evaluation utilised the quality criteria for online implementation, which was developed earlier within the eAMK-project. The eAMK-project was also funded by the Finnish Ministry of Education and Culture with the aim to improve higher education institution teachers’ digital and pedagogical competences. In the online peer evaluation session, the teachers were divided into Zoom breakout rooms, in each of which two pilot courses were presented by their teachers dialogically. The other language teachers provided feedback on the course on the basis of the quality criteria. Thereafter good practices and ideas were gathered to an online document. The breakout rooms were facilitated by one teacher who was instructed and provided a slide-set prior to the online session. After the online peer evaluation sessions, the language teachers were asked to respond to an online questionnaire for feedback. The questionnaire included three multiple-choice questions using the Likert-scale rating and two open-ended questions. The online questionnaire was answered after the sessions immediately, the questionnaire link and the QR-code to it was on the last slide of the session, and it was responded at the site. The data comprise online questionnaire responses of the peer evaluation session and the researcher’s observations during the sessions. The data were analysed with a qualitative content analysis method with the help of Atlas.ti programme, and the Likert scale answers provided results per se. The observations were used as complementary data to support the primary data. The findings indicate that the working in the breakout rooms was successful, and the workshops proceeded smoothly. The workshops were perceived as beneficial in terms of improving the piloted courses and developing the participants’ own work as teachers. Further, the language teachers stated that the collegial discussions and sharing the ideas were fruitful. The aspects to improve the workshops were to give more time for free discussions and the opportunity to familiarize oneself with the quality criteria and the presented language courses beforehand. The quality criteria were considered to provide a suitable frame for self- and peer evaluations.Keywords: higher education, language learning, online learning, peer-evaluation
Procedia PDF Downloads 1272175 Influence of Strength Training on the Self-Efficacy of Sports Performance: National Collegiate Athletic Association Student-Athletes Experience of a Strength Training Program
Authors: Alfred M. Caronia
Abstract:
The aim of this pilot study was to explore an NCAA Division 1 female volleyball players’ experience of a strength and conditioning program and the result this has on self-efficacy of sport skill performance. This phenomenological study comprised of 10 college aged participants that have strength training program experience. Data was collected using semi-structured interviews and a reflective journal; the transcribed interviews were analyzed using qualitative content analysis. From the analysis, four themes emerged: performance enhancement, injury prevention, motivational experience, and learning experience. From the players’ perspective, care needs to be taken to explain the purpose of an exercise and the benefit it will have for a play performance. Other factors that play an important role in a strength training program are team motivation, individual goal setting, bonding, and communication with the strength coach, as all these items appear to be fundamentals of coaching.Keywords: self-efficacy, skill performance, sports performance, strength training
Procedia PDF Downloads 932174 The Design of Children’s Picture Book from the Tales of Amphawa Fireflies
Authors: Marut Phichetvit
Abstract:
The research objective aims to search information about storytelling and fable associated with fireflies in Amphawa community, in order to design and create a story book which is appropriate for the interests of children in early childhood. This book should help building the development of learning about the natural environment, imagination, and creativity among children, which then, brings about the promotion of the development, conservation and dissemination of cultural values and uniqueness of the Amphawa community. The population used in this study were 30 students in early childhood aged between 6-8 years-old, grade 1-3 from the Demonstration School of Suan Sunandha Rajabhat University. The method used for this study was purposive sampling and the research conducted by the query and analysis of data from both the document and the narrative field tales and fable associated with the fireflies of Amphawa community. Then, using the results to synthesize and create a conceptual design in a form of 8 visual images which were later applied to 1 illustrated children’s book and presented to the experts to evaluate and test this media.Keywords: children’s illustrated book, fireflies, Amphawa
Procedia PDF Downloads 205