Search results for: structural healthcare monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8669

Search results for: structural healthcare monitoring

3539 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data

Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard

Abstract:

Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.

Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset

Procedia PDF Downloads 7
3538 Online Impulse Buying: A Study Based on Hedonic Shopping Value and Website Quality

Authors: Chechen Liao, Hung Wen Shaw

Abstract:

Recently, online impulse buying has been growing rapidly. It has become a major issue of concern and provided a lot of opportunities for online businesses. This study examines the effect of hedonic shopping values on hedonic motivations, and in turn affecting the urge of impulse buying. The study also explores the effects of website quality and the individual characteristics of impulsiveness on the urge of impulse buying. A total of 459 valid questionnaires were collected. Structural equation modelling was used to test the research hypothesis. This study found that adventure shopping, value shopping, and social shopping have a positive effect on hedonic motivations, which in turn positively affect the urge of impulse buying. Website quality and the individual characteristics of impulsiveness have a positive effect on the urge of impulse buying. The result of this study validates the phenomenon of online impulse buying behavior. This study also suggests that having a good website quality is the most important factor for increasing the likelihood of consumer impulse purchase. The study could serve as a basis for future research regarding online impulse buying behavior.

Keywords: hedonic motivation, hedonic shopping value, impulse buying, impulsiveness, website quality

Procedia PDF Downloads 209
3537 The Impact of Organizational Justice on Organizational Loyalty Considering the Role of Spirituality and Organizational Trust Variable: Case Study of South Pars Gas Complex

Authors: Sima Radmanesh, Nahid Radmanesh, Mohsen Yaghmoor

Abstract:

The presence of large number of active rival gas companies on Persian Gulf border necessitates the adaptation and implementation of effective employee retention strategies as well as implementation of promoting loyalty and belonging strategies of specialized staffs in the South Pars gas company. Hence, this study aims at assessing the amount of organizational loyalty and explaining the effect of institutional justice on organizational justice with regard to the role of mediator variables of spirituality in the work place and organizational trust. Therefore, through reviewing the related literature, the researchers achieve a conceptual model for the effect of these factors on organizational loyalty. To this end, this model was assessed and tested through questionnaires in South Pars gas company. The research method was descriptive and correlation-structural equation modeling. The findings of the study indicated a significant relationship between the concepts addressed in the research and conceptual models were confirmed. Finally, according to the results to improve effectiveness factors affecting organizational loyalty, recommendations are provided.

Keywords: organizational loyalty, organizational trust, organizational justice, organizational spirit, oil and gas company

Procedia PDF Downloads 472
3536 The Implementation of the Lean Six Sigma Production Process in a Telecommunications Company in Brazil

Authors: Carlos Fontanillas

Abstract:

The implementation of the lean six sigma methodology aims to implement practices to systematically improve processes by eliminating defects, making them cheaper. The implementation of projects with the methodology uses a division into five phases: definition, measurement, analysis, implementation, and control. In this process, it is understood that the implementation of said methodology generates benefits to organizations that adhere through the improvement of their processes. In the case of a telecommunications company, it was realized that the implementation of a lean six sigma project contributed to the improvement of the presented process, generating a financial return with the avoided cost. However, such study has limitations such as a specific segment of performance and procedure, i.e., it can not be defined that return under other circumstances will be the same. It is also concluded that lean six sigma projects tend to contribute to improved processes evaluated due to their methodology that is based on statistical analysis and quality management tools and can generate a financial return. It is hoped that the present study can be used to provide a clearer view of the methodology for entrepreneurs who wish to implement process improvement actions in their companies, as well as to provide a foundation for professionals working with lean six sigma projects. After the review of the processes, the completion of the project stages and the monitoring for three months in partnership with the owner of the process to ensure the effectiveness of the actions, the project was completed with the objective reached. There was an average of 60% reduction with the issuance of undue invoices generated after the deactivation and it was possible to extend the project to other companies, which allowed a reduction well above the initially stipulated target.

Keywords: quality, process, lean six sigma, organization

Procedia PDF Downloads 129
3535 Predicting Low Birth Weight Using Machine Learning: A Study on 53,637 Ethiopian Birth Data

Authors: Kehabtimer Shiferaw Kotiso, Getachew Hailemariam, Abiy Seifu Estifanos

Abstract:

Introduction: Despite the highest share of low birth weight (LBW) for neonatal mortality and morbidity, predicting births with LBW for better intervention preparation is challenging. This study aims to predict LBW using a dataset encompassing 53,637 birth cohorts collected from 36 primary hospitals across seven regions in Ethiopia from February 2022 to June 2024. Methods: We identified ten explanatory variables related to maternal and neonatal characteristics, including maternal education, age, residence, history of miscarriage or abortion, history of preterm birth, type of pregnancy, number of livebirths, number of stillbirths, antenatal care frequency, and sex of the fetus to predict LBW. Using WEKA 3.8.2, we developed and compared seven machine learning algorithms. Data preprocessing included handling missing values, outlier detection, and ensuring data integrity in birth weight records. Model performance was evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the Receiver Operating Characteristic curve (ROC AUC) using 10-fold cross-validation. Results: The results demonstrated that the decision tree, J48, logistic regression, and gradient boosted trees model achieved the highest accuracy (94.5% to 94.6%) with a precision of 93.1% to 93.3%, F1-score of 92.7% to 93.1%, and ROC AUC of 71.8% to 76.6%. Conclusion: This study demonstrates the effectiveness of machine learning models in predicting LBW. The high accuracy and recall rates achieved indicate that these models can serve as valuable tools for healthcare policymakers and providers in identifying at-risk newborns and implementing timely interventions to achieve the sustainable developmental goal (SDG) related to neonatal mortality.

Keywords: low birth weight, machine learning, classification, neonatal mortality, Ethiopia

Procedia PDF Downloads 22
3534 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 54
3533 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients

Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori

Abstract:

Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.

Keywords: asthma, datamining, classification, machine learning

Procedia PDF Downloads 447
3532 Improved Embroidery Based Textile Electrodes for Sustainability of Impedance Measurement Characteristics

Authors: Bulcha Belay Etana

Abstract:

Research shows that several challenges are to be resolved for textile sensors and wearable smart textiles systems to make it accurate and reproducible minimizing variability issues when tested. To achieve this, we developed stimulating embroidery electrode with three different filling textiles such as 3Dknit, microfiber, and nonwoven fabric, and tested with FTT for high recoverability on compression. Hence The impedance characteristics of wetted electrodes were caried out after 1hr of wetting under normal environmental conditions. The wetted 3D knit (W-3D knit), Wetted nonwoven (W-nonwoven), and wetted microfiber (W-microfiber) developed using Satin stitch performed better than a dry standard stitch or dry Satin stitch electrodes. Its performance was almost the same as that of the gel electrode (Ag/AgCl) as shown by the impedance result in figure 2 .The impedance characteristics of Dry and wetted 3D knit based Embroidered electrodes are better than that of the microfiber, and nonwoven filling textile. This is due to the fact that 3D knit fabric has high recoverability on compression to retain electrolyte gel than microfiber, and nonwoven. However,The non-woven fabric held the electrolyte for longer time without releasing it to the skin when needed, thus making its impedance characteristics poor as observed from the results. Whereas the dry Satin stitch performs better than the standard stitch based developed electrode. The inter electrode distance of all types of the electrode was 25mm, with the area of the electrode being 20mm by 20mm. Detail evaluation and further analysis is in progress for EMG monitoring application

Keywords: impedance, moisture retention, 3D knit fabric, microfiber, nonwoven

Procedia PDF Downloads 140
3531 Performance Comparison of Resource Allocation without Feedback in Wireless Body Area Networks by Various Pseudo Orthogonal Sequences

Authors: Ojin Kwon, Yong-Jin Yoon, Liu Xin, Zhang Hongbao

Abstract:

Wireless Body Area Network (WBAN) is a short-range wireless communication around human body for various applications such as wearable devices, entertainment, military, and especially medical devices. WBAN attracts the attention of continuous health monitoring system including diagnostic procedure, early detection of abnormal conditions, and prevention of emergency situations. Compared to cellular network, WBAN system is more difficult to control inter- and inner-cell interference due to the limited power, limited calculation capability, mobility of patient, and non-cooperation among WBANs. In this paper, we compare the performance of resource allocation scheme based on several Pseudo Orthogonal Codewords (POCs) to mitigate inter-WBAN interference. Previously, the POCs are widely exploited for a protocol sequence and optical orthogonal code. Each POCs have different properties of auto- and cross-correlation and spectral efficiency according to its construction of POCs. To identify different WBANs, several different pseudo orthogonal patterns based on POCs exploits for resource allocation of WBANs. By simulating these pseudo orthogonal resource allocations of WBANs on MATLAB, we obtain the performance of WBANs according to different POCs and can analyze and evaluate the suitability of POCs for the resource allocation in the WBANs system.

Keywords: wireless body area network, body sensor network, resource allocation without feedback, interference mitigation, pseudo orthogonal pattern

Procedia PDF Downloads 353
3530 Synthesis and Characterization of Nickel and Sulphur Sensitized Zinc Oxide Structures

Authors: Ella C. Linganiso, Bonex W. Mwakikunga, Trilock Singh, Sanjay Mathur, Odireleng M. Ntwaeaborwa

Abstract:

The use of nanostructured semiconducting material to catalyze degradation of environmental pollutants still receives much attention to date. One of the desired characteristics for pollutant degradation under ultra-violet visible light is the materials with extended carrier charge separation that allows for electronic transfer between the catalyst and the pollutants. In this work, zinc oxide n-type semiconductor vertically aligned structures were fabricated on silicon (100) substrates using the chemical bath deposition method. The as-synthesized structures were treated with nickel and sulphur. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy were used to characterize the phase purity, structural dimensions and elemental composition of the obtained structures respectively. Photoluminescence emission measurements showed a decrease in both the near band edge emission as well as the defect band emission upon addition of nickel and sulphur with different concentrations. This was attributed to increased charger-carrier-separation due to the presence of Ni-S material on ZnO surface, which is linked to improved charge transfer during photocatalytic reactions.

Keywords: Carrier-charge-separation, nickel, photoluminescence, sulphur, zinc oxide

Procedia PDF Downloads 308
3529 Investigation of Building Loads Effect on the Stability of Slope

Authors: Hadj Brahim Mounia, Belhamel Farid, Souici Messoud

Abstract:

In big cities, construction on sloping land (landslide) is becoming increasingly prevalent due to the unavailability of flat lands. This has created a major challenge for structural engineers with regard to structure design, due to the difficulties encountered during the implementation of projects, both for the structure and the soil. This paper analyses the effect of the number of floors of a building, founded on isolated footing on the stability of the slope using the computer code finite element PLAXIS 2D v. 8.2. The isolated footings of a building in this case were anchored in soil so that the levels of successive isolated footing realize a maximum slope of base of three for two heights, which connects the edges of the nearest footings, according to the Algerian building code DTR-BC 2.331: Shallow foundations. The results show that the embedment of the foundation into the soil reduces the value of the safety factor due to the change of the stress state of the soil by these foundations. The number of floors a building has also influences the safety factor. It has been noticed from this case of study that there is no risk of collapse of slopes for an inclination between 5° and 8°. In the case of slope inclination greater than 10° it has been noticed that the urbanization is prohibited.

Keywords: isolated footings, multi-storeys building, PLAXIS 2D, slope

Procedia PDF Downloads 252
3528 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19

Authors: M. Bilal Ishfaq, Adnan N. Qureshi

Abstract:

COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.

Keywords: COVID-19, feature engineering, artificial neural networks, radiology images

Procedia PDF Downloads 75
3527 Rauvolfine B Isolated from the Bark of Rauvolfia reflexa (Apocynaceae) Induces Apoptosis through Activation of Caspase-9 Coupled with S Phase Cell Cycle Arrest

Authors: Mehran Fadaeinasab, Hamed Karimian, Najihah Mohd Hashim, Hapipah Mohd Ali

Abstract:

In this study, three indole alkaloids namely; rauvolfine B, macusine B, and isoreserpiline have been isolated from the dichloromethane crude extract of Rauvolfia reflexa bark (Apocynaceae). The structural elucidation of the isolated compounds has been performed using spectral methods such as UV, IR, MS, 1D, and 2D NMR. Rauvolfine B showed anti proliferation activity on HCT-116 cancer cell line, its cytotoxicity induction was observed using MTT assay in eight different cell lines. Annexin-V is serving as a marker for apoptotic cells and the Annexin-V-FITC assay was carried out to observe the detection of cell-surface Phosphatidylserine (PS). Apoptosis was confirmed by using caspase-8 and -9 assays. Cell cycle arrest was also investigated using flowcytometric analysis. rauvolfine B had exhibited significantly higher cytotoxicity against HCT-116 cell line. The treatment significantly arrested HCT-116 cells in the S phase. Together, the results presented in this study demonstrated that rauvolfine B inhibited the proliferation of HCT-116 cells and programmed cell death followed by cell cycle arrest.

Keywords: apocynacea, indole alkaloid, apoptosis, cell cycle arrest

Procedia PDF Downloads 334
3526 Synthesis, Characterization and Electrical Studies of Solid Polymer Electrolyte (1-x) PANI-KAg₄I₅.xAl₂O₃

Authors: Rafiuddin

Abstract:

Solid polymer electrolytes have emerged as an area of interest in the field of solid state chemistry owing to their facile and cost-effective synthesis and number of applications in different areas of chemistry, extending over a wide range of temperatures. In the present work, polymer composite solid electrolyte comprising of Polyaniline (PANI) as polymer and potassium silver iodide (KAg4I5) using alumina (Al2O3) of different compositions having the formula (1-x) PANI- KAg4I5. x Al2O3 with x ranging from 0.0 to 0.5 was prepared by solid state reaction method. The structural elucidation and characterization was done by X- Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric- Differential Thermal Analysis (TG-DTA) and Impedance Spectroscopy. The thermal analysis shows a phase transition at 147°C attributed to β-α phase transition of AgI due to the disproportionation of KAg4I5 to AgI and KAg2I3 at temperatures higher than 36°C. The X Ray diffraction analysis also confirms the presence of both AgI and KAg2I3 in the samples. The conductivities recorded over a temperature range of 40-250° C lie in the range of 10-1 to 10-3 S cm-1. Maximum conductivity was seen in the compositon x = 0.4 i.e. 1.84 × 10-2 Scm-1 at 313 K and 1.38 × 10-1 Scm-1 at 513 K, with a minimum activation energy of 0.14 eV.

Keywords: polymer solid electrolytes, XRD, DTA, electrical conductivity, impedance spectroscopy

Procedia PDF Downloads 302
3525 Comparison of Two Anesthetic Methods during Interventional Neuroradiology Procedure: Propofol versus Sevoflurane Using Patient State Index

Authors: Ki Hwa Lee, Eunsu Kang, Jae Hong Park

Abstract:

Background: Interventional neuroradiology (INR) has been a rapidly growing and evolving neurosurgical part during the past few decades. Sevoflurane and propofol are both suitable anesthetics for INR procedure. Monitoring of depth of anesthesia is being used very widely. SEDLine™ monitor, a 4-channel processed EEG monitor, uses a proprietary algorithm to analyze the raw EEG signal and displays the Patient State Index (PSI) values. There are only a fewer studies examining the PSI in the neuro-anesthesia. We aimed to investigate the difference of PSI values and hemodynamic variables between sevoflurane and propofol anesthesia during INR procedure. Methods: We reviewed the medical records of patients who scheduled to undergo embolization of non-ruptured intracranial aneurysm by a single operator from May 2013 to December 2014, retrospectively. Sixty-five patients were categorized into two groups; sevoflurane (n = 33) vs propofol (n = 32) group. The PSI values, hemodynamic variables, and the use of hemodynamic drugs were analyzed. Results: Significant differences were seen between PSI values obtained during different perioperative stages in both two groups (P < 0.0001). The PSI values of propofol group were lower than that of sevoflurane group during INR procedure (P < 0.01). The patients in propofol group had more prolonged time of extubation and more phenylephrine requirement than sevoflurane group (p < 0.05). Anti-hypertensive drug was more administered to the patients during extubation in sevoflurane group (p < 0.05). Conclusions: The PSI can detect depth of anesthesia and changes of concentration of anesthetics during INR procedure. Extubation was faster in sevoflurane group, but smooth recovery was shown in propofol group.

Keywords: interventional neuroradiology, patient state index, propofol, sevoflurane

Procedia PDF Downloads 180
3524 3D Elasticity Analysis of Laminated Composite Plate Using State Space Method

Authors: Prathmesh Vikas Patil, Yashaswini Lomte Patil

Abstract:

Laminated composite materials have considerable attention in various engineering applications due to their exceptional strength-to-weight ratio and mechanical properties. The analysis of laminated composite plates in three-dimensional (3D) elasticity is a complex problem, as it requires accounting for the orthotropic anisotropic nature of the material and the interactions between multiple layers. Conventional approaches, such as the classical plate theory, provide simplified solutions but are limited in performing exact analysis of the plate. To address such a challenge, the state space method emerges as a powerful numerical technique for modeling the behavior of laminated composites in 3D. The state-space method involves transforming the governing equations of elasticity into a state-space representation, enabling the analysis of complex structural systems in a systematic manner. Here, an effort is made to perform a 3D elasticity analysis of plates with cross-ply and angle-ply laminates using the state space approach. The state space approach is used in this study as it is a mixed formulation technique that gives the displacements and stresses simultaneously with the same level of accuracy.

Keywords: cross ply laminates, angle ply laminates, state space method, three-dimensional elasticity analysis

Procedia PDF Downloads 111
3523 Flange/Web Distortional Buckling of Cold-Formed Steel Beams with Web Holes under Pure Bending

Authors: Nan-Ting Yu, Boksun Kim, Long-Yuan Li

Abstract:

The cold-formed steel beams with web holes are widely used as the load-carrying members in structural engineering. The perforations can release the space of the building and let the pipes go through. However, the perforated cold-formed steel (PCFS) beams may fail by distortional buckling more easily than beams with plain web; this is because the rotational stiffness from the web decreases. It is well known that the distortional buckling can be described as the buckling of the compressed flange-lip system. In fact, near the ultimate failure, the flange/web corner would move laterally, which indicates the bending of the web should be taken account. The purpose of this study is to give a specific solution for the critical stress of flange/web distortional buckling of PCFS beams. The new model is deduced based on classical energy method, and the deflection of the web is represented by the shape function of the plane beam element. The finite element analyses have been performed to validate the accuracy of the proposed model. The comparison of the critical stress calculated from Hancock's model, FEA, and present model, shows that the present model can provide a splendid prediction for the flange/web distortional buckling of PCFS beams.

Keywords: cold-formed steel, beams, perforations, flange-web distortional buckling, finite element analysis

Procedia PDF Downloads 130
3522 A New Profile of Engineer: From Management Engineering to Entrepreneurial Engineering

Authors: Roberto Cerchione, Emilio Esposito, Mario Raffa

Abstract:

The relevance and the strategic importance of engineering skills in innovation and in the development of businesses and organizations push to investigate the role of the engineer in society today. In the twentieth century the emergence of a variety of technical and scientific knowledge has led to the rise of new areas of skills going from a "all-comprehensive" engineering to an engineering characterized by many specializations. Organizational and structural changes within companies and the emergence of an industrial society based on multiple interrelationships led to the transformation of engineering education. The objective of this work is to report main steps and many pioneering experiences, both national and international, that have led to establish a graduate degree program in Engineering Management and its subsequent evolution in Entrepreneurial Engineering. The first section of this article focuses on the origins and precursors of Engineering Management education. The second section concerns main Italian education programs. Then the attention is focused on the evolution of Engineering Management in Naples, on the intersectoral nature of this degree program, on the relationship with business community, associations, labor market, small businesses and environment. Finally, the discussion of recent years about the skills that characterize entrepreneurial engineer in society are presented.

Keywords: education, engineering management, entrepreunerial engineering, engineering skills, managerial skills, entrepreneurial skills

Procedia PDF Downloads 487
3521 Cognitive and Metacognitive Space in the Task Design at Postgraduate Taught Level

Authors: Mei Lin, Lana Yj Liu, Thin Ngoc Pham

Abstract:

Postgraduate taught (PGT) students’ learning strategies align with what the learning task constitutes and the environment that the task creates. Cognitively, they can discover new perspectives, challenge general assumptions, establish clear connections, and synthesise information. Metacognitively, their engagement is conducive to the development of planning, monitoring, and evaluating strategies. Given that there has been a lack of longitudinal insights into international PGT students’ experiences of the cognitive and metacognitive space created in the tasks, this paper presentation aims to fill the gaps by longitudinally exploring (1) the fundamentals of task designs to create cognitive and metacognitive space and (2) the opportunities and challenges of multicultural group discussions as a pedagogical approach for the implementation of cognitive and metacognitive space in the learning tasks. Data were collected from the two rounds of semi-structured interviews with 11 international PGT students in two programmes at a UK university -at the end of semester one and at the end of semester two. The findings show that the task designs, to create cognitive and metacognitive space, need to include four interconnected factors: clarity, relevance, motivation, and practicality. In addition, international PGT students perceived that they practised and developed their cognitive and metacognitive abilities while getting immersed in multicultural group discussions. The findings, from the learners’ point of view, make some pedagogy-related suggestions to the task designs at the master’s level, particularly how to engage students in learning during their transition into higher education in a different cultural setting.

Keywords: cognitive space, master students, metacognitive space, task design

Procedia PDF Downloads 59
3520 The Pressure Effect and First-Principles Study of Strontium Chalcogenides SrS

Authors: Benallou Yassine, Amara Kadda, Bouazza Boubakar, Soudini Belabbes, Arbouche Omar, M. Zemouli

Abstract:

The study of the pressure effect on the materials, their functionality and their properties is very important, insofar as it provides the opportunity to identify others applications such the optical properties in the alkaline earth chalcogenides, as like the SrS. Here we present the first-principles calculations which have been performed using the full potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation developed by Perdew–Burke–Ernzerhor for solids (PBEsol). The calculated structural parameters like the lattice parameters, the bulk modulus B and their pressure derivative B' are in reasonable agreement with the available experimental and theoretical data. In addition, the elastic properties such as elastic constants (C11, C12, and C44), the shear modulus G, the Young modulus E, the Poisson’s ratio ν and the B/G ratio are also given. The treatments of exchange and correlation effects were done by the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential for the electronic. The pressure effect on the electronic properties was visualized by calculating the variations of the gap as a function of pressure. The obtained results are compared to available experimental data and to other theoretical calculations

Keywords: SrS, GGA-PBEsol+TB-MBJ, density functional, Perdew–Burke–Ernzerhor, FP-LAPW, pressure effect

Procedia PDF Downloads 569
3519 Coastalization and Urban Sprawl in the Mediterranean: Using High-Resolution Multi-Temporal Data to Identify Typologies of Spatial Development

Authors: Apostolos Lagarias, Anastasia Stratigea

Abstract:

Coastal urbanization is heavily affecting the Mediterranean, taking the form of linear urban sprawl along the coastal zone. This process is posing extreme pressure on ecosystems, leading to an unsustainable model of growth. The aim of this research is to analyze coastal urbanization patterns in the Mediterranean using High-resolution multi-temporal data provided by the Global Human Settlement Layer (GHSL) database. Methodology involves the estimation of a set of spatial metrics characterizing the density, aggregation/clustering and dispersion of built-up areas. As case study areas, the Spanish Coast and the Adriatic Italian Coast are examined. Coastalization profiles are examined and selected sub-areas massively affected by tourism development and suburbanization trends (Costa Blanca/Murcia, Costa del Sol, Puglia, Emilia-Romagna Coast) are analyzed and compared. Results show that there are considerable differences between the Spanish and the Italian typologies of spatial development, related to the land use structure and planning policies applied in each case. Monitoring and analyzing spatial patterns could inform integrated Mediterranean strategies for coastal areas and redirect spatial/environmental policies towards a more sustainable model of growth

Keywords: coastalization, Mediterranean, multi-temporal, urban sprawl, spatial metrics

Procedia PDF Downloads 138
3518 Risk Management in Industrial Supervision Projects

Authors: Érick Aragão Ribeiro, George André Pereira Thé, José Marques Soares

Abstract:

Several problems in industrial supervision software development projects may lead to the delay or cancellation of projects. These problems can be avoided or contained by using identification methods, analysis and control of risks. These procedures can give an overview of the possible problems that can happen in the projects and what are the immediate solutions. Therefore, we propose a risk management method applied to the teaching and development of industrial supervision software. The method is developed through a literature review and previous projects can be divided into phases of management and have basic features that are validated with experimental research carried out by mechatronics engineering students and professionals. The management is conducted through the stages of identification, analysis, planning, monitoring, control and communication of risks. Programmers use a method of prioritizing risks considering the gravity and the possibility of occurrence of the risk. The outputs of the method indicate which risks occurred or are about to happen. The first results indicate which risks occur at different stages of the project and what risks have a high probability of occurring. The results show the efficiency of the proposed method compared to other methods, showing the improvement of software quality and leading developers in their decisions. This new way of developing supervision software helps students identify design problems, evaluate software developed and propose effective solutions. We conclude that the risk management optimizes the development of the industrial process control software and provides higher quality to the product.

Keywords: supervision software, risk management, industrial supervision, project management

Procedia PDF Downloads 356
3517 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction

Authors: William Whiteley, Jens Gregor

Abstract:

In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.

Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography

Procedia PDF Downloads 111
3516 Exploring Consumers' Intention to Adopt Mobile Payment System in Ghana

Authors: Y. Kong, I. Masud, M. H. Nyaso

Abstract:

This paper seeks to examine consumers’ intention to adopt and use mobile payment method in Ghana. A conceptual framework was adopted from the extant literature using the Technology Acceptance Model (TAM) and the Theory of Reasoned Action (TRA) as the theoretical bases. Data for the study was obtained from a sample of 425 respondents through online and direct surveys using structured questionnaire. Structural Equation Modeling was used to analyse the data through SPSS v.22 and SmartPLS v.3. Findings with regards to the determinants of mobile payment system adoption indicate that subjective norm, perceived ease of use, attitude, and perceived usefulness play active roles in consumers’ decision to adopt mobile payment system in Ghana. Also, perceived usefulness and perceived ease of use have a significant and positive influence on consumers’ attitude towards mobile payment adoption in Ghana. Further, subjective norm was found to influence perceived usefulness and perceived ease of use of mobile payment adoption in Ghana. The study contributes to literature on mobile payment system from developing country context. The study proffered some recommendations.

Keywords: consumer behaviour, mobile payment, subjective norm, theory of planned behavior

Procedia PDF Downloads 153
3515 Muslim Consumer Purchase Behavior on Doubtful Halal Packed Food

Authors: Aliffaizi Arsat, Nur Ida Fatihah, Che Shalifullizam

Abstract:

Malaysia is well known as a Muslim country and is quickly becoming a Global Halal-hub of Halal business in promoting Halal food products in both Muslim countries and non-Muslim countries. The objective of this study is to analyse the Muslim consumer purchased behaviour on doubtful Halal packed food by using theory of planned behaviour, to examine the mediating effects between certification, and Muslim consumer purchased behaviour on doubtful Halal packed food. The relevant questionnaires have been distributed in Kuala Selangor. Among the 300 Muslim participants from Kuala Selangor, Selangor, Malaysia, only 107 of them have returned the questionnaire with complete answers. The respondent’s rate was discovered to be at 35.67%. The data have been analysed by using SPSS version 22 and Structural equation modelling Partial Least Square SEM-PLS. There are three dimensions needed to identify Muslim consumer purchased behaviour on doubtful Halal packed food. They are attitude towards behaviour, subjective norm and perceived behavioural. All the results from this study show that the hypothesis has been supported. However, subjective norm had shown that there is a negative relationship towards Muslim consumer purchased behaviour on doubtful Halal packed food.

Keywords: Muslim consumer purchase behaviour, theory planned behaviour, doubtful Halal, certification

Procedia PDF Downloads 341
3514 Attitudes and Knowledge of Dental Patients Towards Infection Control Measures in Kuwait University Dental Center

Authors: Fatima Taqi, Abrar Alanzi

Abstract:

Objectives: The objective of this study is to determine and assess the level of knowledge and attitudes of dental patients attending Kuwait University Dental Clinics (KUDC) regarding the infection control protocols practiced in the clinic. The results would highlight the importance of conducting awareness campaigns in the community to promote good oral healthcare in Kuwait. Materials and Methods: A cross-sectional descriptive survey was carried out among dental patients attending KUDC. A structured questionnaire, in both Arabic and English languages, was used for data collection about the socio-demographic characteristics, knowledge about the dental cross-infection, and attitudes and self-reported practices regarding infection transmission and control in dentistry. Results: A response rate of 80% (202/250) was reported. 47% of respondents had poor knowledge about dental infection transmission, and only 19.8% had satisfactory knowledge. Female participants obtained a higher satisfactory score (14.3%) compared to males (5.5%). Patients with a university degree or higher education had a better level of knowledge compared to patients with a lower educational level (p < 0.05). The majority of participants agreed that the dentist should wear gloves (95.5%), masks (89.6%), safety glasses (70.3%), and gowns (84.7%). Many patients believed that the protection measures are mainly to stop the infection transmission from patient to patient via the dentist. Half of the participants would ask if the instruments are sterilized and might accept treatment from non-vaccinated dentists. Conclusions: Many dental patients attending KUDC have obtained poor knowledge scores regarding infection transmission in the dental clinic. The educational level was significantly associated with their level of knowledge. An overall positive attitude was reported regarding the infection control protocols practiced in the dental clinic. Raising awareness among dental patients about dental infection transmission and protective measures is of utmost importance.

Keywords: dental infection, knowledge, dental patients, infection control

Procedia PDF Downloads 139
3513 Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs

Authors: Nebila Lichiheb, LaToya Myles, William Pendergrass, Bruce Hicks, Dawson Cagle

Abstract:

Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation.

Keywords: meteorological data, Washington D.C., DCNet data, NAM model

Procedia PDF Downloads 234
3512 Common Regulatory Mechanisms Reveals Links between Aberrant Glycosylation and Biological Hallmarks in Cancer

Authors: Jahanshah Ashkani, Kevin J. Naidoo

Abstract:

Glycosylation is the major posttranslational modification (PTM) process in cellular development. In tumour development, it is marked by structural alteration of carbohydrates (glycans) that is the result of aberrant glycosylation. Altered glycan structures affect cell surface ligand-receptor interactions that interfere with the regulation of cell adhesion, migration, and proliferation. The resulting changes in glycan biosynthesis pathways originate from altered expression of glycosyltransferases and glycosidases. While the alteration in glycosylation patterns is a recognized “hallmark of cancer”, the influential overview of the biology of cancer proposes eight hallmarks with no explicit suggestion to connectivity with glycosylation. Recently, we have discovered a connection between the glycosyltransferase gene expression and cancer type and subtype. Here we present an association between aberrant glycosylation and the biological hallmarks of breast cancer by exploring the common regulatory mechanisms at the genomic scale. The result of this study bridges the glycobiological and biological pathways that are accepted hallmarks of cancer by connecting their common regulatory pathways. This is an impetus for further investigation as target therapies of breast cancer are very likely to be uncovered from this.

Keywords: aberrant glycosylation, biological hallmarks, breast cancer, regulatory mechanism

Procedia PDF Downloads 254
3511 Exploring Crime Prevention through Environmental Design’s Role in Crime Reduction: An Effectiveness Study in the Urban Context of Khandagiri, Bhubaneswar Using Structural Equation Modelling

Authors: Mousumi Khandual, Amitt Chatterjee

Abstract:

In order to validate the dimensions of Crime Prevention Through Environmental Design (CPTED) and the corresponding indicators, this study investigates the contribution of CPTED to the reduction of crime in Khandagiri, Bhubaneswar. Four primary dimensions are the focus of the research: territoriality, natural surveillance, access control, and exterior maintenance. A scale was developed to access the CPTED construct, administered through on-site observation, expert opinions, and resident surveys involving 151 respondents from a typical residential area of Khandagiri, Bhubaneswar. Confirmatory Factor Analysis (CFA) using AMOS has been used to validate the dimensions and indicators, with the analysis testing both first-order and second-order models. The study highlights key factors contributing to the measurement of the CPTED construct, offering valuable insights for urban planners and policymakers. The findings showed that territoriality, access control, and external maintenance produced an index of a good fit, with the RMSEA value being less than 0.06 and the values of GFI, CFI, and TLI exceeding 0.90.

Keywords: crime prevention, CFA, urban safety, environmental design, built environment, crime

Procedia PDF Downloads 5
3510 A Study on Compromised Periodontal Health Status among the Pregnant Woman of Jamshedpur, Jharkhand, India

Authors: Rana Praween Kumar

Abstract:

Preterm-low birth weight delivery is a major cause of infant morbidity and mortality in developing countries and has been linked to poor periodontal health during pregnancy. Gingivitis and chronic periodontitis are highly prevalent chronic inflammatory oral diseases. The detection and diagnosis of these common diseases is a fundamentally important component of oral health care. This study is intended to investigate predisposing and enabling factors as determinants of oral health indicators in pregnancy as well as the association between periodontal problems during pregnancy with age and socio economic status of the individual. A community –based prospective cohort study will be conducted in Jamshedpur, Jharkhand, India among pregnant women using completed interviews and a full mouth oral clinical examination using the CPITN (Community Periodontal Index of Treatment Need) and OHI-S (Simplified Oral Hygiene) indices with adequate sample size and informed consent to the patient following proper inclusion and exclusion criteria. Multiple logistic regression analyses will be used to identify independent determinants of periodontal problems and use of dental services during pregnancy. Analysis of covariance (ANCOVA) will be used to investigate the relationship between periodontal problems with the age and socioeconomic status. The result will help in proper monitoring of periodontal health during pregnancy encouraging the delivery of healthy child and the maintenance of proper health of the mother.

Keywords: infant, periodontal problems, pregnancy, pre-term-low birth weight delivery

Procedia PDF Downloads 163