Search results for: critical infrastructure monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9900

Search results for: critical infrastructure monitoring

4770 Borassus aethiopum Mart Mature Fruits Macro-Composition, Drying Temperature Effect on Its Pulp Protein, Fat, Sugars, Metabolizable Energy, and Fatty Acids Profile

Authors: Tagouelbe Tiho, Amissa Augustin Adima, Yao Casimir Brou, Nabayo Traore, Gouha Firmin Kouassi, Thierry Roland Kouame, Maryline Kouba

Abstract:

The work aimed to study Borassus aethiopum Mart (B.a) dried pulp nutritional value for its incorporation in human and poultry diets. Firstly, the mature fruit macro-composition was assessed. Secondly, the pulp was dried at 40, 50, 60, 70, and 80ᵒC. Thereafter, the analysis was performed for fat, protein, total sugars, Ca, P, Mg, and fatty acid profile monitoring. As a result, the fruits weighed 1,591.35, delivered 516.73, and 677.82 grams of pulp and seeds, respectively. Mainly, increasing heat adversely affected the outputs. Consequently, the fat results were 14.12, 12.97, 8.93, 8.89ᶜ, and 5.56%; protein contents were 11.64, 10.15, 8.97, 8.84, and 8.42%; total sugar deliveries were 6.28, 6.05, 5.26, 5.02, and 4.76% (P < 0.01). Thereafter, the metabolizable energies were 3,785.22; 3,834.28; 3,616.62; 3,667.03; and 3,608.33 kcal/kg (DM). Additionally, Calcium (Ca) contents were 0.51, 0.55, 0.69, 0.77, and 0.81%, while phosphorus (P) mean was 0.17%, and the differences were not significant (P < 0.01). So, the Ca/P ratios were 2.79, 3.04, 4.10, 4.71, and 4.95. Finally, fatty acids (FA) assessments revealed 22.33 saturated (SFA), 77.67 unsaturated (UFA), within which 67.59% were monounsaturated (MUFA). Interestingly, the rising heat depressed n-6/n-3 ratios that were 1.1, 1.1, 0.45 and 0.38, respectively at 40, 50, 70 and 80ᵒC. In short, drying did not only enhance the product shelf life but it also improved the nutritional value. Thus, B.a mature fruit pulps dried at 70ᵒC are good functional foods, with more than 66% MUFA, and energy source for human and poultry nutrition.

Keywords: Borassus aethiopum Mart, fatty acids, metabolizable energy, minerals, protein

Procedia PDF Downloads 171
4769 Analysis of Fault Tolerance on Grid Computing in Real Time Approach

Authors: Parampal Kaur, Deepak Aggarwal

Abstract:

In the computational Grid, fault tolerance is an imperative issue to be considered during job scheduling. Due to the widespread use of resources, systems are highly prone to errors and failures. Hence, fault tolerance plays a key role in the grid to avoid the problem of unreliability. Scheduling the task to the appropriate resource is a vital requirement in computational Grid. The fittest resource scheduling algorithm searches for the appropriate resource based on the job requirements, in contrary to the general scheduling algorithms where jobs are scheduled to the resources with best performance factor. The proposed method is to improve the fault tolerance of the fittest resource scheduling algorithm by scheduling the job in coordination with job replication when the resource has low reliability. Based on the reliability index of the resource, the resource is identified as critical. The tasks are scheduled based on the criticality of the resources. Results show that the execution time of the tasks is comparatively reduced with the proposed algorithm using real-time approach rather than a simulator.

Keywords: computational grid, fault tolerance, task replication, job scheduling

Procedia PDF Downloads 436
4768 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.

Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks

Procedia PDF Downloads 332
4767 The Reasons for Food Losses and Waste and the Trends of Their Management in Basic Vegetal Production in Poland

Authors: Krystian Szczepanski, Sylwia Łaba

Abstract:

Production of fruit and vegetables, food cereals or oilseeds affects the natural environment via intake of nutrients being contained in the soil, use of the resources of water, fertilizers and food protection products, and energy. The limitation of the mentioned effects requires the introduction of techniques and methods for cultivation being friendly to the environment and counteracting losses and waste of agricultural raw materials as well as the appropriate management of food waste in every stage of the agri-food supply chain. The link to basic production includes obtaining a vegetal raw material and its storage in agricultural farm and transport to a collecting point. When the plants are ready to be harvested is the initial point; the stage before harvesting is not considered in the system of measuring and monitoring the food losses. The moment at which the raw material enters the stage of processing, i.e., its receipt at the gate of the processing plant, is considered as a final point of basic production. According to the Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002, Art. 2, “food” means any substance or product, intended to be, or reasonably expected to be consumed by humans. For the needs of the studies and their analysis, it was determined when raw material is considered as food – the plants (fruit, vegetables, cereals, oilseeds), after being harvested, arrive at storehouses. The aim of the studies was to determine the reasons for loss generation and to analyze the directions of their management in basic vegetal production in Poland in the years 2017 and 2018. The studies on food losses and waste in basic vegetal production were carried out in three sectors – fruit and vegetables, cereals and oilseeds. The studies of the basic production were conducted during the period of March-May 2019 at the territory of the whole country on a representative trail of 250 farms in each sector. The surveys were carried out using the questionnaires by the PAP method; the pollsters conducted the direct questionnaire interviews. From the conducted studies, it is followed that in 19% of the examined farms, any losses were not recorded during preparation, loading, and transport of the raw material to the manufacturing plant. In the farms, where the losses were indicated, the main reason in production of fruit and vegetables was rotting and it constituted more than 20% of the reported reasons, while in the case of cereals and oilseeds’ production, the respondents identified damages, moisture and pests as the most frequent reason. The losses and waste, generated in vegetal production as well as in processing and trade of fruit and vegetables, or cereal products should be appropriately managed or recovered. The respondents indicated composting (more than 60%) as the main direction of waste management in all categories. Animal feed and landfill sites were the other indicated directions of management. Prevention and minimization of loss generation are important in every stage of production as well as in basic production. When possessing the knowledge on the reasons for loss generation, we may introduce the preventive measures, mainly connected with the appropriate conditions and methods of the storage. Production of fruit and vegetables, food cereals or oilseeds affects the natural environment via intake of nutrients being contained in the soil, use of the resources of water, fertilizers and food protection products, and energy. The limitation of the mentioned effects requires the introduction of techniques and methods for cultivation being friendly to the environment and counteracting losses and waste of agricultural raw materials as well as the appropriate management of food waste in every stage of the agri-food supply chain. The link to basic production includes obtaining a vegetal raw material and its storage in agricultural farm and transport to a collecting point. The starting point is when the plants are ready to be harvested; the stage before harvesting is not considered in the system of measuring and monitoring the food losses. The successive stage is the transport of the collected crops to the collecting point or its storage and transport. The moment, at which the raw material enters the stage of processing, i.e. its receipt at the gate of the processing plant, is considered as a final point of basic production. Processing is understood as the change of the raw material into food products. According to the Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002, Art. 2, “food” means any substance or product, intended to be, or reasonably expected to be consumed by humans. It was determined (for the needs of the present studies) when raw material is considered as a food; it is the moment when the plants (fruit, vegetables, cereals, oilseeds), after being harvested, arrive at storehouses. The aim of the studies was to determine the reasons for loss generation and to analyze the directions of their management in basic vegetal production in Poland in the years 2017 and 2018. The studies on food losses and waste in basic vegetal production were carried out in three sectors – fruit and vegetables, cereals and oilseeds. The studies of the basic production were conducted during the period of March-May 2019 at the territory of the whole country on a representative trail of 250 farms in each sector. The surveys were carried out using the questionnaires by the PAPI (Paper & Pen Personal Interview) method; the pollsters conducted the direct questionnaire interviews. From the conducted studies, it is followed that in 19% of the examined farms, any losses were not recorded during preparation, loading, and transport of the raw material to the manufacturing plant. In the farms, where the losses were indicated, the main reason in production of fruit and vegetables was rotting and it constituted more than 20% of the reported reasons, while in the case of cereals and oilseeds’ production, the respondents identified damages, moisture, and pests as the most frequent reason. The losses and waste, generated in vegetal production as well as in processing and trade of fruit and vegetables, or cereal products should be appropriately managed or recovered. The respondents indicated composting (more than 60%) as the main direction of waste management in all categories. Animal feed and landfill sites were the other indicated directions of management. Prevention and minimization of loss generation are important in every stage of production as well as in basic production. When possessing the knowledge on the reasons for loss generation, we may introduce the preventive measures, mainly connected with the appropriate conditions and methods of the storage. ACKNOWLEDGEMENT The article was prepared within the project: "Development of a waste food monitoring system and an effective program to rationalize losses and reduce food waste", acronym PROM implemented under the STRATEGIC SCIENTIFIC AND LEARNING PROGRAM - GOSPOSTRATEG financed by the National Center for Research and Development in accordance with the provisions of Gospostrateg1 / 385753/1/2018

Keywords: food losses, food waste, PAP method, vegetal production

Procedia PDF Downloads 115
4766 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks

Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas

Abstract:

This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).

Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems

Procedia PDF Downloads 134
4765 Teaching College Classes with Virtual Reality

Authors: Penn P. Wu

Abstract:

Recent advances in virtual reality (VR) technologies have made it possible for students to experience a virtual on-the-scene or virtual in-person observation of an educational event. In an experimental class, the author uses VR, particularly 360° videos, to virtually engage students in an event, through a wide spectrum of educational resources, such s a virtual “bystander.” Students were able to observe the event as if they were physically on site, although they could not intervene with the scene. The author will describe the adopted equipment, specification, and cost of building them as well as the quality of VR. The author will discuss (a) feasibility, effectiveness, and efficiency of using VR as a supplemental technology to teach college students and criteria and methodologies used by the authors to evaluate them; (b) barriers and issues of technological implementation; and (c) pedagogical practices learned through this experiment. The author also attempts to explore (a) how VR could provide an interactive virtual in-person learning experience; (b) how VR can possibly change traditional college education and online education; (c) how educators and balance six critical factors: cost, time, technology, quality, result, and content.

Keywords: learning with VR, virtual experience of learning, virtual in-person learning, virtual reality for education

Procedia PDF Downloads 308
4764 Optimization of Submerged Arc Welding Parameters for Joining SS304 and MS1018

Authors: Jasvinder Singh, Manjinder Singh

Abstract:

Welding of dissimilar materials is a complicated process due to the difference in melting point of two materials. Thermal conductivity and coefficient of thermal expansion of dissimilar materials also different; therefore, residual stresses produced in the weldment and base metal are the most critical problem associated with the joining of dissimilar materials. Tensile strength and impact toughness also reduced due to the residual stresses. In the present research work, an attempt has been made to weld SS304 and MS1018 dissimilar materials by submerged arc welding (SAW). By conducting trail, runs most effective parameters welding current, Arc voltage, welding speed and nozzle to plate distance were selected to weld these materials. The fractional factorial technique was used to optimize the welding parameters. Effect on tensile strength (TS), fracture toughness (FT) and microhardness of weldment were studied. It was concluded that by optimizing welding current, voltage and welding speed the properties of weldment can be enhanced.

Keywords: SAW, Tensile Strength (TS), fracture toughness, micro hardness

Procedia PDF Downloads 538
4763 Public Debt and Fiscal Stability in Nigeria

Authors: Abdulkarim Yusuf

Abstract:

Motivation: The Nigerian economy has seen significant macroeconomic instability, fuelled mostly by an overreliance on fluctuating oil revenues. The rising disparity between tax receipts and government spending in Nigeria necessitates government borrowing to fund the anticipated pace of economic growth. Rising public debt and fiscal sustainability are limiting the government's ability to invest in key infrastructure that promotes private investment and growth in Nigeria. Objective: This paper fills an empirical research vacuum by examining the impact of public debt on fiscal sustainability in Nigeria, given the significance of fiscal stability in decreasing poverty and the constraints that an unsustainable debt burden imposes on it. Data and method: Annual time series data covering the period 1980 to 2022 exposed to conventional and structural breaks stationarity tests and the Autoregressive Distributed Lag estimation approach were adopted for this study. Results: The results reveal that domestic debt stock, debt service payment, foreign reserve stock, exchange rate, and private investment all had a major adverse effect on fiscal stability in the long and short run, corroborating the debt overhang and crowding-out hypothesis. External debt stock, prime lending rate, and degree of trade openness, which boosted fiscal stability in the long run, had a major detrimental effect on fiscal stability in the short run, whereas foreign direct investment inflows had an important beneficial impact on fiscal stability in both the long and short run. Implications: The results indicate that fiscal measures that inspire domestic resource mobilization, sustainable debt management techniques, and dependence on external debt to boost deficit financing will improve fiscal stability and drive growth.

Keywords: ARDL co-integration, debt overhang, debt servicing, fiscal stability, public debt

Procedia PDF Downloads 57
4762 A Critical Analysis of How the Role of the Imam Can Best Meet the Changing Social, Cultural, and Faith-Based Needs of Muslim Families in 21st Century Britain

Authors: Christine Hough, Eddie Abbott-Halpin, Tariq Mahmood, Jessica Giles

Abstract:

This paper draws together the findings from two research studies, each undertaken with cohorts of South Asian Muslim respondents located in the North of England between 2017 and 2019. The first study, entitled Faith Family and Crime (FFC), investigated the extent to which a Muslim family’s social and health well-being is affected by a family member’s involvement in the Criminal Justice System (CJS). This study captured a range of data through a detailed questionnaire and structured interviews. The data from the interview transcripts were analysed using open coding and an application of aspects of the grounded theory approach. The findings provide clear evidence that the respondents were neither well-informed nor supported throughout the processes of the CJS, from arrest to post-sentencing. These experiences gave rise to mental and physical stress, potentially unfair sentencing, and a significant breakdown in communication within the respondents’ families. They serve to highlight a particular aspect of complexity in the current needs of those South Asian Muslim families who find themselves involved in the CJS and is closely connected to family structure, culture, and faith. The second study, referred to throughout this paper as #ImamsBritain (that provides the majority of content for this paper), explores how Imams, in their role as community faith leaders, can best address the complex – and changing - needs of South Asian Muslims families, such as those that emerged in the findings from FFC. The changing socio-economic and political climates of the last thirty or so years have brought about significant changes to the lives of Muslim families, and these have created more complex levels of social, cultural, and faith-based needs for families and individuals. As a consequence, Imams now have much greater demands made of them, and so their role has undergone far-reaching changes in response to this. The #ImamsBritain respondents identified a pressing need to develop a wider range of pastoral and counseling skills, which they saw as extending far beyond the traditional role of the Imam as a religious teacher and spiritual guide. The #ImamsBritain project was conducted with a cohort of British Imams in the North of England. Data was collected firstly through a questionnaire that related to the respondents’ training and development needs and then analysed in depth using the Delphi approach. Through Delphi, the data were scrutinized in depth using interpretative content analysis. The findings from this project reflect the respondents’ individual perceptions of the kind of training and development they need to fulfill their role in 21st Century Britain. They also provide a unique framework for constructing a professional guide for Imams in Great Britain. The discussions and critical analyses in this paper draw on the discourses of professionalization and pastoral care and relevant reports and reviews on Imam training in Europe and Canada.

Keywords: criminal justice system, faith and culture, Imams, Muslim community leadership, professionalization, South Asian family structure

Procedia PDF Downloads 138
4761 Assessment of Environmental Impacts and Determination of Sustainability Level of BOOG Granite Mine Using a Mathematical Model

Authors: Gholamhassan Kakha, Mohsen Jami, Daniel Alex Merino Natorce

Abstract:

Sustainable development refers to the creation of a balance between the development and the environment too; it consists of three key principles namely environment, society and economy. These three parameters are related to each other and the imbalance occurs in each will lead to the disparity of the other parts. Mining is one of the most important tools of the economic growth and social welfare in many countries. Meanwhile, assessment of the environmental impacts has directed to the attention of planners toward the natural environment of the areas surrounded by mines and allowing for monitoring and controlling of the current situation by the designers. In this look upon, a semi-quantitative model using a matrix method is presented for assessing the environmental impacts in the BOOG Granite Mine located in Sistan and Balouchestan, one of the provinces of Iran for determining the effective factors and environmental components. For accomplishing this purpose, the initial data are collected by the experts at the next stage; the effect of the factors affects each environmental component is determined by specifying the qualitative viewpoints. Based on the results, factors including air quality, ecology, human health and safety along with the environmental damages resulted from mining activities in that area. Finally, the results gained from the assessment of the environmental impact are used to evaluate the sustainability by using Philips mathematical model. The results show that the sustainability of this area is weak, so environmental preventive measures are recommended to reduce the environmental damages to its components.

Keywords: sustainable development, environmental impacts' assessment, BOOG granite, Philips mathematical model

Procedia PDF Downloads 198
4760 Enacting Educational Technology Affordances as Mechanisms Responsible for Gaining Epistemological Access: A Case of Underprivileged Students at Higher Institutions in Northern Nigeria

Authors: Bukhari Badamasi, Chidi G. Ononiwu

Abstract:

Globally, educational technology (EdTech) has become a known catalyst for gaining access to education, job creation, and national development of a nation. Howbeit, it is common understanding that higher institutions continue to deploy digital technologies, to help provide access to education, but in most case, it is somehow institutional access not epistemological access especially in sub Saharan African higher institutions. Some scholars, however, lament the fact that studies on educational technology affordances are mostly fragmented because they focus on specific theme or sub aspect of access (i.e., institutional access). Thus, drawing from the Archer Morphogenetic approach, and Gibson Affordance theory, and applying critical realist based Danermark model for explanatory research, the study seeks to conduct a realist case study on underprivileged students in Higher institutions on how they gain epistemological access by enacting educational technology (EdTech) affordances.

Keywords: affordance, epistemological access, educational technology, underprivileged students

Procedia PDF Downloads 84
4759 Wave of Islamic Fintech: Revolutionizing Malaysia's Islamic Banking and Finance Regulatory Landscape

Authors: Ho Wen Hui, Azwina Wati Abdull Manaf, Asfarina Kartika Mohd Shakri

Abstract:

The global trend of Fintech had taken the Malaysian shore by storm in recent years, thus making the studies and observations of its impacts more critical than ever. Additionally, Fintech has grown to become an unavoidable subject in the Islamic Banking and Finance (IBF) industry. In relation to that, this paper seeks to analyze the development of Fintech parallel with the IBF industry and its connection to Islamic economics. While the scarcity of studies on this area is apparent, it is found that there is a need to regulate the development of the Fintech Industry and its effects while analyzing the ramifications and positive effects of Fintech towards parties involved in IBF industry. This paper objectively studies the phenomenon of Islamic Fintech around the world as a whole as well as more specifically in Malaysia. The paper will then explore on the existing regulatory instruments in Malaysia, study their boundaries as well as limitations and contribute on possible reform to regulate Islamic Fintech in this jurisdiction. It is aimed that this paper will prompt and encourage more thorough studies to be conducted on the topic of Fintech which would subsequently contribute to a positive growth of the IBF industry worldwide.

Keywords: financial technology, FinTech, Islamic banking & finance, regulation

Procedia PDF Downloads 228
4758 A Hybrid Pareto-Based Swarm Optimization Algorithm for the Multi-Objective Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a new hybrid particle swarm optimization algorithm is proposed for the multi-objective flexible job shop scheduling problem that is very important and hard combinatorial problem. The Pareto approach is used for solving the multi-objective problem. Several new local search heuristics are integrated into an algorithm based on the critical block concept to enhance the performance of the algorithm. The algorithm is compared with the recently published multi-objective algorithms based on benchmarks selected from the literature. Several metrics are used for quantifying performance and comparison of the achieved solutions. The algorithms are also compared based on the Weighting summation of objectives approach. The proposed algorithm can find the Pareto solutions more efficiently than the compared algorithms in less computational time.

Keywords: swarm-based optimization, local search, Pareto optimality, flexible job shop scheduling, multi-objective optimization

Procedia PDF Downloads 369
4757 A Formal Property Verification for Aspect-Oriented Programs in Software Development

Authors: Moustapha Bande, Hakima Ould-Slimane, Hanifa Boucheneb

Abstract:

Software development for complex systems requires efficient and automatic tools that can be used to verify the satisfiability of some critical properties such as security ones. With the emergence of Aspect-Oriented Programming (AOP), considerable work has been done in order to better modularize the separation of concerns in the software design and implementation. The goal is to prevent the cross-cutting concerns to be scattered across the multiple modules of the program and tangled with other modules. One of the key challenges in the aspect-oriented programs is to be sure that all the pieces put together at the weaving time ensure the satisfiability of the overall system requirements. Our paper focuses on this problem and proposes a formal property verification approach for a given property from the woven program. The approach is based on the control flow graph (CFG) of the woven program, and the use of a satisfiability modulo theories (SMT) solver to check whether each property (represented par one aspect) is satisfied or not once the weaving is done.

Keywords: aspect-oriented programming, control flow graph, property verification, satisfiability modulo theories

Procedia PDF Downloads 177
4756 Potentially Toxic Cyanobacteria and Quantification of Microcystins/Nodularins and Cylindspermopsine in Four Dams of Guanajuato, Mexico

Authors: Laura Valdés-Santiago, José Luis Castro-Guillén, Jorge Noé García-Chávez, Rosalba Alonso-Rodríguez, Rafael Vargas-Bernal

Abstract:

The quality and availability of the water contained in dams (artificial bodies of water) are at risk due to the presence of uncontrolled growths of cyanobacteria capable of producing cyanotoxins that affect the ecosystem and harm the health of humans and animals. The physicochemical properties were measured, and the degree of eutrophy of four dams from Guanajuato was determined. They presented a pH of 6.1 to 8.4, conductivity of 121 to 415 μS/cm², chlorophyll of 0.43-42.43 μg/L, NO₃- 0-1.2 mg/L and PO₄3- 0.11 to 0.84 mg/L; considering these parameters, the prey most prone to the development of cyanobacterial blooms were El Palote dam, La Purísima dam, and Allende dam, but not El Conejo dam. The potentially toxic cyanobacteria identified were Planktothrix agardhii, Oscillatoria sp., Raphidiopsis sp., and Microcystis sp., Microcystin-LR, Nodularin, and Cylindrospermopsin were quantified, presenting values between 0.08-0.42 and 0.02-2.05 ppb, respectively, the water bodies with the highest concentration were El Palote dam and La Purísima dam. Microcystin-LR and/or Nodularin levels are within the guideline values for human consumption in drinking water established by the World Health Organization for Microcystin-LR and for Cylindrospermopsin by the Oregon Health Authority (OHA) in all dams. This work is relevant due to the use of these bodies of water for agriculture and human consumption in the state, and the presence of toxin-producing cyanobacteria can represent an environmental, ecotoxicological, and health problem, so it is recommended to establish a program of frequent monitoring of cyanobacteria and cyanotoxins in the state's dams.

Keywords: Planktrothrix agardhii, Raphidiopsis sp., Microcystis sp., Cyanobacterial blooms, Cyanotoxins

Procedia PDF Downloads 80
4755 Biological Treatment of Tannery Wastewater Using Pseudomonas Strains

Authors: A. Benhadji, R. Maachi

Abstract:

Environmental protection has become a major economic development issues. Indeed, the environment has become both market growth factor and element of competition. It is now an integral part of all industrial strategies. Ecosystem protection is based on the reduction of the pollution load in the treatment of liquid waste. The physicochemical techniques are commonly used which a transfer of pollution is generally found. Alternative to physicochemical methods is the use of microorganisms for cleaning up the waste waters. The objective of this research is the evaluation of the effects of exogenous added Pseudomonas strains on pollutants biodegradation. The influence of the critical parameters such as inoculums concentration and duration treatment are studied. The results show that Pseudomonas putida is found to give a maximum reduction in chemical organic demand (COD) in 4 days of incubation. However, toward to protect biological pollution of environment, the treatment is achieved by electro coagulation process using aluminium electrodes. The results indicate that this process allows disinfecting the water and improving the electro coagulated sludge quality.

Keywords: tannery, pseudomonas, biological treatment, electrocoagulation process, sludge quality

Procedia PDF Downloads 369
4754 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks

Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar

Abstract:

DNA Barcode, a short mitochondrial DNA fragment, made up of three subunits; a phosphate group, sugar and nucleic bases (A, T, C, and G). They provide good sources of information needed to classify living species. Such intuition has been confirmed by many experimental results. Species classification with DNA Barcode sequences has been studied by several researchers. The classification problem assigns unknown species to known ones by analyzing their Barcode. This task has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. To make this type of analysis feasible, heuristics, like progressive alignment, have been developed. Another tool for similarity search against a database of sequences is BLAST, which outputs shorter regions of high similarity between a query sequence and matched sequences in the database. However, all these methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. This method permits to avoid the complex problem of form and structure in different classes of organisms. On empirical data and their classification performances are compared with other methods. Our system consists of three phases. The first is called transformation, which is composed of three steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. The second is called approximation, which is empowered by the use of Multi Llibrary Wavelet Neural Networks (MLWNN).The third is called the classification of DNA Barcodes, which is realized by applying the algorithm of hierarchical classification.

Keywords: DNA barcode, electron-ion interaction pseudopotential, Multi Library Wavelet Neural Networks (MLWNN)

Procedia PDF Downloads 318
4753 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.

Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding

Procedia PDF Downloads 305
4752 Effect of Nanoparticle Addition in the Urea-Formaldehyde Resin on the Formaldehyde Emission from MDF

Authors: Sezen Gurdag, Ayse Ebru Akin

Abstract:

There is a growing concern all over the world on the health effect of the formaldehyde emission coming from the adhesive used in the MDF production. In this research, we investigated the effect of nanoparticle addition such as nanoclay and halloysite into urea-formadehyde resin on the total emitted formaldehyde from MDF plates produced using the resin modified as such. First, the curing behavior of the resin was studied by monitoring the pH, curing time, solid content, density and viscosity of the modified resin in comparison to the reference resin with no added nanoparticle. The dosing of the nanoparticle in the dry resin was kept at 1wt%, 3wt% or 5wt%. Consecutively, the resin was used in the production of 50X50 cm MDF samples using laboratory scale press line with full automation system. Modulus of elasticity, bending strength, internal bonding strength, water absorption were also measured in addition to the main interested parameter formaldehyde emission levels which is determined via spectrometric technique following an extraction procedure. Threshold values for nanoparticle dosing levels were determined to be 5wt% for both nanoparticles. However, the reinforcing behavior was observed to be occurring at different levels in comparison to the reference plates with each nanoparticle such that the level of reinforcement with nanoclay was shown to be more favorable than the addition of halloysite due to higher surface area available with the former. In relation, formaldehyde emission levels were observed to be following a similar trend where addition of 5wt% nanoclay into the urea-formaldehyde adhesive helped decrease the formaldehyde emission up to 40% whereas addition of halloysite at its threshold level demonstrated as the same level, i.e., 5wt%, produced an improvement of 18% only.

Keywords: halloysite, nanoclay, fiberboard, urea-formaldehyde adhesive

Procedia PDF Downloads 159
4751 Determinants of Food Insecurity Among Smallholder Farming Households in Southwest Area of Nigeria

Authors: Adesomoju O. A., E. A. Onemolease, G. O. Igene

Abstract:

The study analyzed the determinants of food insecurity among smallholder farming households in the Southwestern part of Nigeria with Ondo and Osun States in focus. Multi-stage sampling procedures were employed to gather data from 389 farming households (194 from Ondo State and 195 from Osun State) spread across 4 agricultural zones, 8 local governments, and 24 communities. The data was analyzed using descriptive statistics, Ordinal regression, and Friedman test. Results revealed the average age of the respondents was 47 years with majority being male 63.75% and married 82.26% and having an household size of 6. Most household heads were educated (94.09%), engaged in farming for about 19 years, and do not belong to cooperatives (73.26%). Respondents derived income from both farming and non-farm activities with the average farm income being N216,066.8/annum and non-farm income being about N360,000/annum. Multiple technologies were adopted by respondents such as application of herbicides (77.63%), pesticides (73.26%) and fertilizers (66.58%). Using the FANTA Cornel model, food insecurity was prevalent in the study area with the majority (61.44%) of the households being severely food insecure, and 35.73% being moderately food insecure. In comparison, 1.80% and 1.03% were food-secured and mildly food insecure. The most significant constraints to food security among the farming households were the inability to access credit (mean rank = 8.78), poor storage infrastructure (8.57), inadequate capital (8.56), and high cost of farm chemicals (8.35). Significant factors related to food insecurity among the farming households were age (b = -0.059), education (b = -0.376), family size (b = 0.197), adoption of technology (b = -0.198), farm income (b = -0.335), association membership (b = -0.999), engagement in non-farm activities (b = -1.538), and access to credit (b = -0.853). Linking farmers' groups to credit institutions and input suppliers was proposed.

Keywords: food insecurity, FANTA Cornel, Ondo, Osun, Nigeria, Southwest, Livelihood

Procedia PDF Downloads 30
4750 Load Transfer of Steel Pipe Piles in Warming Permafrost

Authors: S. Amirhossein Tabatabaei, Abdulghader A. Aldaeef, Mohammad T. Rayhani

Abstract:

As the permafrost continues to melt in the northern regions due to global warming, a soil-water mixture is left behind with drastically lower strength; a phenomenon that directly impacts the resilience of existing structures and infrastructure systems. The frozen soil-structure interaction, which in ice-poor soils is controlled by both interface shear and ice-bonding, changes its nature into a sole frictional state. Adfreeze, the controlling mechanism in frozen soil-structure interaction, diminishes as the ground temperature approaches zero. The main purpose of this paper is to capture the altered behaviour of frozen interface with respect to rising temperature, especially near melting states. A series of pull-out tests are conducted on model piles inside a cold room to study how the strength parameters are influenced by the phase change in ice-poor soils. Steel model piles, embedded in artificially frozen cohesionless soil, are subjected to both sustained pull-out forces and constant rates of displacement to observe the creep behaviour and acquire load-deformation curves, respectively. Temperature, as the main variable of interest, is increased from a lower limit of -10°C up to the point of melting. During different stages of the temperature rise, both skin deformations and temperatures are recorded at various depths along the pile shaft. Significant reduction of pullout capacity and accelerated creep behaviour is found to be the primary consequences of rising temperature. By investigating the different pull-out capacities and deformations measured during step-wise temperature change, characteristics of the transition from frozen to unfrozen soil-structure interaction are studied.

Keywords: Adfreeze, frozen soil-structure interface, ice-poor soils, pull-out capacity, warming permafrost

Procedia PDF Downloads 111
4749 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification

Authors: Cemil Turan, Mohammad Shukri Salman

Abstract:

The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.

Keywords: adaptive filtering, sparse system identification, TD-LMS algorithm, VSSLMS algorithm

Procedia PDF Downloads 360
4748 The Customization of 3D Last Form Design Based on Weighted Blending

Authors: Shih-Wen Hsiao, Chu-Hsuan Lee, Rong-Qi Chen

Abstract:

When it comes to last, it is regarded as the critical foundation of shoe design and development. Not only the last relates to the comfort of shoes wearing but also it aids the production of shoe styling and manufacturing. In order to enhance the efficiency and application of last development, a computer aided methodology for customized last form designs is proposed in this study. The reverse engineering is mainly applied to the process of scanning for the last form. Then the minimum energy is used for the revision of surface continuity, the surface of the last is reconstructed with the feature curves of the scanned last. When the surface of a last is reconstructed, based on the foundation of the proposed last form reconstruction module, the weighted arithmetic mean method is applied to the calculation on the shape morphing which differs from the grading for the control mesh of last, and the algorithm of subdivision is used to create the surface of last mesh, thus the feet-fitting 3D last form of different sizes is generated from its original form feature with functions remained. Finally, the practicability of the proposed methodology is verified through later case studies.

Keywords: 3D last design, customization, reverse engineering, weighted morphing, shape blending

Procedia PDF Downloads 340
4747 Pricing Strategy in Marketing: Balancing Value and Profitability

Authors: Mohsen Akhlaghi, Tahereh Ebrahimi

Abstract:

Pricing strategy is a vital component in achieving the balance between customer value and business profitability. The aim of this study is to provide insights into the factors, techniques, and approaches involved in pricing decisions. The study utilizes a descriptive approach to discuss various aspects of pricing strategy in marketing, drawing on concepts from market research, consumer psychology, competitive analysis, and adaptability. This approach presents a comprehensive view of pricing decisions. The result of this exploration is a framework that highlights key factors influencing pricing decisions. The study examines how factors such as market positioning, product differentiation, and brand image shape pricing strategies. Additionally, it emphasizes the role of consumer psychology in understanding price elasticity, perceived value, and price-quality associations that influence consumer behavior. Various pricing techniques, including charm pricing, prestige pricing, and bundle pricing, are mentioned as methods to enhance sales by influencing consumer perceptions. The study also underscores the importance of adaptability in responding to market dynamics through regular price monitoring, dynamic pricing, and promotional strategies. It recognizes the role of digital platforms in enabling personalized pricing and dynamic pricing models. In conclusion, the study emphasizes that effective pricing strategies strike a balance between customer value and business profitability, ultimately driving sales, enhancing brand perception, and fostering lasting customer relationships.

Keywords: business, customer benefits, marketing, pricing

Procedia PDF Downloads 79
4746 Optimization of Organic Rankine Cycle System for Waste Heat Recovery from Excavator

Authors: Young Min Kim, Dong Gil Shin, Assmelash Assefa Negash

Abstract:

This study describes the application of a single loop organic Rankine cycle (ORC) for recovering waste heat from an excavator. In the case of waste heat recovery of the excavator, the heat of hydraulic oil can be used in the ORC system together with the other waste heat sources including the exhaust gas and engine coolant. The performances of four different cases of single loop ORC systems were studied at the main operating condition, and critical design factors are studied to get the maximum power output from the given waste heat sources. The energy and exergy analysis of the cycles are performed concerning the available heat source to determine the best fluid and system configuration. The analysis demonstrates that the ORC in the excavator increases 14% of the net power output at the main operating condition with a simpler system configuration at a lower expander inlet temperature than in a conventional vehicle engine without the heat of the hydraulic oil.

Keywords: engine, excavator, hydraulic oil, organic Rankine cycle (ORC), waste heat recovery

Procedia PDF Downloads 306
4745 Crop Recommendation System Using Machine Learning

Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar

Abstract:

With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.

Keywords: crop recommendation, precision agriculture, crop, machine learning

Procedia PDF Downloads 16
4744 Logistics Model for Improving Quality in Railway Transport

Authors: Eva Nedeliakova, Juraj Camaj, Jaroslav Masek

Abstract:

This contribution is focused on the methodology for identifying levels of quality and improving quality through new logistics model in railway transport. It is oriented on the application of dynamic quality models, which represent an innovative method of evaluation quality services. Through this conception, time factor, expected, and perceived quality in each moment of the transportation process within logistics chain can be taken into account. Various models describe the improvement of the quality which emphases the time factor throughout the whole transportation logistics chain. Quality of services in railway transport can be determined by the existing level of service quality, by detecting the causes of dissatisfaction employees but also customers, to uncover strengths and weaknesses. This new logistics model is able to recognize critical processes in logistic chain. It includes service quality rating that must respect its specific properties, which are unrepeatability, impalpability, their use right at the time they are provided and particularly changeability, which is significant factor in the conditions of rail transport as well. These peculiarities influence the quality of service regarding the constantly increasing requirements and that result in new ways of finding progressive attitudes towards the service quality rating.

Keywords: logistics model, quality, railway transport

Procedia PDF Downloads 570
4743 Towards Printed Green Time-Temperature Indicator

Authors: Mariia Zhuldybina, Ahmed Moulay, Mirko Torres, Mike Rozel, Ngoc-Duc Trinh, Chloé Bois

Abstract:

To reduce the global waste of perishable goods, a solution for monitoring and traceability of their environmental conditions is needed. Temperature is the most controllable environmental parameter determining the kinetics of physical, chemical, and microbial spoilage in food products. To store the time-temperature information, time-temperature indicator (TTI) is a promising solution. Printed electronics (PE) has shown a great potential to produce customized electronic devices using flexible substrates and inks with different functionalities. We propose to fabricate a hybrid printed TTI using environmentally friendly materials. The real-time TTI profile can be stored and transmitted to the smartphone via Near Field Communication (NFC). To ensure environmental performance, Canadian Green Electronics NSERC Network is developing green materials for the ink formulation with different functionalities. In terms of substrate, paper-based electronics has gained the great interest for utilization in a wide area of electronic systems because of their low costs in setup and methodology, as well as their eco-friendly fabrication technologies. The main objective is to deliver a prototype of TTI using small-scale printed techniques under typical printing conditions. All sub-components of the smart labels, including a memristor, a battery, an antenna compatible with NFC protocol, and a circuit compatible with integration performed by an offsite supplier will be fully printed with flexography or flat-bed screen printing.

Keywords: NFC, printed electronics, time-temperature indicator, hybrid electronics

Procedia PDF Downloads 163
4742 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices

Authors: Mst Ilme Faridatul, Bo Wu

Abstract:

Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.

Keywords: land cover, mapping, multi-temporal, spectral indices

Procedia PDF Downloads 153
4741 A Concept Analysis of Self-Efficacy for Cancer Pain Management

Authors: Yi-Fung Lin, Yuan-Mei Liao

Abstract:

Background: Pain is common among patients with cancer and is also one of the most disturbing symptoms. As this suffering is subjective, if patients proactively participate in their pain self-management, pain could be alleviated effectively. However, not everyone can carry out self-management very well because human behavior is a product of the cognition process. In this process, we can see that "self-efficacy" plays an essential role in affecting human behaviors. Methods: We used the eight steps of concept analysis proposed by Walker and Avant to clarify the concept of “self-efficacy for cancer pain management.” A comprehensive literature review was conducted for relevant publications that were published during the period of 1977 to 2021. We used several keywords, including self-efficacy, self-management, concept analysis, conceptual framework, and cancer pain, to search the following databases: PubMed, CINAHL, Web of Science, and Embase. Results: We identified three defining attributes for the concept of self-efficacy for cancer pain management, including pain management abilities, confidence, and continuous pain monitoring, and recognized six skills related to pain management abilities: problem-solving, decision-making, resource utilization, forming partnerships between medical professionals and patients, planning actions, and self-regulation. Five antecedents for the concept of self-efficacy for cancer pain management were identified: pain experience, existing cancer pain, pain-related knowledge, a belief in pain management, and physical/mental state. Consequences related to self-efficacy for cancer pain management were achievement of pain self-management, well pain control, satisfying quality of life, and containing motivation. Conclusions: This analysis provides researchers with a clearer understanding of the concept of “self-efficacy for cancer pain management.” The findings presented here provide a foundation for future research and nursing interventions to enhance self-efficacy for cancer pain management.

Keywords: cancer pain, concept analysis, self-efficacy, self-management

Procedia PDF Downloads 70