Search results for: shear steel structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6454

Search results for: shear steel structures

1354 An Analytical Systematic Design Approach to Evaluate Ballistic Performance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing

Authors: Lahari Ramya Pa, Sudhakar Ib, Madhu Vc, Madhusudhan Reddy Gd, Srinivasa Rao E.

Abstract:

Selection of suitable armor materials for defense applications is very crucial with respect to increasing mobility of the systems as well as maintaining safety. Therefore, determining the material with the lowest possible areal density that resists the predefined threat successfully is required in armor design studies. A number of light metal and alloys are come in to forefront especially to substitute the armour grade steels. AA5083 aluminium alloy which fit in to the military standards imposed by USA army is foremost nonferrous alloy to consider for possible replacement of steel to increase the mobility of armour vehicles and enhance fuel economy. Growing need of AA5083 aluminium alloy paves a way to develop supplement aluminium alloys maintaining the military standards. It has been witnessed that AA 2xxx aluminium alloy, AA6xxx aluminium alloy and AA7xxx aluminium alloy are the potential material to supplement AA5083 aluminium alloy. Among those cited aluminium series alloys AA7xxx aluminium alloy (heat treatable) possesses high strength and can compete with armour grade steels. Earlier investigations revealed that layering of AA7xxx aluminium alloy can prevent spalling of rear portion of armour during ballistic impacts. Hence, present investigation deals with fabrication of hard layer (made of boron carbide) i.e. layer on AA 7075 aluminium alloy using friction stir processing with an intention of blunting the projectile in the initial impact and backing tough portion(AA7xxx aluminium alloy) to dissipate residual kinetic energy. An analytical approach has been adopted to unfold the ballistic performance of projectile. Penetration of projectile inside the armour has been resolved by considering by strain energy model analysis. Perforation shearing areas i.e. interface of projectile and armour is taken in to account for evaluation of penetration inside the armour. Fabricated surface composites (targets) were tested as per the military standard (JIS.0108.01) in a ballistic testing tunnel at Defence Metallurgical Research Laboratory (DMRL), Hyderabad in standardized testing conditions. Analytical results were well validated with experimental obtained one.

Keywords: AA7075 aluminium alloy, friction stir processing, boron carbide, ballistic performance, target

Procedia PDF Downloads 330
1353 Dem Based Surface Deformation in Jhelum Valley: Insights from River Profile Analysis

Authors: Syed Amer Mahmood, Rao Mansor Ali Khan

Abstract:

This study deals with the remote sensing analysis of tectonic deformation and its implications to understand the regional uplift conditions in the lower Jhelum and eastern Potwar. Identification and mapping of active structures is an important issue in order to assess seismic hazards and to understand the Quaternary deformation of the region. Digital elevation models (DEMs) provide an opportunity to quantify land surface geometry in terms of elevation and its derivatives. Tectonic movement along the faults is often reflected by characteristic geomorphological features such as elevation, stream offsets, slope breaks and the contributing drainage area. The river profile analysis in this region using SRTM digital elevation model gives information about the tectonic influence on the local drainage network. The steepness and concavity indices have been calculated by power law of scaling relations under steady state conditions. An uplift rate map is prepared after carefully analysing the local drainage network showing uplift rates in mm/year. The active faults in the region control local drainages and the deflection of stream channels is a further evidence of the recent fault activity. The results show variable relative uplift conditions along MBT and Riasi and represent a wonderful example of the recency of uplift, as well as the influence of active tectonics on the evolution of young orogens.

Keywords: quaternary deformation, SRTM DEM, geomorphometric indices, active tectonics and MBT

Procedia PDF Downloads 348
1352 Contemporary Vision of Islamic Motifs in Decorating Products

Authors: Shuruq Ghazi Nahhas

Abstract:

Islamic art is a decorative art that depends on repeating motifs in various shapes to cover different surfaces. Each motif has its own characteristics and style that may reflect different Islamic periods, such as Umayyad, Abbasid, Fatimid, Seljuk, Nasrid, Ottoman, and Safavid. These periods were the most powerful periods which played an important role in developing the Islamic motifs. Most of these motifs of the Islamic heritage were not used in new applications. This research focused on reviving the vegetal Islamic motifs found on Islamic heritage and redesign them in a new format to decorate various products, including scarfs, cushions, coasters, wallpaper, wall art, and boxes. The scarf is chosen as one element of these decorative products because it is used as accessories to add aesthetic value to fashion. A descriptive-analytical method is used for this research. The process started with extracting and analyzing the original motifs. Then, creating the new motifs by simplifying, deleting, or adding elements based on the original structure. Then, creating repeated patterns and applying them to decorative products. The findings of this research indicated: repeating patterns based on different structures creates unlimited patterns. Also, changing the elements of the motifs of a pattern adds new characteristics to the pattern. Also, creating frames using elements from the repeated motifs adds aesthetic and contemporary value to decorative products. Finally, using various methods of combining colors creates unlimited variations of each pattern. At the end, reviving the Islamic motifs in contemporary vision enriches decorative products with aesthetic, artistic, and historical values of different Islamic periods. This makes the decorative products valuable that adds uniqueness to their surroundings.

Keywords: Islamic motifs, contemporary patterns, scarfs, decorative products

Procedia PDF Downloads 160
1351 Evaluation of Security and Performance of Master Node Protocol in the Bitcoin Peer-To-Peer Network

Authors: Muntadher Sallal, Gareth Owenson, Mo Adda, Safa Shubbar

Abstract:

Bitcoin is a digital currency based on a peer-to-peer network to propagate and verify transactions. Bitcoin is gaining wider adoption than any previous crypto-currency. However, the mechanism of peers randomly choosing logical neighbors without any knowledge about underlying physical topology can cause a delay overhead in information propagation, which makes the system vulnerable to double-spend attacks. Aiming at alleviating the propagation delay problem, this paper introduces proximity-aware extensions to the current Bitcoin protocol, named Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocol, that are based on how clusters are formulated and how nodes can define their membership, is to improve the information propagation delay in the Bitcoin network. In MNBC protocol, physical internet connectivity increases, as well as the number of hops between nodes, decreases through assigning nodes to be responsible for maintaining clusters based on physical internet proximity. We show, through simulations, that the proposed protocol defines better clustering structures that optimize the performance of the transaction propagation over the Bitcoin protocol. The evaluation of partition attacks in the MNBC protocol, as well as the Bitcoin network, was done in this paper. Evaluation results prove that even though the Bitcoin network is more resistant against the partitioning attack than the MNBC protocol, more resources are needed to be spent to split the network in the MNBC protocol, especially with a higher number of nodes.

Keywords: Bitcoin network, propagation delay, clustering, scalability

Procedia PDF Downloads 116
1350 Biomimetic Architecture from the Inspiration by Nature to the Innovation of the Saharan Architecture

Authors: Yassine Mohammed Benyoucef, Razin Andery Dionisovich

Abstract:

Biomimicry is an old approach, but in the scientific conceptualization is new, as an approach of innovation based on the emulation of Nature, in recent years, this approach brings many potential theories and innovations in the architecture field. Indeed, these innovations have changed our view towards other Natural organisms also to the design processes in architecture, now the use of the biomimicry approach allows the application of a great sustainable development. The Sahara area is heading towards a sustainable policy with the desire to develop this rich context in terms of architecture, because of the rapid evolution of the architectural and urban concepts and the technology acceleration in one side, and under the pressure of the architectural crisis and the accelerated urbanization in the Saharan cities on the other side, the imperatives of sustainable development, ecology, climate adaptation, energy needs, are strongly imposed. Besides that, the new architectural and urban projects in the Saharan cities are not reliable in terms of energy efficiency and design and relationship with the environment. This article discusses the using of biomimetic strategy in the sustainable development of Saharan architecture. The aim of the article is to present a synthesis of biomimicry approach and propose the biomimicry as a solution for the development of Saharan architecture which can use this approach as a sustainable and innovation strategy. The biomimicry is the solution for effective strategies of development and can have a great potential point to meet the current challenges of designing efficient for forms or structures, energy efficiency, and climate issues. Moreover, the Sahara can be a favorable soil for great changes, the use of this approach is the key for the most optimal strategies and sustainable development of the Saharan architecture.

Keywords: biomimicry, Sahara, architecture, nature, innovation, technology

Procedia PDF Downloads 194
1349 Modelling Conceptual Quantities Using Support Vector Machines

Authors: Ka C. Lam, Oluwafunmibi S. Idowu

Abstract:

Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.

Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression

Procedia PDF Downloads 206
1348 Optimizing the Morphology and Flow Patterns of Scaffold Perfusion Systems for Effective Cell Deposition Using Computational Fluid Dynamics

Authors: Vineeth Siripuram, Abhineet Nigam

Abstract:

A bioreactor is an engineered system that supports a biologically active environment. Along the years, the advancements in bioreactors have been widely accepted all over the world for varied applications ranging from sewage treatment to tissue cloning. Driven by tissue and organ shortage, tissue engineering has emerged as an alternative to transplantation for the reconstruction of lost or damaged organs. In this study, Computational fluid dynamics (CFD) has been used to model porous medium flow in scaffolds (taken from the literature) with different flow patterns. A detailed analysis of different scaffold geometries and their influence on cell deposition in the perfusion system is been carried out using Computational fluid dynamics (CFD). Considering the fact that, the scaffold should mimic the organs or tissues structures in a three-dimensional manner, certain assumptions were made accordingly. The research on scaffolds has been extensively carried out in different bioreactors. However, there has been less focus on the morphology of the scaffolds and the flow patterns in which the perfusion system is laid upon. The objective of this paper is to employ a computational approach using CFD simulation to determine the optimal morphology and the anisotropic measurements of the various samples of scaffolds. Using predictive computational modelling approach, variables which exert dominant effects on the cell deposition within the scaffold were prioritised and corresponding changes in morphology of scaffold and flow patterns in the perfusion systems are made. A Eulerian approach was carried on in multiple CFD simulations, and it is observed that the morphological and topological changes in the scaffold perfusion system are of great importance in the commercial applications of scaffolds.

Keywords: cell seeding, CFD, flow patterns, modelling, perfusion systems, scaffold

Procedia PDF Downloads 161
1347 Iterative Method for Lung Tumor Localization in 4D CT

Authors: Sarah K. Hagi, Majdi Alnowaimi

Abstract:

In the last decade, there were immense advancements in the medical imaging modalities. These advancements can scan a whole volume of the lung organ in high resolution images within a short time. According to this performance, the physicians can clearly identify the complicated anatomical and pathological structures of lung. Therefore, these advancements give large opportunities for more advance of all types of lung cancer treatment available and will increase the survival rate. However, lung cancer is still one of the major causes of death with around 19% of all the cancer patients. Several factors may affect survival rate. One of the serious effects is the breathing process, which can affect the accuracy of diagnosis and lung tumor treatment plan. We have therefore developed a semi automated algorithm to localize the 3D lung tumor positions across all respiratory data during respiratory motion. The algorithm can be divided into two stages. First, a lung tumor segmentation for the first phase of the 4D computed tomography (CT). Lung tumor segmentation is performed using an active contours method. Then, localize the tumor 3D position across all next phases using a 12 degrees of freedom of an affine transformation. Two data set where used in this study, a compute simulate for 4D CT using extended cardiac-torso (XCAT) phantom and 4D CT clinical data sets. The result and error calculation is presented as root mean square error (RMSE). The average error in data sets is 0.94 mm ± 0.36. Finally, evaluation and quantitative comparison of the results with a state-of-the-art registration algorithm was introduced. The results obtained from the proposed localization algorithm show a promising result to localize alung tumor in 4D CT data.

Keywords: automated algorithm , computed tomography, lung tumor, tumor localization

Procedia PDF Downloads 602
1346 Finite Element Study of Coke Shape Deep Beam to Column Moment Connection Subjected to Cyclic Loading

Authors: Robel Wondimu Alemayehu, Sihwa Jung, Manwoo Park, Young K. Ju

Abstract:

Following the aftermath of the 1994 Northridge earthquake, intensive research on beam to column connections is conducted, leading to the current design basis. The current design codes require the use of either a prequalified connection or a connection that passes the requirements of large-scale cyclic qualification test prior to use in intermediate or special moment frames. The second alternative is expensive both in terms of money and time. On the other hand, the maximum beam depth in most of the prequalified connections is limited to 900mm due to the reduced rotation capacity of deeper beams. However, for long span beams the need to use deeper beams may arise. In this study, a beam to column connection detail suitable for deep beams is presented. The connection detail comprises of thicker-tapered beam flange adjacent to the beam to column connection. Within the thicker-tapered flange region, two reduced beam sections are provided with the objective of forming two plastic hinges within the tapered-thicker flange region. In addition, the length, width, and thickness of the tapered-thicker flange region are proportioned in such a way that a third plastic hinge forms at the end of the tapered-thicker flange region. As a result, the total rotation demand is distributed over three plastic zones. Making it suitable for deeper beams that have lower rotation capacity at one plastic hinge. The effectiveness of this connection detail is studied through finite element analysis. For the study, a beam that has a depth of 1200mm is used. Additionally, comparison with welded unreinforced flange-welded web (WUF-W) moment connection and reduced beam section moment connection is made. The results show that the rotation capacity of a WUF-W moment connection is increased from 2.0% to 2.2% by applying the proposed moment connection detail. Furthermore, the maximum moment capacity, energy dissipation capacity and stiffness of the WUF-W moment connection is increased up to 58%, 49%, and 32% respectively. In contrast, applying the reduced beam section detail to the same WUF-W moment connection reduced the rotation capacity from 2.0% to 1.50% plus the maximum moment capacity and stiffness of the connection is reduced by 22% and 6% respectively. The proposed connection develops three plastic hinge regions as intended and it shows improved performance compared to both WUF-W moment connection and reduced beam section moment connection. Moreover, the achieved rotation capacity satisfies the minimum required for use in intermediate moment frames.

Keywords: connections, finite element analysis, seismic design, steel intermediate moment frame

Procedia PDF Downloads 166
1345 Students' Errors in Translating Algebra Word Problems to Mathematical Structure

Authors: Ledeza Jordan Babiano

Abstract:

Translating statements into mathematical notations is one of the processes in word problem-solving. However, based on the literature, students still have difficulties with this skill. The purpose of this study was to investigate the translation errors of the students when they translate algebraic word problems into mathematical structures and locate the errors via the lens of the Translation-Verification Model. Moreover, this qualitative research study employed content analysis. During the data-gathering process, the students were asked to answer a six-item algebra word problem questionnaire, and their answers were analyzed by experts through blind coding using the Translation-Verification Model to determine their translation errors. After this, a focus group discussion was conducted, and the data gathered was analyzed through thematic analysis to determine the causes of the students’ translation errors. It was found out that students’ prevalent error in translation was the interpretation error, which was situated in the Attribute construct. The emerging themes during the FGD were: (1) The procedure of translation is strategically incorrect; (2) Lack of comprehension; (3) Algebra concepts related to difficulty; (4) Lack of spatial skills; (5) Unprepared for independent learning; and (6) The content of the problem is developmentally inappropriate. These themes boiled down to the major concept of independent learning preparedness in solving mathematical problems. This concept has subcomponents, which include contextual and conceptual factors in translation. Consequently, the results provided implications for instructors and professors in Mathematics to innovate their teaching pedagogies and strategies to address translation gaps among students.

Keywords: mathematical structure, algebra word problems, translation, errors

Procedia PDF Downloads 49
1344 Theoretical Modal Analysis of Freely and Simply Supported RC Slabs

Authors: M. S. Ahmed, F. A. Mohammad

Abstract:

This paper focuses on the dynamic behavior of reinforced concrete (RC) slabs. Therefore, the theoretical modal analysis was performed using two different types of boundary conditions. Modal analysis method is the most important dynamic analyses. The analysis would be modal case when there is no external force on the structure. By using this method in this paper, the effects of freely and simply supported boundary conditions on the frequencies and mode shapes of RC square slabs are studied. ANSYS software was employed to derive the finite element model to determine the natural frequencies and mode shapes of the slabs. Then, the obtained results through numerical analysis (finite element analysis) would be compared with an exact solution. The main goal of the research study is to predict how the boundary conditions change the behavior of the slab structures prior to performing experimental modal analysis. Based on the results, it is concluded that simply support boundary condition has obvious influence to increase the natural frequencies and change the shape of mode when it is compared with freely supported boundary condition of slabs. This means that such support conditions have direct influence on the dynamic behavior of the slabs. Thus, it is suggested to use free-free boundary condition in experimental modal analysis to precisely reflect the properties of the structure. By using free-free boundary conditions, the influence of poorly defined supports is interrupted.

Keywords: natural frequencies, mode shapes, modal analysis, ANSYS software, RC slabs

Procedia PDF Downloads 457
1343 Nation Branding: Guidelines for Identity Development and Image Perception of Thailand Brand in Health and Wellness Tourism

Authors: Jiraporn Prommaha

Abstract:

The purpose of this research is to study the development of Thailand Brand Identity and the perception of its image in order to find any guidelines for the identity development and the image perception of Thailand Brand in Health and Wellness Tourism. The paper is conducted through mixed methods research, both the qualitative and quantitative researches. The qualitative focuses on the in-depth interview of executive administrations from public and private sectors involved scholars and experts in identity and image issue, main 11 people. The quantitative research was done by the questionnaires to collect data from foreign tourists 800; Chinese tourists 400 and UK tourists 400. The technique used for this was the Exploratory Factor Analysis (EFA), this was to determine the relation between the structures of the variables by categorizing the variables into group by applying the Varimax rotation technique. This technique showed recognition the Thailand brand image related to the 2 countries, China and UK. The results found that guidelines for brand identity development and image perception of health and wellness tourism in Thailand; as following (1) Develop communication in order to understanding of the meaning of the word 'Health and beauty tourism' throughout the country, (2) Develop human resources as a national agenda, (3) Develop awareness rising in the conservation and preservation of natural resources of the country, (4) Develop the cooperation of all stakeholders in Health and Wellness Businesses, (5) Develop digital communication throughout the country and (6) Develop safety in Tourism.

Keywords: brand identity, image perception, nation branding, health and wellness tourism, mixed methods research

Procedia PDF Downloads 200
1342 A Molecular Modelling Approach for Identification of Lead Compound from Rhizomes of Glycosmis Pentaphylla for Skin Cancer Treatment

Authors: Rahul Shrivastava, Manish Tripathi, Mohmmad Yasir, Shailesh Singh

Abstract:

Life style changes and depletion in atmospheric ozone layer in recent decades lead to increase in skin cancer including both melanoma and nonmelanomas. Natural products which were obtained from different plant species have the potential of anti skin cancer activity. In regard of this, present study focuses the potential effect of Glycosmis pentaphylla against anti skin cancer activity. Different Phytochemical constituents which were present in the roots of Glycosmis pentaphylla were identified and were used as ligands after sketching of their structures with the help of ACD/Chemsketch. These ligands are screened for their anticancer potential with proteins which are involved in skin cancer effects with the help of pyrx software. After performing docking studies, results reveal that Noracronycine secondary metabolite of Glycosmis pentaphylla shows strong affinity of their binding energy with Ribosomal S6 Kinase 2 (2QR8) protein. Ribosomal S6 Kinase 2 (2QR8) has an important role in the cell proliferation and transformation mediated through by N-terminal kinase domain and was induced by the tumour promoters such as epidermal growth factor. It also plays a key role in the neoplastic transformation of human skin cells and in skin cancer growth. Noracronycine interact with THR-493 and MET-496 residue of Ribosomal S6 Kinase 2 protein with binding energy ΔG = -8.68 kcal/mole. Thus on the basis of this study we can say that Noracronycine which present in roots of Glycosmis pentaphylla can be used as lead compound against skin cancer.

Keywords: glycosmis pentaphylla, pyrx, ribosomal s6 kinase, skin cancer

Procedia PDF Downloads 303
1341 An Analysis on Community Based Heritage Tourism: A Resource for a Small Community in Rural County Clare, Ireland

Authors: Marie Taylor, Catriona Murphy

Abstract:

The aim of this paper is to identify the factors of success in community based heritage tourism initiatives. Heritage and community are central to many tourism initiatives with heritage tourism having the potential to act as a catalyst for community development. This paper presents the findings of research that examined the relationship between heritage tourism and community development. The findings recognised that heritage tourism had economic, social and cultural benefits for a community as well as a role in strengthening concepts such as sense of identity, place, and authenticity. In addition, this paper proposes an assessment framework for sustainable community based heritage tourism to identify factors and contextual influences involved in their success or failure. In evaluating the sustainability of such initiatives, a number of issues are investigated including the continued role of stakeholders, the role of funding, the influence of collaboration and the changing role of rural development and its impact on community engagement. The research is descriptive, evaluative and explanatory research, exploring and analysing issues such as the development of community structures in community based heritage tourism. Thus, it will contribute to the development of potential tourism and community development policies and strategies at a local, national and international level. An interpretative and inductive approach is utilised, and a mixed method approach followed as it encapsulates the best of quantitative and qualitative research methods. The case studies focus on social enterprises in relation to tourism and community based tourism cooperatives as there are limited study and knowledge of these. Consequently, this research will contribute to the discourse on community based heritage tourism as an aspect of community development.

Keywords: collaboration, community-based heritage tourism, stakeholders, sustainable tourism

Procedia PDF Downloads 347
1340 De/Reconstructing the Notion of Women as Perpetrators of Terrorism: The Case of Boko Haram

Authors: Damilohun D. Ayoyo, Anthony Mpiani, Temitope B. Oriola

Abstract:

The debate on women’s roles in insurgencies and terrorist organizations continues to garner scholarly attention. While some scholars view women insurgents and terrorists as perpetrators, others have argued that they are non-agents and victims. This paper de/reconstructs the notion of ‘women as perpetrators’ of terrorism. Drawing on the narratives of rescued female Boko Haram operatives, and Boko Haram’s tactics for recruiting and deploying women and girls, the paper advances three main arguments. First, the growing social construction of women as perpetrators of terrorism – particularly radical Islamic terrorism – downplays the socio-cultural and structural processes leading to women’s involvement with terrorist organizations. Second, women agency in Boko Haram activities is better understood when grounded in the cultural and structural contexts of Northern Nigeria, Boko Haram’s construction of ‘female,’ and the experiences of female Boko Haram operatives. Third, the mechanisms through which female Boko Haram operatives are recruited and deployed make them more of non-agents and victims than perpetrators of terrorism. The paper draws on the agency-structure approach and argues that the gendered power asymmetries embedded in the cultures and structures of Northern Nigeria –the base of Boko Haram– contribute to the nature and dynamics of women’s involvement in the insurgency. Although the paper does not negate the agency of women in terrorism, it aligns with the studies that consider women insurgents as more victims than perpetrators of terror.

Keywords: Boko Haram, female agency, Northern Nigeria, patriarchy, perpetrator of terror, radical Islamic terrorism, sharia, victim of terror, women insurgents

Procedia PDF Downloads 122
1339 The Functional Rehabilitation of Peri-Implant Tissue Defects: A Case Report

Authors: Özgür Öztürk, Cumhur Sipahi, Hande Yeşil

Abstract:

Implant retained restorations commonly consist of a metal-framework veneered with ceramic or composite facings. The increasing and expanding use of indirect resin composites in dentistry is a result of innovations in materials and processing techniques. Of special interest to the implant restorative field is the possibility that composites present significantly lower peak vertical and transverse forces transmitted at the peri-implant level compared to metal-ceramic supra structures in implant-supported restorations. A 43-year-old male patient referred to the department of prosthodontics for an implant retained fixed prosthesis. The clinical and radiographic examination of the patient demonstrated the presence of an implant in the right mandibular first molar tooth region. A considerable amount of marginal bone loss around the implant was detected in radiographic examinations combined with a remarkable peri-implant soft tissue deficiency. To minimize the chewing loads transmitted to the implant-bone interface it was decided to fabricate an indirect composite resin veneered single metal crown over a screw-retained abutment. At the end of the treatment, the functional and aesthetic deficiencies were fully compensated. After a 6 months clinical and radiographic follow-up period the not any additional pathologic invasion was detected in the implant-bone interface and implant retained restoration did not reveal any vehement complication.

Keywords: dental implant, fixed partial dentures, indirect composite resin, peri-implant defects

Procedia PDF Downloads 262
1338 Active Food Packaging Films Based on Functionalized Graphene/Polymer Composites

Authors: Ahmad Ghanem, Mohamad Yasin, Mona Abdel Rehim, Fabrice Gouanve, Eliane Espuche

Abstract:

Biodegradable polymers are of great interest, especially for biomedical and packaging applications. Current research efforts are focused on the development of biopolymers with the purpose of reducing the plastic pollution induced by the widely used in biodegradable polyolefins. The main challenge is focused on the elaboration of biopolymers having properties competitive to those of polyolefins. On the other hand, graphene oxide (GO), a graphene derivative, is characterized by the presence of several functional groups on the surface such as carboxylic, hydroxyl and epoxide. This feature enables modification of GO surface with different modifiers to obtain versatile surface properties and overcome the problem of graphene sheets aggregations during inclusion in a polymer matrix. In this context, poly (butylene succinate) (PBS) as promising biopolyester is modified through blending with different ratios of functionalized (GO) to improve its barrier properties. Modification of GO has been carried out using different hyperbranched polymeric structures in order to increase miscibility of the nanosheets in the hosting polymeric matrix. Films have been prepared from the modified PBS and their mechanical, thermal and gas barrier properties were investigated. The results reveal enhancement in the thermal and mechanical properties beside observed improvement of the barrier properties for the films prepared from the modified PBS. This improvement is related to the strong dependence on tortuosity effects of dispersion, exfoliation levels of fillers into the polymer matrix and interactions between the fillers and the polymer matrix.

Keywords: gas barrier properties, graphene oxide, food packaging, transport properties

Procedia PDF Downloads 235
1337 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material

Authors: S. Boria

Abstract:

In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.

Keywords: composite material, crashworthiness, finite element analysis, optimization

Procedia PDF Downloads 256
1336 Discursive Legitimation Strategies in ISIS’ Online Magazine, Dabiq: A Discourse Historical Approach

Authors: Sahar Rasoulikolamaki

Abstract:

ISIS (also known as DAASH) is an Islamic fundamentalist group that has been known as a global threat to the whole world for their radicalizing approach and application of online platforms as a tool to portray their activities, to disseminate their ideology, and to commit recruiting activities. This study is an attempt to carry out a critical discourse analysis on the argumentative devices by which ISIS legitimizes or delegitimizes positive or negative constructions of social practices in Dabiq. It tries to shed light on how texts in Dabiq as linguistic elements in the micro level of analysis relate to ISIS’ ideology as the higher-up macro level and in other words, how local structures contributed to the construction and transference of a global structure or ideology and vice versa. Therefore, following the relevant analytical frameworks, the study focuses on both micro-level of analysis of arguments (topoi) and macro-structure of legitimation and delegitimation in Dabiq. This purpose is nailed using the analytical categories and tools provided by Wodak’s Discourse Historical Approach (DHA) such as argumentation strategies (topoi), by which the coded language of legitimation/delegitimation and persuasion as used in Dabiq are explored. The ensuing findings demonstrate that Dabiq rigorously relies on the positive representation of the in-group course of actions and justifying its violence and, at the same time, the negative representation of the out-group behavior through implementing various topoi to achieve its desired outcome, which is the ideological manipulation and powerful self-depiction, as well as the supporter recruitment.

Keywords: argumentation, discourse-historical approach, ideology, legitimation and delegitimation, topoi

Procedia PDF Downloads 135
1335 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala

Abstract:

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Keywords: artificial neural network, high performance concrete, rebound hammer, strength prediction

Procedia PDF Downloads 155
1334 A Case Study on the Census of Technological Capacities in Health Care in Rural Sanitary Institutions in South Cameroon

Authors: Doriane Micaela Andeme Bikoro, Samuel Fosso Wamba, Jean Robert Kala Kamdjoug

Abstract:

Currently one of the leading fields in the market of technological innovation is digital health. In developed countries, this booming innovation is experiencing an exponential speed. We understand that in developed countries, e-health could also revolutionize the practice of medicine and therefore fill the many failures observed in medical care. Everything leads to believe that future technology is oriented towards the medical sector. The aim of this work is to explore at the same time the technological resources and the potential of health care based on new technologies; it is a case study in a rural area of Southern Cameroon. Among other things, we will make a census of the shortcomings and problems encountered, and we will propose various appropriate solutions. The work methodology used here is essentially qualitative. We used two qualitative data collection techniques, direct observation, and interviews. In fact, we spent two weeks in the field observing and conducting some semi-directive interviews with some of those responsible for these health structures. This study was conducted in three health facilities in the south of the country; including two health centers and a rural hospital. Many technological failures have been identified in the day-to-day management of these health facilities and especially in the administration of health care to patients. We note major problems such as the digital divide, the lack of qualified personnel, the state of isolation of this area. This is why various proposals are made to improve the health sector in Cameroon both technologically and medically.

Keywords: Cameroon, capacities, census, digital health, qualitative method, rural area

Procedia PDF Downloads 144
1333 Discrete Element Simulations of Composite Ceramic Powders

Authors: Julia Cristina Bonaldo, Christophe L. Martin, Severine Romero Baivier, Stephane Mazerat

Abstract:

Alumina refractories are commonly used in steel and foundry industries. These refractories are prepared through a powder metallurgy route. They are a mixture of hard alumina particles and graphite platelets embedded into a soft carbonic matrix (binder). The powder can be cold pressed isostatically or uniaxially, depending on the application. The compact is then fired to obtain the final product. The quality of the product is governed by the microstructure of the composite and by the process parameters. The compaction behavior and the mechanical properties of the fired product depend greatly on the amount of each phase, on their morphology and on the initial microstructure. In order to better understand the link between these parameters and the macroscopic behavior, we use the Discrete Element Method (DEM) to simulate the compaction process and the fracture behavior of the fired composite. These simulations are coupled with well-designed experiments. Four mixes with various amounts of Al₂O₃ and binder were tested both experimentally and numerically. In DEM, each particle is modelled and the interactions between particles are taken into account through appropriate contact or bonding laws. Here, we model a bimodal mixture of large Al₂O₃ and small Al₂O₃ covered with a soft binder. This composite is itself mixed with graphite platelets. X-ray tomography images are used to analyze the morphologies of the different components. Large Al₂O₃ particles and graphite platelets are modelled in DEM as sets of particles bonded together. The binder is modelled as a soft shell that covers both large and small Al₂O₃ particles. When two particles with binder indent each other, they first interact through this soft shell. Once a critical indentation is reached (towards the end of compaction), hard Al₂O₃ - Al₂O₃ contacts appear. In accordance with experimental data, DEM simulations show that the amount of Al₂O₃ and the amount of binder play a major role for the compaction behavior. The graphite platelets bend and break during the compaction, also contributing to the macroscopic stress. Firing step is modeled in DEM by ascribing bonds to particles which contact each other after compaction. The fracture behavior of the compacted mixture is also simulated and compared with experimental data. Both diametrical tests (Brazilian tests) and triaxial tests are carried out. Again, the link between the amount of Al₂O₃ particles and the fracture behavior is investigated. The methodology described here can be generalized to other particulate materials that are used in the ceramic industry.

Keywords: cold compaction, composites, discrete element method, refractory materials, x-ray tomography

Procedia PDF Downloads 138
1332 Site Analysis’ Importance as a Valid Factor in Building Design

Authors: Mekwa Eme, Anya chukwuma

Abstract:

The act of evaluating a particular site physically and socially in order to create a good design solution that will address the physical and interior environment of the location is known as architectural site analysis. This essay will describe site analysis as a useful design component. According to the introduction and supporting research, site evaluation and analysis are crucial to good design in terms of topography, orientation, site size, accessibility, rainfall, wind direction, and times of sunrise and sunset. Methodology: Both quantitative and qualitative analyses are used in this paper. The primary and secondary types of data collection are as follows. This information was gathered via the case study approach, already published literature, journals, the internet, a local poll, oral interviews, inquiries, and in-person interviews. The purpose of this is to clarify the benefits of site analysis for the design process and its implications for the working or building stage. Results: Each site's criteria are unique in terms of things like soil, plants, trees, accessibility, topography, and security. This will make it easier for the architect and environmentalist to decide on the idea, shape, and supporting structures of the design. It is crucial because before any design work is done, the nature of the target location will be determined through site visits and research. The location, contours, site features, and accessibility are just a few of the topics included in this site study. In order for students and working architects to understand the nature of the site they will be working on, site analysis is a key component of architectural education. The building's orientation, the site's circulation, and the sustainability of the site may all be determined with thorough research of the site's features.

Keywords: analysis, climate, statistics, design

Procedia PDF Downloads 249
1331 Developing a Virtual Reality System to Assist in Anatomy Teaching and Evaluating the Effectiveness of That System

Authors: Tarek Abdelkader, Suresh Selvaraj, Prasad Iyer, Yong Mun Hin, Hajmath Begum, P. Gopalakrishnakone

Abstract:

Nowadays, more and more educational institutes, as well as students, rely on 3D anatomy programs as an important tool that helps students correlate the actual locations of anatomical structures in a 3D dimension. Lately, virtual reality (VR) is gaining more favor from the younger generations due to its higher interactive mode. As a result, using virtual reality as a gamified learning platform for anatomy became the current goal. We present a model where a Virtual Human Anatomy Program (VHAP) was developed to assist with the anatomy learning experience of students. The anatomy module has been built, mostly, from real patient CT scans. Segmentation and surface rendering were used to create the 3D model by direct segmentation of CT scans for each organ individually and exporting that model as a 3D file. After acquiring the 3D files for all needed organs, all the files were introduced into a Virtual Reality environment as a complete body anatomy model. In this ongoing experiment, students from different Allied Health orientations are testing the VHAP. Specifically, the cardiovascular system has been selected as the focus system of study since all of our students finished learning about it in the 1st trimester. The initial results suggest that the VHAP system is adding value to the learning process of our students, encouraging them to get more involved and to ask more questions. Involved students comments show that they are excited about the VHAP system with comments about its interactivity as well as the ability to use it solo as a self-learning aid in combination with the lectures. Some students also experienced minor side effects like dizziness.

Keywords: 3D construction, health sciences, teaching pedagogy, virtual reality

Procedia PDF Downloads 157
1330 Evaluation of Rheological Properties, Anisotropic Shrinkage, and Heterogeneous Densification of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure

Authors: Hamed Yaghoubi, Esmaeil Salahi, Fateme Taati

Abstract:

The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermomechanical characteristics of the material such as relative density, temperature, grain size, and diffusion coefficient and activation energy. The main goal of this research is to acquire a comprehensive understanding of the response of an incompressible viscose ceramic material during liquid phase sintering process such as stress-strain relations, sintering and hydrostatic stress, the prediction of anisotropic shrinkage and heterogeneous densification as a function of sintering time by including the simultaneous influence of gravity field, and frictional force. After raw materials analysis, the standard hard porcelain mixture as a ceramic body was designed and prepared. Three different experimental configurations were designed including midpoint deflection, sinter bending, and free sintering samples. The numerical method for the ceramic specimens during the liquid phase sintering process are implemented in the CREEP user subroutine code in ABAQUS. The numerical-experimental procedure shows the anisotropic behavior, the complete difference in spatial displacement through three directions, the incompressibility for ceramic samples during the sintering process. The anisotropic shrinkage factor has been proposed to investigate the shrinkage anisotropy. It has been shown that the shrinkage along the normal axis of casting sample is about 1.5 times larger than that of casting direction, the gravitational force in pyroplastic deformation intensifies the shrinkage anisotropy more than the free sintering sample. The lowest and greatest equivalent creep strain occurs at the intermediate zone and around the central line of the midpoint distorted sample, respectively. In the sinter bending test sample, the equivalent creep strain approaches to the maximum near the contact area with refractory support. The inhomogeneity in Von-Misses, pressure, and principal stress intensifies the relative density non-uniformity in all samples, except in free sintering one. The symmetrical distribution of stress around the center of free sintering sample, cause to hinder the pyroplastic deformations. Densification results confirmed that the effective bulk viscosity was well-defined with relative density values. The stress analysis confirmed that the sintering stress is more than the hydrostatic stress from start to end of sintering time so, from both theoretically and experimentally point of view, the sintering process occurs completely.

Keywords: anisotropic shrinkage, ceramic material, liquid phase sintering process, rheological properties, numerical-experimental procedure

Procedia PDF Downloads 341
1329 The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management

Authors: Fariba Ebrahimi, Mehdi Ghorbani

Abstract:

Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security.

Keywords: co-management, water management, social network, bridging stakeholder, darbandsar village

Procedia PDF Downloads 308
1328 Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization

Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas Weyh

Abstract:

The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods.

Keywords: battery characterization, SoH estimation, RLS, BEV

Procedia PDF Downloads 149
1327 Influence of Specimen Geometry (10*10*40), (12*12*60) and (5*20*120), on Determination of Toughness of Concrete Measurement of Critical Stress Intensity Factor: A Comparative Study

Authors: M. Benzerara, B. Redjel, B. Kebaili

Abstract:

The cracking of the concrete is a more crucial problem with the development of the complex structures related to technological progress. The projections in the knowledge of the breaking process make it possible today for better prevention of the risk of the fracture. The breaking strength brutal of a quasi-fragile material like the concrete called Toughness is measured by a breaking value of the factor of the intensity of the constraints K1C for which the crack is propagated, it is an intrinsic property of the material. Many studies reported in the literature treating of the concrete were carried out on specimens which are in fact inadequate compared to the intrinsic characteristic to identify. We started from this established fact, in order to compare the evolution of the parameter of toughness K1C measured by calling upon ordinary concrete specimens of three prismatic geometries different (10*10*40) Cm3, (12*12*60) Cm3 & (5*20*120) Cm3 containing from the side notches various depths simulating of the cracks was set up.The notches are carried out using triangular pyramidal plates into manufactured out of sheet coated placed at the center of the specimens at the time of the casting, then withdrawn to leave the trace of a crack. The tests are carried out in 3 points bending test in mode 1 of fracture, by using the techniques of mechanical fracture. The evolution of the parameter of toughness K1C measured with the three geometries specimens gives almost the same results. They are acceptable and return in the beach of the results determined by various researchers (toughness of the ordinary concrete turns to the turn of the 1 MPa √m). These results inform us about the presence of an economy on the level of the geometry specimen (5*20*120) Cm3, therefore, to use plates specimens later if one wants to master the toughness of this material complexes, astonishing but always essential that is the concrete.

Keywords: concrete, fissure, specimen, toughness

Procedia PDF Downloads 298
1326 Synthesis of New Bio-Based Solid Polymer Electrolyte Polyurethane-Liclo4 via Prepolymerization Method: Effect of NCO/OH Ratio on Their Chemical, Thermal Properties and Ionic Conductivity

Authors: C. S. Wong, K. H. Badri, N. Ataollahi, K. P. Law, M. S. Su’ait, N. I. Hassan

Abstract:

Novel bio-based polymer electrolyte was synthesized with LiClO4 as the main source of charge carrier. Initially, polyurethane-LiClO4 polymer electrolytes were synthesized via polymerization method with different NCO/OH ratios and labelled as PU1, PU2, PU3, and PU4. Subsequently, the chemical, thermal properties and ionic conductivity of the films produced were determined. Fourier transform infrared (FTIR) analysis indicates the co-ordination between Li+ ion and polyurethane in PU1 due to the greatest amount of hard segment of polyurethane in PU1 as proven by soxhlet analysis. The structures of polyurethanes were confirmed by 13 nuclear magnetic resonance spectroscopy (13C NMR) and FTIR spectroscopy. Differential scanning calorimetry (DSC) analysis indicates PU 1 has the highest glass transition temperature (Tg) corresponds to the most abundant urethane group which is the hard segment in PU1. Scanning electron microscopy (SEM) of the PU-LiClO4 shows the good miscibility between lithium salt and the polymer. The study found that PU1 possessed the greatest ionic conductivity (1.19 × 10-7 S.cm-1 at 298 K and 5.01 × 10-5 S.cm-1 at 373 K) and the lowest activation energy, Ea (0.32 eV) due to the greatest amount of hard segment formed in PU 1 induces the coordination between lithium ion and oxygen atom of carbonyl group in polyurethane. All the polyurethanes exhibited linear Arrhenius variations indicating ion transport via simple lithium ion hopping in polyurethane. This research proves the NCO content in polyurethane plays an important role in affecting the ionic conductivity of this polymer electrolyte.

Keywords: ionic conductivity, palm kernel oil-based monoester-OH, polyurethane, solid polymer electrolyte

Procedia PDF Downloads 426
1325 Life Cycle Carbon Dioxide Emissions from the Construction Phase of Highway Sector in China

Authors: Yuanyuan Liu, Yuanqing Wang, Di Li

Abstract:

Carbon dioxide (CO2) emissions mitigation from road construction activities is one of the potential pathways to deal with climate change due to its higher use of materials, machinery energy consumption, and high quantity of vehicle and equipment fuels for transportation and on-site construction activities. Aiming to assess the environmental impact of the road infrastructure construction activities and to identify hotspots of emissions sources, this study developed a life-cycle CO2 emissions assessment framework covering three stages of material production, to-site and on-site transportation under the guidance of the principle of LCA ISO14040. Then streamlined inventory analysis on sub-processes of each stage was conducted based on the budget files from cases of highway projects in China. The calculation results were normalized into functional unit represented as ton per km per lane. Then a comparison between the amount of emissions from each stage, and sub-process was made to identify the major contributor in the whole highway lifecycle. In addition, the calculating results were used to be compared with results in other countries for understanding the level of CO2 emissions associated with Chinese road infrastructure in the world. The results showed that materials production stage produces the most of the CO2 emissions (for more than 80%), and the production of cement and steel accounts for large quantities of carbon emissions. Life cycle CO2 emissions of fuel and electric energy associated with to-site and on-site transportation vehicle and equipment are a minor component of total life cycle CO2 emissions from highway project construction activities. Bridges and tunnels are dominant large carbon contributor compared to the road segments. The life cycle CO2 emissions of road segment in highway project in China are slightly higher than the estimation results of highways in European countries and USA, about 1500 ton per km per lane. In particularly, the life cycle CO2 emissions of road pavement in majority cities all over the world are about 500 ton per km per lane. However, there is obvious difference between the cities when the estimation on life cycle CO2 emissions of highway projects included bridge and tunnel. The findings of the study could offer decision makers a more comprehensive reference to understand the contribution of road infrastructure to climate change, especially understand the contribution from road infrastructure construction activities in China. In addition, the identified hotspots of emissions sources provide the insights of how to reduce road carbon emissions for development of sustainable transportation.

Keywords: carbon dioxide emissions, construction activities, highway, life cycle assessment

Procedia PDF Downloads 269