Search results for: sustainable nutrients removal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6672

Search results for: sustainable nutrients removal

6192 Enhanced COVID-19 Pharmaceuticals and Microplastics Removal from Wastewater Using Hybrid Reactor System

Authors: Reda Dzingelevičienė, Vytautas Abromaitis, Nerijus Dzingelevičius, Kęstutis Baranauskis, Saulius Raugelė, Malgorzata Mlynska-Szultka, Sergej Suzdalev, Reza Pashaei, Sajjad Abbasi, Boguslaw Buszewski

Abstract:

A unique hybrid technology was developed for the removal of COVID-19 specific contaminants from wastewater. Reactor testing was performed using model water samples contaminated with COVID-19 pharmaceuticals and microplastics. Different hydraulic retention times, concentrations of pollutants and dissolved ozone were tested. Liquid Chromatography-Mass Spectrometry, solid phase extraction, surface area and porosity, analytical tools were used to monitor the treatment efficiency and remaining sorption capacity of the spent adsorbent. The combination of advanced oxidation and adsorption processes was found to be the most effective, with the highest 90-99% and 89-95% molnupiravir and microplastics contaminants removal efficiency from the model wastewater. The research has received funding from the European Regional Development Fund (project No 13.1.1-LMT-K-718-05-0014) under a grant agreement with the Research Council of Lithuania (LMTLT), and it was funded as part of the European Union’s measure in response to the COVID-19 pandemic.

Keywords: adsorption, hybrid reactor system, pharmaceuticals-microplastics, wastewater

Procedia PDF Downloads 87
6191 Porous Alumina-Carbon Nanotubes Nanocomposite Membranes Processed via Spark Plasma Sintering for Heavy Metal Removal from Contaminated Water

Authors: H. K. Shahzad, M. A. Hussein, F. Patel, N. Al-Aqeeli, T. Laoui

Abstract:

The purpose of the present study was to use the adsorption mechanism with microfiltration synergistically for efficient heavy metal removal from contaminated water. Alumina (Al2O3) is commonly used for ceramic membranes development while recently carbon nanotubes (CNTs) have been considered among the best adsorbent materials for heavy metals. In this work, we combined both of these materials to prepare porous Al2O3-CNTs nanocomposite membranes via Spark Plasma Sintering (SPS) technique. Alumina was used as a base matrix while CNTs were added as filler. The SPS process parameters i.e. applied pressure, temperature, heating rate, and holding time were varied to obtain the best combination of porosity (64%, measured according to ASTM c373-14a) and strength (3.2 MPa, measured by diametrical compression test) of the developed membranes. The prepared membranes were characterized using X-ray diffraction (XRD), field emission secondary electron microscopy (FE-SEM), contact angle and porosity measurements. The results showed that properties of the synthesized membranes were highly influenced by the SPS process parameters. FE-SEM images revealed that CNTs were reasonably dispersed in the alumina matrix. The porous membranes were evaluated for their water flux transport as well as their capacity to adsorb heavy metals ions. Selected membranes were able to remove about 97% cadmium from contaminated water. Further work is underway to enhance the removal efficiency of the developed membranes as well as to remove other heavy metals such as arsenic and mercury.

Keywords: heavy metal removal, inorganic membrane, nanocomposite, spark plasma sintering

Procedia PDF Downloads 262
6190 Beyond the 'Human Rights and Development' Discourse: A Quest for a Right to Sustainable Development in International Human Rights Law

Authors: Roman Girma Teshome

Abstract:

The intersection between development and human rights has been the point of scholarly debate for a long time. Consequently, a number of principles, which extend from the right to development to the human rights-based approach to development, have been adopted to understand the dynamics between the two concepts. Despite these attempts, the exact relationship between development and human rights has not been fully discovered yet. However, the inevitable interdependence between the two notions and the idea that development efforts must be undertaken by giving due regard to human rights guarantees has gained momentum in recent years. On the other hand, the emergence of sustainable development as a widely accepted approach in development goals and policies makes this unsettled convergence even more complicated. The place of sustainable development in human rights law discourse and the role of the latter in ensuring the sustainability of development programs call for a systematic study. Hence, this article seeks to explore the relationship between development and human rights, particularly focusing on the place given to sustainable development principles in international human right law. It will further quest whether there is a right to sustainable development recognized therein. Accordingly, the article asserts that the principles of sustainable development are directly or indirectly recognized in various human rights instruments, which provides an affirmative response to the question raised hereinabove. This work, therefore, will make expeditions through international and regional human rights instruments as well as case laws and interpretative guidelines of human rights bodies to prove this hypothesis.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability

Procedia PDF Downloads 223
6189 An Evaluation of Drivers in Implementing Sustainable Manufacturing in India: Using DEMATEL Approach

Authors: D. Garg, S. Luthra, A. Haleem

Abstract:

Due to growing concern about environmental and social consequences throughout the world, a need has been felt to incorporate sustainability concepts in conventional manufacturing. This paper is an attempt to identify and evaluate drivers in implementing sustainable manufacturing in Indian context. Nine possible drivers for successful implementation of sustainable manufacturing have been identified from extensive review. Further, Decision Making Trial and Evaluation Laboratory (DEMATEL) approach has been utilized to evaluate and categorize these identified drivers for implementing sustainable manufacturing in to the cause and effect groups. Five drivers (Societal Pressure and Public Concerns; Regulations and Government Policies; Top Management Involvement, Commitment and Support; Effective Strategies and Activities towards Socially Responsible Manufacturing and Market Trends) have been categorized into the cause group and four drivers (Holistic View in Manufacturing Systems; Supplier Participation; Building Sustainable culture in Organization; and Corporate Image and Benefits) have been categorized into the effect group. “Societal Pressure and Public Concerns” has been found the most critical driver and “Corporate Image and Benefits” as least critical or the most easily influenced driver to implementing sustainable manufacturing in Indian context. This paper may surely help practitioners in better understanding of these drivers and their priorities towards effective implementation of sustainable manufacturing.

Keywords: drivers, decision making trial and evaluation laboratory (DEMATEL), India, sustainable manufacturing

Procedia PDF Downloads 388
6188 Sustainable Community Participation in Australia

Authors: Virginia Dickson-Swift, Amanda Kenny, Jane Farmer, Sarah Larkins, Karen Carlisle, Helen Hickson

Abstract:

In this presentation, we will focus on the methods of Remote Services Futures (RSF), an evidence-based method of community participation that was developed in Scotland. Using oral health as the focus, we will discuss the ways that RSF can be used to achieve sustainable engagement with stakeholders from various parts of the community. We will describe our findings of using RSF methods to engage with rural communities, including the steps involved and what happened when we asked people about the oral health services that they thought were needed in their community. We found that most community members started by thinking that a public dental clinic was required in every community, which is not a sustainable health service delivery option. Through a series of facilitated workshops, communities were able to discuss and prioritise their needs and develop a costed plan for their community which will ensure sustainable service delivery into the future. Our study highlights the complexities of decision making in rural communities. It is important to ensure that when communities participate in health care planning that the outcomes are practical, feasible and sustainable.

Keywords: community participation, sustainable health planning, Remote Services Futures, rural communities

Procedia PDF Downloads 536
6187 Valorization of Banana Peels for Mercury Removal in Environmental Realist Conditions

Authors: E. Fabre, C. Vale, E. Pereira, C. M. Silva

Abstract:

Introduction: Mercury is one of the most troublesome toxic metals responsible for the contamination of the aquatic systems due to its accumulation and bioamplification along the food chain. The 2030 agenda for sustainable development of United Nations promotes the improving of water quality by reducing water pollution and foments an enhance in wastewater treatment, encouraging their recycling and safe water reuse globally. Sorption processes are widely used in wastewater treatments due to their many advantages such as high efficiency and low operational costs. In these processes the target contaminant is removed from the solution by a solid sorbent. The more selective and low cost is the biosorbent the more attractive becomes the process. Agricultural wastes are especially attractive approaches for sorption. They are largely available, have no commercial value and require little or no processing. In this work, banana peels were tested for mercury removal from low concentrated solutions. In order to investigate the applicability of this solid, six water matrices were used increasing the complexity from natural waters to a real wastewater. Studies of kinetics and equilibrium were also performed using the most known models to evaluate the viability of the process In line with the concept of circular economy, this study adds value to this by-product as well as contributes to liquid waste management. Experimental: The solutions were prepared with Hg(II) initial concentration of 50 µg L-1 in natural waters, at 22 ± 1 ºC, pH 6, magnetically stirring at 650 rpm and biosorbent mass of 0.5 g L-1. NaCl was added to obtain the salt solutions, seawater was collected from the Portuguese coast and the real wastewater was kindly provided by ISQ - Instituto de Soldadura e qualidade (Welding and Quality Institute) and diluted until the same concentration of 50 µg L-1. Banana peels were previously freeze-drying, milled, sieved and the particles < 1 mm were used. Results: Banana peels removed more than 90% of Hg(II) from all the synthetic solutions studied. In these cases, the enhance in the complexity of the water type promoted a higher mercury removal. In salt waters, the biosorbent showed removals of 96%, 95% and 98 % for 3, 15 and 30 g L-1 of NaCl, respectively. The residual concentration of Hg(II) in solution achieved the level of drinking water regulation (1 µg L-1). For real matrices, the lower Hg(II) elimination (93 % for seawater and 81 % for the real wastewaters), can be explained by the competition between the Hg(II) ions and the other elements present in these solutions for the sorption sites. Regarding the equilibrium study, the experimental data are better described by the Freundlich isotherm (R ^ 2=0.991). The Elovich equation provided the best fit to the kinetic points. Conclusions: The results exhibited the great ability of the banana peels to remove mercury. The environmental realist conditions studied in this work, highlight their potential usage as biosorbents in water remediation processes.

Keywords: banana peels, mercury removal, sorption, water treatment

Procedia PDF Downloads 155
6186 Synthesis of Ion Imprinted Polymer for Removal of Chromium(III) Ion in Environmental Samples

Authors: Elham Moniri, Zohre Moradi

Abstract:

In this study, ion imprinted poly urea-formaldehyde was prepared. The morphology imprinted polymer was studied by scanning electron microscopy. Then, the effects of various parameters on Cr(III) sorption such as pH, contact time were investigated. The optimum pH value for sorption of Cr(III) was 6. The sorption capacity of imprinted poly urea-formaldehyde for Cr(III) were 4 mg.g−1. A Cr(III) removal of 97-98% was obtained. The profile of Cr(III) uptake on this sorbent reflects good accessibility of the chelating sites in the imprinted poly urea-formaldehyde. The developed method was utilized for determination of Cr(III) in environmental water samples by flame atomic absorption spectrometry with satisfactory results.

Keywords: chromium ion, environmental sample, elimination, imprinted poly urea-formaldehyde, polymeric sorbent

Procedia PDF Downloads 297
6185 Optimisation of Wastewater Treatment for Yeast Processing Effluent Using Response Surface Methodology

Authors: Shepherd Manhokwe, Sheron Shoko, Cuthbert Zvidzai

Abstract:

In the present study, the interactive effects of temperature and cultured bacteria on the performance of a biological treatment system of yeast processing wastewater were investigated. The main objective of this study was to investigate and optimize the operating parameters that reduce organic load and colour. Experiments were conducted based on a Central Composite Design (CCD) and analysed using Response Surface Methodology (RSM). Three dependent parameters were either directly measured or calculated as response. These parameters were total Chemical Oxygen Demand (COD) removal, colour reduction and total solids. COD removal efficiency of 26 % and decolourization efficiency of 44 % were recorded for the wastewater treatment. The optimized conditions for the biological treatment were found to be at 20 g/l cultured bacteria and 25 °C for COD reduction. For colour reduction optimum conditions were temperature of 30.35°C and bacterial formulation of 20g/l. Biological treatment of baker’s yeast processing effluent is a suitable process for the removal of organic load and colour from wastewater, especially when the operating parameters are optimized.

Keywords: COD reduction, optimisation, response surface methodology, yeast processing wastewater

Procedia PDF Downloads 344
6184 Achieving Sustainable Rapid Construction Using Lean Principles

Authors: Muhamad Azani Yahya, Vikneswaran Munikanan, Mohammed Alias Yusof

Abstract:

There is the need to take the holistic approach in achieving sustainable construction for a contemporary practice. Sustainable construction is the practice that involved method of human preservation of the environment, whether economically or socially through responsibility, management of resources and maintenance utilizing support. This paper shows the correlation of achieving rapid construction with sustainable concepts using lean principles. Lean principles being used widely in the manufacturing industry, but this research will demonstrate the principles into building construction. Lean principle offers the benefits of stabilizing work flow and elimination of unnecessary work. Therefore, this principle contributes to time and waste reduction. The correlation shows that pulling factor provides the improvement of progress curve and stabilizing the time-quality relation. The finding shows the lean principles offer the elements of rapid construction synchronized with the elements of sustainability.

Keywords: sustainable construction, rapid construction, time reduction, lean construction

Procedia PDF Downloads 236
6183 Constructed Wetlands with Subsurface Flow for Nitrogen and Metazachlor Removal from Tile Drainage: First Year Results

Authors: P. Fucik, J. Vymazal, M. Seres

Abstract:

Pollution from agricultural drainage is a severe issue for water quality, and it is a major reason for the failure in accomplishment of 'good chemical status' according to Water Framework Directive, especially due to high nitrogen and pesticide burden of receiving waters. Constructed wetlands were proposed as a suitable measure for removal of nitrogen from agricultural drainage in the early 1990s. Until now, the vast majority of constructed wetlands designed to treat tile drainage were free-surface constructed wetlands. In 2018, three small experimental constructed wetlands with horizontal subsurface flow were built in Czech Highlands to treat tile drainage from 15.73 ha watershed. The wetlands have a surface area of 79, 90 and 98 m² and were planted with Phalaris arundinacea and Glyceria maxima in parallel bands. The substrate in the first two wetlands is gravel (4-8 mm) mixed with birch woodchips (10:1 volume ratio). In one of those wetlands, the water level is kept 10 cm above the surface; in the second one, the water is kept below the surface. The third wetland has 20 cm layer of birch woodchips on top of gravel. The drainage outlet, as well as wetland outlets, are equipped with automatic discharge-gauging devices, temperature probes, as well as automatic water samplers (Teledyne ISCO). During the monitored period (2018-2019), the flows were unexpectedly low due to a drop of the shallow ground water level, being the main source of water for the monitored drainage system, as experienced at many areas of the Czech Republic. The mean water residence time was analyzed in the wetlands (KBr), which was 16, 9 and 27 days, respectively. The mean total nitrogen concentration eliminations during one-year period were 61.2%, 62.6%, and 70.9% for wetlands 1, 2, and 3, respectively. The average load removals amounted to 0.516, 0.323, and 0.399 g N m-2 d-1 or 1885, 1180 and 1457 kg ha-1 yr-1 in wetlands 1, 2 and 3, respectively. The plant uptake and nitrogen sequestration in aboveground biomass contributed only marginally to the overall nitrogen removal. Among the three variants, the one with shallow water on the surface was revealed to be the most effective for removal of nitrogen from drainage water. In August 2019, herbicide Metazachlor was experimentally poured in time of 2 hours at drainage outlet in a concentration of 250 ug/l to find out the removal rates of the aforementioned wetlands. Water samples were taken the first day every six hours, and for the next nine days, every day one water sample was taken. The removal rates were as follows 94, 69 and 99%; when the most effective wetland was the one with the longest water residence time and the birch woodchip-layer on top of gravel.

Keywords: constructed wetlands, metazachlor, nitrogen, tile drainage

Procedia PDF Downloads 149
6182 Motherhood Constrained: The Minotaur Legend Reimagined Through the Perspective of Marginalized Mothers

Authors: Gevorgianiene Violeta, Sumskiene Egle

Abstract:

Background. Child removal is a profound and life-altering measure that significantly impacts both children and their mothers. Unfortunately, mothers with intellectual disabilities are disproportionately affected by the removal of their children. This action is often taken due to concerns about the mother's perceived inability to care for the child, instances of abuse and neglect, or struggles with addiction. In many cases, the failure to meet society's standards of a "good mother" is seen as a deviation from conventional norms of femininity and motherhood. From an institutional perspective, separating a child from their mother is sometimes viewed as a step toward restoring justice or doing what is considered "right." In another light, this act of child removal can be seen as the removal of a mother from her child, an attempt to shield society from the complexities and fears associated with motherhood for women with disabilities. This separation can be likened to the Greek legend of the Minotaur, a fearsome beast confined within an impenetrable labyrinth. By reimagining this legend, we can see the social fears surrounding 'mothering with intellectual disability' as deeply sealed within an unreachable place. The Aim of this Presentation. Our goal with this presentation is to draw from our research and the metaphors found in the Greek legend to delve into the profound challenges faced by mothers with intellectual disabilities in raising their children. These challenges often become entangled within an insurmountable labyrinth, including navigating complex institutional bureaucracies, enduring persistent doubts cast upon their maternal competencies, battling unfavorable societal narratives, and struggling to retain custody of their children. Coupled with limited social support networks, these challenges frequently lead to situations resulting in maternal failure and, ultimately, child removal. On a broader scale, this separation of a child from their mother symbolizes society’s collective avoidance of confronting the issue of 'mothering with disability,' which can only be effectively addressed through united efforts. Conclusion. Just as in the labyrinth of the Minotaur legend, the struggles faced by mothers with disabilities in their pursuit of retaining their children reveal the need for a metaphorical 'string of Ariadne.' This string symbolizes the support offered by social service providers, communities, and the loved ones these women often dream of but rarely encounter in their lives.

Keywords: motherhood, disability, child removal, support.

Procedia PDF Downloads 58
6181 Sustainable Management of Gastronomy Experiences as a Mechanism to Promote the Local Economy

Authors: Marianys Fernandez

Abstract:

Gastronomic experiences generate a positive impact on the dynamization of the economy when they are managed in a sustainable manner, given that they value the identity of the destination, strengthen cooperation between stakeholders in the sector, contribute to the preservation of gastronomic heritage, and encourage the implementation of competitive and sustainable public policies. Having as its main aim the analysis of sustainable management of gastronomic experiences, this study analyses different elements associated with the promotion of the local economy. For this purpose, a systematic literature review was carried out to identify, select, synthesise, and evaluate the studies that respond to the research objectives in order to select more reliable articles for research and reduce the potential for bias within the review of literature. To obtain reliable, updated and relevant sources for scientific research, the Web of Science and Scopus databases were used, taking into account the following key words: (1) experiential tourism, (2) gastronomy experience, (3) sustainable destination management, (4) sustainable gastronomy, (5) sustainable economy, in which we obtained a final list of 76 articles. The analysis of the literature allowed us to identify the most pertinent elements referring to the objective of the study: (a) need for competitive policies in the gastronomic sector to promote sustainable local economic development, (b) incentive for cooperation between stakeholders in the gastronomic sector, to guarantee the competitiveness of the destination, (c) propose sustainable standards in the gastronomic tourism sector that link the local economy. Gastronomic experiences constitute a dynamic element of the local economy and promote sustainable tourism. We can highlight that sustainability is a mechanism for the preservation of regional identity in the gastronomic sector through the valuation of the attributes of gastronomy, promotion of the local economy, strengthening of strategic alliances between the stakeholders of the gastronomic sector and its relevant contribution to the competitiveness of the destination. The theoretical implications of the study are focused on suggesting planning, management, and policy criteria to promote the sustainable management of gastronomic experiences in order to promote the local economy. In the practical context, research integrates different approaches, tools, and methods to encourage the active participation of local actors in the promotion of the local economy through the sustainable management of gastronomic tourism.

Keywords: experiential tourism, gastronomy experience, sustainable destination management, sustainable economy, sustainable gastronomy

Procedia PDF Downloads 74
6180 Membrane Bioreactor versus Activated Sludge Process for Aerobic Wastewater Treatment and Recycling

Authors: Sarra Kitanou

Abstract:

Membrane bioreactor (MBR) systems are one of the most widely used wastewater treatment processes for various municipal and industrial waste streams. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Its complexity makes understanding system operation and optimization more difficult, and traditional methods based on experimental analysis are costly and time consuming. The present study was based on an external membrane bioreactor pilot scale with ceramic membranes compared to conventional activated sludge process (ASP) plant. Both systems received their influent from a domestic wastewater. The membrane bioreactor (MBR) produced an effluent with much better quality than ASP in terms of total suspended solids (TSS), organic matter such as biological oxygen demand (BOD) and chemical oxygen demand (COD), total Phosphorus and total Nitrogen. Other effluent quality parameters also indicate substantial differences between ASP and MBR. This study leads to conclude that in the case domestic wastewater, MBR treatment has excellent effluent quality. Hence, the replacement of the ASP by the MBRs may be justified on the basis of their improved removal of solids, nutrients, and micropollutants. Furthermore, in terms of reuse the great quality of the treated water allows it to be reused for irrigation.

Keywords: aerobic wastewater treatment, conventional activated sludge process, membrane bioreactor, reuse for irrigation

Procedia PDF Downloads 78
6179 Comparative Study of Ozone Based AOP's for Mineralization of Reactive Black 5

Authors: Sandip Sharma, Jayesh Ruparelia

Abstract:

The present work focuses on the comparative study of ozone based advanced oxidation processes (AOPs): O3, O3/UV and O3/UV/Persulfate for mineralization of synthetic wastewater containing Reactive Black5 (RB5) dye. The effect of various parameters: pH, ozone flow rate, initial concentration of dye and intensity of UV light was analyzed to access performance efficiency of AOPs. The performance of all the three AOPs was evaluated on the basis of decolorization, % TOC removal and ozone consumption. The highest mineralization rate of 86.83% was achieved for O3/UV/Persulfate followed by 71.53% and 66.82 % for O3/UV and O3 respectively. This is attributed to the fact that Persulfate ions (S2O82-) upon activation produce sulfate radical (SO4-●) which is very strong oxidant capable of degrading a wide variety of recalcitrant organic compounds, moreover to enhance the performance of Persulfate it is activated using UV irradiation. On increasing the intensity of UV irradiation from 11W to 66W, TOC removal efficiency is increased by 59.04%. Ozone based AOPs gives better mineralization on basic conditions, at pH 12 it gives 68.81%, 60.01% and 40.32% TOC removal for O3/UV/Persulfate, O3/UV and O3 process respectively. The result also reveals that decolorization of 98.95%, 95.17% and 94.71% was achieved by O3/UV/Persulfate, O3/UV and O3 process respectively. In addition to above, ozone consumption was also considerably decreased by 17% in case of O3/UV/Persulfate, as efficiency of process is enhanced by means of activation of persulfate through UV irradiation. Thus study reveals that mineralization follows: O3/UV/Persulfate> O3/UV> O3.

Keywords: AOP, mineralization, TOC, recalcitrant organic compounds

Procedia PDF Downloads 227
6178 Design for Sustainability

Authors: Qiuying Li, Fan Chen

Abstract:

It is a shared opinion that sustainable development requires continuously updated, meaning that apparent changes in the way we usually produce our buildings are strongly needed. In China’s construction field, the associated environmental, health problems are quite prominent.Especially low sustainable performance (as opposed to Green creation) flooding the real estate boom and high-speed urban and rural urbanization. Currently, we urgently need to improve the existing design basis,objectives,scope and procedures,optimization design portfolio.More new evaluation system designed to facilitate the building to enhance the overall level.

Keywords: design for sustainability, design and materials, ecomaterials, sustainable architecture and urban design

Procedia PDF Downloads 521
6177 Recycling Strategies of Construction Waste in Egypt

Authors: Hanan Anwar

Abstract:

All systems recycle. The construction industry has not only become a major consumer of natural materials along with a source of pollution. Environmental integrated production, reusing and recycling is of great importance in Egypt nowadays. Governments should ensure that the technical, environmental and economic feasibility of alternative systems is considered and is taken into account before construction starts. Hereby this paper focuses on the recycle of building materials as a way for environment protection and sustainable development. Environmental management integrates the requirements of sustainable development. There are many methods used to reduce waste and increase profits through salvage, reuse, and the recycling of construction waste. Sustainable development as a tool to continual improvement cycle processes innovations to save money.

Keywords: environment, management, reuse, recycling, sustainable development

Procedia PDF Downloads 315
6176 Organic Matter Removal in Urban and Agroindustry Wastewater by Chemical Precipitation Process

Authors: Karina Santos Silvério, Fátima Carvalho, Maria Adelaide Almeida

Abstract:

The impacts caused by anthropogenic actions on the water environment have been one of the main challenges of modern society. Population growth, added to water scarcity and climate change, points to a need to increase the resilience of production systems to increase efficiency regarding the management of wastewater generated in the different processes. Based on this context, the study developed under the NETA project (New Strategies in Wastewater Treatment) aimed to evaluate the efficiency of the Chemical Precipitation Process (CPP), using the hydrated lime (Ca(OH )₂) as a reagent in wastewater from the agroindustry sector, namely swine wastewater, slaughterhouse and urban wastewater, in order to make the productive means 100% circular, causing a direct positive impact on the environment. The purpose of CPP is to innovate in the field of effluent treatment technologies, as it allows rapid application and is economically profitable. In summary, the study was divided into four main stages: 1) Application of the reagent in a single step, raising the pH to 12.5 2) Obtaining sludge and treated effluent. 3) Natural neutralization of the effluent through Carbonation using atmospheric CO₂. 4) Characterization and evaluation of the feasibility of the chemical precipitation technique in the treatment of different wastewaters through the technique of determining the chemical oxygen demand (COD) and other supporting physical-chemical parameters. The results showed an approximate average removal efficiency above 80% for all effluents, highlighting the swine effluent with 90% removal, followed by urban effluent with 88% and slaughterhouse with 81% on average. Significant improvement was also obtained with regard to color and odor removal after Carbonation to pH 8.00.

Keywords: agroindustry wastewater, urban wastewater, natural carbonatation, chemical precipitation technique

Procedia PDF Downloads 82
6175 Design of Black-Seed Pulp biomass-Derived New Bio-Sorbent by Combining Methods of Mineral Acids and High-Temperature for Arsenic Removal

Authors: Mozhgan Mohammadi, Arezoo Ghadi

Abstract:

Arsenic is known as a potential threat to the environment. Therefore, the aim of this research is to assess the arsenic removal efficiency from an aqueous solution, with a new biosorbent composed of a black seed pulp (BSP). To treat BSP, the combination of two methods (i.e. treating with mineral acids and use at high temperature) was used and designed bio-sorbent called BSP-activated/carbonized. The BSP-activated and BSP-carbonized were also prepared using HCL and 400°C temperature, respectively, to compare the results of each three methods. Followed by, adsorption parameters such as pH, initial ion concentration, biosorbent dosage, contact time, and temperature were assessed. It was found that the combination method has provided higher adsorption capacity so that up to ~99% arsenic removal was observed with BSP-activated/carbonized at pH of 7.0 and 40°C. The adsorption capacity for BSP-carbonized and BSP-activated were 87.92% (pH: 7, 60°C) and 78.50% (pH: 6, 90°C), respectively. Moreover, adsorption kinetics data indicated the best fit with the pseudo-second-order model. The maximum biosorption capacity, by the Langmuir isotherm model, was also recorded for BSP-activated/carbonized (53.47 mg/g). It is notable that arsenic adsorption on studied bio sorbents takes place as spontaneous and through chemisorption along with the endothermic nature of the biosorption process and reduction of random collision in the solid-liquid phase.

Keywords: black seed pulp, bio-sorbents, treatment of sorbents, adsorption isotherms

Procedia PDF Downloads 95
6174 Comparative Study on Hydrothermal Carbonization as Pre- and Post-treatment of Anaerobic Digestion of Dairy Sludge: Focus on Energy Recovery, Resources Transformation and Hydrochar Utilization

Authors: Mahmood Al Ramahi, G. Keszthelyi-Szabo, S. Beszedes

Abstract:

Hydrothermal carbonization (HTC) is a thermochemical reaction that utilizes saturated water and vapor pressure to convert waste biomass to C-rich products This work evaluated the effect of HTC as a pre- and post-treatment technique to anaerobic digestion (AD) of dairy sludge, as information in this field is still in its infancy, with many research and methodological gaps. HTC effect was evaluated based on energy recovery, nutrients transformation, and sludge biodegradability. The first treatment approach was executed by applying hydrothermal carbonization (HTC) under a range of temperatures, prior to mesophilic anaerobic digestion (AD) of dairy sludge. Results suggested an optimal pretreatment temperature at 210 °C for 30 min. HTC pretreatment increased methane yield and chemical oxygen demand removal. The theoretical model based on Boyle’s equation had a very close match with the experimental results. On the other hand, applying HTC subsequent to AD increased total energy production, as additional energy yield was obtained by the solid fuel (hydrochar) beside the produced biogas. Furthermore, hydrothermal carbonization of AD digestate generated liquid products (HTC digestate) with improved chemical characteristics suggesting their use as liquid fertilizers.

Keywords: hydrothermal carbonization, anaerobic digestion, energy balance, sludge biodegradability, biogas

Procedia PDF Downloads 184
6173 Consumption and Diffusion Based Model of Tissue Organoid Development

Authors: Elena Petersen, Inna Kornienko, Svetlana Guryeva, Sergey Simakov

Abstract:

In vitro organoid cultivation requires the simultaneous provision of necessary vascularization and nutrients perfusion of cells during organoid development. However, many aspects of this problem are still unsolved. The functionality of vascular network intergrowth is limited during early stages of organoid development since a function of the vascular network initiated on final stages of in vitro organoid cultivation. Therefore, a microchannel network should be created in early stages of organoid cultivation in hydrogel matrix aimed to conduct and maintain minimally required the level of nutrients perfusion for all cells in the expanding organoid. The network configuration should be designed properly in order to exclude hypoxic and necrotic zones in expanding organoid at all stages of its cultivation. In vitro vascularization is currently the main issue within the field of tissue engineering. As perfusion and oxygen transport have direct effects on cell viability and differentiation, researchers are currently limited only to tissues of few millimeters in thickness. These limitations are imposed by mass transfer and are defined by the balance between the metabolic demand of the cellular components in the system and the size of the scaffold. Current approaches include growth factor delivery, channeled scaffolds, perfusion bioreactors, microfluidics, cell co-cultures, cell functionalization, modular assembly, and in vivo systems. These approaches may improve cell viability or generate capillary-like structures within a tissue construct. Thus, there is a fundamental disconnect between defining the metabolic needs of tissue through quantitative measurements of oxygen and nutrient diffusion and the potential ease of integration into host vasculature for future in vivo implantation. A model is proposed for growth prognosis of the organoid perfusion based on joint simulations of general nutrient diffusion, nutrient diffusion to the hydrogel matrix through the contact surfaces and microchannels walls, nutrient consumption by the cells of expanding organoid, including biomatrix contraction during tissue development, which is associated with changed consumption rate of growing organoid cells. The model allows computing effective microchannel network design giving minimally required the level of nutrients concentration in all parts of growing organoid. It can be used for preliminary planning of microchannel network design and simulations of nutrients supply rate depending on the stage of organoid development.

Keywords: 3D model, consumption model, diffusion, spheroid, tissue organoid

Procedia PDF Downloads 308
6172 Evaluating India's Smart Cities against the Sustainable Development Goals

Authors: Suneet Jagdev

Abstract:

17 Sustainable Development Goals were adopted by the world leaders in September 2015 at the United Nations Sustainable Development Summit. These goals were adopted by UN member states to promote prosperity, health and human rights while protecting the planet. Around the same time, the Government of India launched the Smart City Initiative to speed up development of state of the art infrastructure and services in 100 cities with a focus on sustainable and inclusive development. These cities are meant to become role models for other cities in India and promote sustainable regional development. This paper examines goals set under the Smart City Initiative and evaluates them in terms of the Sustainable Development Goals, using case studies of selected Smart Cities in India. The study concludes that most Smart City projects at present actually consist of individual solutions to individual problems identified in a community rather than comprehensive models for complex issues in cities across India. Systematic, logical and comparative analysis of important literature and data has been done, collected from government sources, government papers, research papers by various experts on the topic, and results from some online surveys. Case studies have been used for a graphical analysis highlighting the issues of migration, ecology, economy and social equity in these Smart Cities.

Keywords: housing, migration, smart cities, sustainable development goals, urban infrastructure

Procedia PDF Downloads 410
6171 Copper Removal from Synthetic Wastewater by a Novel Fluidized-bed Homogeneous Crystallization (FBHC) Technology

Authors: Cheng-Yen Huang, Yu-Jen Shih, Ming-Chun Yen, Yao-Hui Huang

Abstract:

This research developed a fluidized-bed homogeneous crystallization (FBHC) process to remove copper from synthetic wastewater in terms of recovery of highly pure malachite (Cu2(OH)2CO3) pellets. The experimental parameters of FBHC which included pH, molar ratio of copper to carbonate, copper loading, upper flowrate and bed height were tested in the absence of seed particles. Under optimized conditions, both the total copper removal (TR) and crystallization ratio (CR) reached 99%. The malachite crystals were characterized by XRD and SEM. FBHC was capable of treating concentrated copper (1600 ppm) wastewater and minimizing the sludge production.

Keywords: copper, carbonate, fluidized-bed, crystallization, malachite

Procedia PDF Downloads 422
6170 Fly Ash Derived Zeolites as Potential Sorbents for Elemental Mercury Removal from Simulated Gas Stream

Authors: Piotr Kunecki, Magdalena Wdowin

Abstract:

The fly ash produced as waste in the process of conventional coal combustion was utilized in the hybrid synthesis of zeolites X and A from Faujasite (FAU) and Linde Type A (LTA) frameworks, respectively. The applied synthesis method included modification together with the crystallization stage. The sorbent modification was performed by introducing metals into the zeolite structure in order to create an ability to form stable bonds with elemental mercury (Hg0). The use of waste in the form of fly ash as a source of silicon and aluminum, as well as the proposed method of zeolite synthesis, fits the circular economy idea. The effect of zeolite modification on Hg0 removal from a simulated gas stream was studied empirically using prototype installation designed to test the effectiveness of sorption by solid-state sorbents. Both derived zeolites X and A modified with silver nitrate revealed significant mercury uptake during a 150-minute sorption experiment. The amount of elemental mercury removed in the experiment ranged from 5.69 to 6.01 µg Hg0/1g of sorbent for zeolites X and from 4.47 to 4.86 µg Hg0/1g of sorbent for zeolites A. In order to confirm the effectiveness of the sorbents towards mercury bonding, the possible re-emission effect was tested as well. Derived zeolites X and A did not show mercury re-emission after the sorption process, which confirms the stable bonding of Hg0 in the structure of synthesized zeolites. The proposed hybrid synthesis method possesses the potential to be implemented for both fly ash utilization as well as the time and energy-saving production of aluminosilicate, porous materials with high Hg0 removal efficiency. This research was supported by National Science Centre, Poland, grant no 2021/41/N/ST5/03214.

Keywords: fly ash, synthetic zeolites, elemental mercury removal, sorption, simulated gas stream

Procedia PDF Downloads 87
6169 Risk Indicators of Massive Removal Phenomena According to the Mora - Vahrson Method, Applied in Pitalito and Campoalegre Municipalities

Authors: Laura Fernanda Pedreros Araque, Sebastian Rivera Pardo

Abstract:

The massive removal phenomena have been one of the most frequent natural disasters in the world, causing thousands of deaths, victims, damage to homes and diseases. In Pitalito, and Campoalegre department of Huila municipalities - Colombia, disasters have occurred due to various events such as high rainfall, earthquakes; it has caused landslides, floods, among others, affected the economy, the community, and transportation. For this reason, a study was carried out on the area’s most prone to suffer these phenomena to take preventive measures in favor of the protection of the population, the resources of management, and the planning of civil works. For the proposed object, the Mora-Varshon method was used, which allows classifying the degree of susceptibility to landslides in which the areas are found. Also, various factors or parameters were evaluated such as the soil moisture, lithology, slope, seismicity, and rain, each of these indicators were obtained using information from IDEAM, Servicio Geologico Colombiano (SGC) and using geographic information for geoprocessing in the Arcgis software to realize a mapping to indicate the susceptibility to landslides, classifying the areas of the municipalities such as very low, low, medium, moderate, high or very high.

Keywords: geographic information system, landslide, mass removal phenomena, Mora-Varshon method

Procedia PDF Downloads 144
6168 Preparation of Fe, Cr Codoped TiO2 Nanostructure for Phenol Removal from Wastewaters

Authors: N. Nowzari-Dalini, S. Sabbaghi

Abstract:

Phenol is a hazardous material found in many industrial wastewaters. Photocatalytic degradation and furthermore catalyst doping are promising techniques in purpose of effective phenol removal, which have been studied comprehensively in this decade. In this study, Fe, Cr codoped TiO2 were prepared by sol-gel method, and its photocatalytic activity was investigated through degradation of phenol under visible light. The catalyst was characterized by XRD, SEM, FT-IR, BET, and EDX. The results showed that nanoparticles possess anatase phase, and the average size of nanoparticles was about 21 nm. Also, photocatalyst has significant surface area. Effect of experimental parameters such as pH, irradiation time, pollutant concentration, and catalyst concentration were investigated by using Design-Expert® software. 98% of phenol degradation was achieved after 6h of irradiation.

Keywords: doping, metals, sol-gel, titanium dioxide, wastewater

Procedia PDF Downloads 328
6167 Biodegradation of Chlorpyrifos in Real Wastewater by Acromobacter xylosoxidans SRK5 Immobilized in Calcium Alginate

Authors: Saira Khalid, Imran Hashmi

Abstract:

Agrochemical industries produce huge amount of wastewater containing pesticides and other harmful residues. Environmental regulations make it compulsory to bring pesticides to a minimum level before releasing wastewater from industrial units.The present study was designed with the objective to investigate biodegradation of CP in real wastewater using bacterial cells immobilized in calcium alginate. Bacterial strain identified as Acromobacter xylosoxidans SRK5 (KT013092) using 16S rRNA nucleotide sequence analysis was used. SRK5 was immobilized in calcium alginate to make calcium alginate microspheres (CAMs). Real wastewater from industry having 50 mg L⁻¹ of CP was inoculated with free cells or CAMs and incubated for 96 h at 37˚C. CP removal efficiency with CAMs was 98% after 72 h of incubation, and no lag phase was observed. With free cells, 12h of lag phase was observed. After 96 h of incubation 87% of CP removal was observed when inoculated with free cells. No adsorption was observed on vacant CAMs. Phytotoxicity assay demonstrated considerable loss in toxicity. Almost complete COD removal was achieved at 96 h with CAMs. Study suggests the use of immobilized cells of SRK5 for bioaugmentation of industrial wastewater for CP degradation instead of free cells.

Keywords: biodegradation, chlorpyrifos, immobilization, wastewater

Procedia PDF Downloads 178
6166 Optimum Er: YAG Laser Parameters for Orthodontic Composite Debonding: An in vitro Study

Authors: Mohammad Zamzam, Wesam Bachir, Imad Asaad

Abstract:

Several studies have produced estimates of Er:YAG laser parameters and specifications but there is still insufficient data for reliable selection of laser parameters. As a consequence, there is a heightened need for ideal specifications of Er:YAG laser to reduce the amount of enamel ablation. The objective of this paper is to investigate the influence of Er:YAG laser parameters, energy level and pulse duration, on orthodontic composite removal after bracket debonding. The sample consisted of 45 cuboids of orthodontic composite made by plastic moulds. The samples were divided into three groups, each was irradiated with Er:YAG laser set at different energy levels and three values for pulse durations (50 µs, 100 µs, and 300 µs). Geometrical parameters (depth and area) of cavities formed by laser irradiation were determined. ANCOVA test showed statistically significant difference (p < 0.0.5) between the groups indicating a potential effect of laser pulse duration on the geometrical parameters after controlling laser energy level. A post-hoc Bonferroni test ranked the 50µ Er:YAG laser pulse as the most influential factor for all geometrical parameters in removing remnant composite from enamel surface. Also, 300 mJ laser pulses caused the largest removal of the composite. The results of the present study demonstrated the efficacy of 50 µs and 300 mJ Er:YAG laser pulse for removal of remnant orthodontic composite.

Keywords: enamel, Er:YAG, geometrical parameters, orthodontic composite, remnant composite

Procedia PDF Downloads 553
6165 The Potential of Public Open Space to Promote Sustainable Transportation and Reduce Dependence on Cars

Authors: Farnoosh Faal

Abstract:

The excessive reliance on private cars has led to a range of problems, such as traffic congestion, air pollution, and carbon emissions, which have significant impacts on public health and the environment. Public open spaces have the potential to promote sustainable transportation and reduce dependence on cars by providing alternative mobility options, including walking, cycling, and public transit. This paper examines the existing research on the relationship between public open spaces and sustainable transportation. It discusses the key design principles and planning strategies that can enhance the accessibility and safety of public open spaces, particularly for pedestrians and cyclists. The paper also explores the role of public open spaces in promoting active mobility and reducing car use in urban and suburban contexts. Finally, the paper highlights the policy and institutional barriers that hinder the integration of public open spaces with sustainable transportation systems and suggests some potential solutions to overcome these barriers. Overall, the paper argues that public open spaces have immense potential to facilitate sustainable transportation and reduce car dependence, and therefore, it is important to prioritize the development and maintenance of public open spaces as a key component of sustainable urban and regional planning.

Keywords: public open space, sustainable transportation, active mobility, car dependence, urban and regional planning, traffic congestion

Procedia PDF Downloads 152
6164 Optimization of the Culture Medium, Incubation Period, pH and Temperatures for Maximal Dye Bioremoval Using A. Fumigates

Authors: Wafaa M. Abd El-Rahim, Magda A. El-Meleigy, Eman Refaat

Abstract:

This study dealing with optimization the conditions affecting the formation of extracellular lignin- degrading enzymes to achieve maximal decolorization activity of Direct Violet dye by one fungal strain. In this study Aspergillus fumigates fungal strain used for production extracellular ligninolytic enzymes for removing Direct Violet dye under different conditions: culture medium, incubation period, pH and temperatures. The results indicted that the removal efficiency of A. fumigatus was enhanced by addition glucose and peptone to the culture medium. The addition of peptone and glucose was found to increase the decolorization activity of the fungal isolate from 51.38% to 93.74% after 4 days of incubation. The highest production of extracellular lignin degrading enzymes also recorded in Direct Violet dye medium supplemented with peptone and glucose. It was also found the decolorization activity of A. fumigatus was decreased gradually by increasing the incubation period up to 4 days. Also it was found that the fungal strain can grow and produce extracellular ligninolytic enzymes which accompanied by efficient removal of Direct Violet dye in a wide pH range of 4-8. The results also found that the maximal biosynthesis of ligninolytic enzymes which accompanied with maximal removal of Direct Violet dye was obtained at a temperature of 28C. This indicates that the different conditions of culture medium, incubation period, pH and temperatures are effective on dye decolorization on the fungal biomass and played a role in Direct Violet dye removal along with enzymatic activity of A. fumigatus.

Keywords: A. fumigates, extracellular lignin- degrading enzymes, textile dye, dye removing

Procedia PDF Downloads 278
6163 The New Consumption of Sustainability for Green Capitalism

Authors: Ica Wulansari

Abstract:

Today, globalization encourages the global culture acceleration in the middle of accelerated industrialization that leads to the transformation of consumption pattern. Consumption is not only considered as a need but also lifestyle, moreover, plays a role as an ideology supported by global shopping system. This paper is aimed at analyzing how global society directed to support sustainability consumption, this is line with Sustainable Development Goals (SDGs) that prioritise sustainable program for environmental preservation to cope with economic growth impact. The paper applies qualitative method to analyze through literature studies. As a result, we attempt to discuss the relationship of various concepts among globalization, consumption, and risk society that produce green capitalism. There are three points related with green capitalism: Sustainable agenda, political ecology, and sustainable commodities that show sustainable consumption pattern supported by Capitalism. Sustainability consumption system is an ideal instrument to be implemented, nevertheless, this is not only solely a modernity of ecology politics to hidden Capitalist`s interest.

Keywords: consumption, sustainability, capitalist, environmental

Procedia PDF Downloads 299