Search results for: soil and water conservation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11323

Search results for: soil and water conservation

10843 Modified Evaluation of the Hydro-Mechanical Dependency of the Water Coefficient of Permeability of a Clayey Sand with a Novel Permeameter for Unsaturated Soils

Authors: G. Adelian, A. Mirzaii, S. S. Yasrobi

Abstract:

This paper represents data of an extensive experimental laboratory testing program for the measurement of the water coefficient of permeability of clayey sand in different hydraulic and mechanical boundary conditions. A novel permeameter was designed and constructed for the experimental testing program, suitable for the study of flow in unsaturated soils in different hydraulic and mechanical loading conditions. In this work, the effect of hydraulic hysteresis, net isotropic confining stress, water flow condition, and sample dimensions are evaluated on the water coefficient of permeability of understudying soil. The experimental results showed a hysteretic variation for the water coefficient of permeability versus matrix suction and degree of saturation, with higher values in drying portions of the SWCC. The measurement of the water permeability in different applied net isotropic stress also signified that the water coefficient of permeability increased within the increment of net isotropic consolidation stress. The water coefficient of permeability also appeared to be independent of different applied flow heads, water flow condition, and sample dimensions.

Keywords: water permeability, unsaturated soils, hydraulic hysteresis, void ratio, matrix suction, degree of saturation

Procedia PDF Downloads 519
10842 Ingenious Eco-Technology for Transforming Food and Tanneries Waste into a Soil Bio-Conditioner and Fertilizer Product Used for Recovery and Enhancement of the Productive Capacity of the Soil

Authors: Petre Voicu, Mircea Oaida, Radu Vasiu, Catalin Gheorghiu, Aurel Dumitru

Abstract:

The present work deals with the way in which food and tobacco waste can be used in agriculture. As a result of the lack of efficient technologies for their recycling, we are currently faced with the appearance of appreciable quantities of residual organic residues that find their use only very rarely and only after long storage in landfills. The main disadvantages of long storage of organic waste are the unpleasant smell, the high content of pathogenic agents, and the high content in the water. The release of these enormous amounts imperatively demands the finding of solutions to ensure the avoidance of environmental pollution. The measure practiced by us consists of the processing of this waste in special installations, testing in pilot experimental perimeters, and later administration on agricultural lands without harming the quality of the soil, agricultural crops, and the environment. The current crisis of raw materials and energy also raises special problems in the field of organic waste valorization, an activity that takes place with low energy consumption. At the same time, their composition recommends them as useful secondary sources in agriculture. The transformation of food scraps and other residues concentrated organics thus acquires a new orientation, in which these materials are seen as important secondary resources. The utilization of food and tobacco waste in agriculture is also stimulated by the increasing lack of chemical fertilizers and the continuous increase in their price, under the conditions that the soil requires increased amounts of fertilizers in order to obtain high, stable, and profitable production. The need to maintain and increase the humus content of the soil is also taken into account, as an essential factor of its fertility, as a source and reserve of nutrients and microelements, as an important factor in increasing the buffering capacity of the soil, and the more reserved use of chemical fertilizers, improving the structure and permeability for water with positive effects on the quality of agricultural works and preventing the excess and/or deficit of moisture in the soil.

Keywords: ecology, soil, organic waste, fertility

Procedia PDF Downloads 75
10841 Biogas from Cover Crops and Field Residues: Effects on Soil, Water, Climate and Ecological Footprint

Authors: Manfred Szerencsits, Christine Weinberger, Maximilian Kuderna, Franz Feichtinger, Eva Erhart, Stephan Maier

Abstract:

Cover or catch crops have beneficial effects for soil, water, erosion, etc. If harvested, they also provide feedstock for biogas without competition for arable land in regions, where only one main crop can be produced per year. On average gross energy yields of approx. 1300 m³ methane (CH4) ha-1 can be expected from 4.5 tonnes (t) of cover crop dry matter (DM) in Austria. Considering the total energy invested from cultivation to compression for biofuel use a net energy yield of about 1000 m³ CH4 ha-1 is remaining. With the straw of grain maize or Corn Cob Mix (CCM) similar energy yields can be achieved. In comparison to catch crops remaining on the field as green manure or to complete fallow between main crops the effects on soil, water and climate can be improved if cover crops are harvested without soil compaction and digestate is returned to the field in an amount equivalent to cover crop removal. In this way, the risk of nitrate leaching can be reduced approx. by 25% in comparison to full fallow. The risk of nitrous oxide emissions may be reduced up to 50% by contrast with cover crops serving as green manure. The effects on humus content and erosion are similar or better than those of cover crops used as green manure when the same amount of biomass was produced. With higher biomass production the positive effects increase even if cover crops are harvested and the only digestate is brought back to the fields. The ecological footprint of arable farming can be reduced by approx. 50% considering the substitution of natural gas with CH4 produced from cover crops.

Keywords: biogas, cover crops, catch crops, land use competition, sustainable agriculture

Procedia PDF Downloads 540
10840 Water Security and Transboundary Issues for Food Security of Ethiopia. The Case of Nile River

Authors: Kebron Asnake

Abstract:

Water security and transboundary issues are critical concerns for countries, particularly in regions where shared water resources are significant. This Research focuses on exploring the challenges and opportunities related to water security and transboundary issues in Ethiopia, using the case of the Nile River. Ethiopia, as a riparian country of the Nile River, faces complex water security issues due to its dependence on this transboundary water resource. This abstract aims to analyze the various factors that affect water security in Ethiopia, including population growth, climate change, and competing water demands. The Study examines the challenges linked to transboundary water management of the Nile River. It delves into the complexities of negotiating water allocations and addressing potential conflicts among the downstream riparian countries. The paper also discusses the role of international agreements and cooperation in promoting sustainable water resource management. Additionally, the paper highlights the opportunities for collaboration and sustainable development that arise from transboundary water management. It explores the potential for joint investments in water infrastructure, hydropower generation, and irrigation systems that can contribute to regional economic growth and water security. Furthermore, the study emphasizes the need for integrated water management approaches in Ethiopia to ensure the equitable and sustainable use of the Nile River's waters. It highlights the importance of involving stakeholders from diverse sectors, including agriculture, energy, and environmental conservation, in decision-making processes. By presenting the case of the Nile River in Ethiopia, this Abstract contributes to the understanding of water security and transboundary issues. It underscores the significance of regional cooperation and informed policy-making to address the challenges and opportunities presented by transboundary water resources. The paper serves as a foundation for further research and policy in water management in Ethiopia and other regions facing similar challenges.

Keywords: water, health, agriculture, medicine

Procedia PDF Downloads 76
10839 Drought Detection and Water Stress Impact on Vegetation Cover Sustainability Using Radar Data

Authors: E. Farg, M. M. El-Sharkawy, M. S. Mostafa, S. M. Arafat

Abstract:

Mapping water stress provides important baseline data for sustainable agriculture. Recent developments in the new Sentinel-1 data which allow the acquisition of high resolution images and varied polarization capabilities. This study was conducted to detect and quantify vegetation water content from canopy backscatter for extracting spatial information to encourage drought mapping activities throughout new reclaimed sandy soils in western Nile delta, Egypt. The performance of radar imagery in agriculture strongly depends on the sensor polarization capability. The dual mode capabilities of Sentinel-1 improve the ability to detect water stress and the backscatter from the structure components improves the identification and separation of vegetation types with various canopy structures from other features. The fieldwork data allowed identifying of water stress zones based on land cover structure; those classes were used for producing harmonious water stress map. The used analysis techniques and results show high capability of active sensors data in water stress mapping and monitoring especially when integrated with multi-spectral medium resolution images. Also sub soil drip irrigation systems cropped areas have lower drought and water stress than center pivot sprinkler irrigation systems. That refers to high level of evaporation from soil surface in initial growth stages. Results show that high relationship between vegetation indices such as Normalized Difference Vegetation Index NDVI the observed radar backscattering. In addition to observational evidence showed that the radar backscatter is highly sensitive to vegetation water stress, and essentially potential to monitor and detect vegetative cover drought.

Keywords: canopy backscatter, drought, polarization, NDVI

Procedia PDF Downloads 139
10838 Managing Shallow Gas for Offshore Platforms via Fit-For-Purpose Solutions: Case Study for Offshore Malaysia

Authors: Noorizal Huang, Christian Girsang, Mohamad Razi Mansoor

Abstract:

Shallow gas seepage was first spotted at a central processing platform offshore Malaysia in 2010, acknowledged as Platform T in this paper. Frequent monitoring of the gas seepage was performed through remotely operated vehicle (ROV) baseline survey and a comprehensive geophysical survey was conducted to understand the characteristics of the gas seepage and to ensure that the integrity of the foundation at Platform T was not compromised. The origin of the gas back then was unknown. A soil investigation campaign was performed in 2016 to study the origin of the gas seepage. Two boreholes were drilled; a composite borehole to 150m below seabed for the purpose of soil sampling and in-situ testing and a pilot hole to 155m below the seabed, which was later converted to a fit-for-purpose relief well as an alternate migration path for the gas. During the soil investigation campaign, dissipation tests were performed at several layers which were potentially the source or migration path for the gas. Five (5) soil samples were segregated for headspace test, to identify the gas type which subsequently can be used to identify the origin of the gas. Dissipation tests performed at four depth intervals indicates pore water pressure less than 20 % of the effective vertical stress and appear to continue decreasing if the test had not been stopped. It was concluded that a low to a negligible amount of excess pore pressure exist in clayey silt layers. Results from headspace test show presence of methane corresponding to the clayey silt layers as reported in the boring logs. The gas most likely comes from biogenic sources, feeding on organic matter in situ over a large depth range. It is unlikely that there are large pockets of gas in the soil due to its homogeneous clayey nature and the lack of excess pore pressure in other permeable clayey silt layers encountered. Instead, it is more likely that when pore water at certain depth encounters a more permeable path, such as a borehole, it rises up through this path due to the temperature gradient in the soil. As the water rises the pressure decreases, which could cause gases dissolved in the water to come out of solution and form bubbles. As a result, the gas will have no impact on the integrity of the foundation at Platform T. The fit-for-purpose relief well design as well as adopting headspace testing can be used to address the shallow gas issue at Platform T in a cost effective and efficient manners.

Keywords: dissipation test, headspace test, excess pore pressure, relief well, shallow gas

Procedia PDF Downloads 263
10837 Laboratory Studies to Assess the Effect of Recron Fiber on Soil Subgrade Characteristics

Authors: Lokesh Gupta, Rakesh Kumar

Abstract:

Stabilization of weak subgrade soil is mainly aimed for the improvement of soil strength and its durability. Highway engineers are concerned to get the soil material or system that will hold under the design use conditions and for the designed life of the engineering project. The present study envisages the effect of Recron fibres mixed in different proportion (up to 1% by weight of dry soil) on Atterberg limits, Compaction of the soil, California bearing ratio (CBR) values and unconfined compressive strength (UCS) of the soil. The present study deals with the influence of varying in length (20 mm, 30mm, 40mm and 50mm) and percentage (0.25 %, 0.50 %, 0.75 % and 1.0 %) of fibre added to the soil samples. The aim of study is to determine the reinforcing effect of randomly distributed fibres on the Compaction characteristics, penetration resistance and unconfined compressive strength of soils. The addition of fibres leads to an increase in the optimum moisture content and decrease in maximum dry density. With the addition of the fibres, the increases in CBR and UCS values are observed. The test result shows higher CBR and unconfined compressive strength value for the soil reinforced with 0.5% Recron fibre, once keeping aspect ratio as 160.

Keywords: soil, recron fiber, unconfined compressive strength (UCS), California bearing ratio (CBR)

Procedia PDF Downloads 157
10836 Numerical Modelling of Prestressed Geogrid Reinforced Soil System

Authors: Soukat Kumar Das

Abstract:

Rapid industrialization and increase in population has resulted in the scarcity of suitable ground conditions. It has driven the need of ground improvement by means of reinforcement with geosynthetics with the minimum possible settlement and with maximum possible safety. Prestressing the geosynthetics offers an economical yet safe method of gaining the goal. Commercially available software PLAXIS 3D has made the analysis of prestressed geosynthetics simpler with much practical simulations of the ground. Attempts have been made so far to analyse the effect of prestressing geosynthetics and the effect of interference of footing on Unreinforced (UR), Geogrid Reinforced (GR) and Prestressed Geogrid Reinforced (PGR) soil on the load bearing capacity and the settlement characteristics of prestressed geogrid reinforced soil using the numerical analysis by using the software PLAXIS 3D. The results of the numerical analysis have been validated and compared with those given in the referred paper. The results have been found to be in very good agreement with those of the actual field values with very small variation. The GR soil has been found to be improve the bearing pressure 240 % whereas the PGR soil improves it by almost 500 % for 1mm settlement. In fact, the PGR soil has enhanced the bearing pressure of the GR soil by almost 200 %. The settlement reduction has also been found to be very significant as for 100 kPa bearing pressure the settlement reduction of the PGR soil has been found to be about 88 % with respect to UR soil and it reduced to up to 67 % with respect to GR soil. The prestressing force has resulted in enhanced reinforcement mechanism, resulting in the increased bearing pressure. The deformation at the geogrid layer has been found to be 13.62 mm for GR soil whereas it decreased down to mere 3.5 mm for PGR soil which certainly ensures the effect of prestressing on the geogrid layer. The parameter Improvement factor or conventionally known as Bearing Capacity Ratio for different settlements and which depicts the improvement of the PGR with respect to UR and GR soil and the improvement of GR soil with respect to UR soil has been found to vary in the range of 1.66-2.40 in the present analysis for GR soil and was found to be vary between 3.58 and 5.12 for PGR soil with respect to UR soil. The effect of prestressing was also observed in case of two interfering square footings. The centre to centre distance between the two footings (SFD) was taken to be B, 1.5B, 2B, 2.5B and 3B where B is the width of the footing. It was found that for UR soil the improvement of the bearing pressure was up to 1.5B after which it remained almost same. But for GR soil the zone of influence rose up to 2B and for PGR it further went up to 2.5B. So the zone of interference for PGR soil has increased by 67% than Unreinforced (UR) soil and almost 25 % with respect to GR soil.

Keywords: bearing, geogrid, prestressed, reinforced

Procedia PDF Downloads 399
10835 Effect of Land Use on Soil Organic Carbon Stock and Aggregate Dynamics of Degraded Ultisol in Nsukka, Southeastern Nigeria

Authors: Chukwuebuka Vincent Azuka, Chidimma Peace Odoh

Abstract:

Changes in agricultural practices and land use influence the storage and release of soil organic carbon and soil structural dynamics. To investigate this in Nsukka, southeastern Nigeria, soil samples were collected at 0-10 cm, 10-20 cm and 20-30 cm from three locations; Ovoko (OV), Obukpa (OB) and University of Nigeria, Nsukka (UNN) and three land use types; cultivated land (CL), forest land (FL) and grassland (GL)). Data were subjected to analysis of variance (ANOVA) using SPSS. Also, correlations between organic carbon stock, structural stability indices and other soil properties were established. The result showed that Ksat was significantly (p < 0.05) influenced by location with mean values of 68 cmhr⁻¹,121.63 cmhr⁻¹, 8.42 cmhr⁻¹ in OV, OB and UNN respectively. The MWD and aggregate stability (AS) were significantly (p < 0.05) influenced by land use and depth. The mean values of MWD are 0.85 (CL), 1.35 (FL) and 1.45 (GL), and 1.66 at 0-10 cm, 1.08 at 10-20 cm and 0.88 mm at 20-30 cm. The mean values of AS are; 27.66% (CL), 46.39% (FL) and 49.81% (GL), and 53.96% at 0-10cm, 40.22% at 10-20cm and 29.57% at 20-30cm. Clay flocculation (CFI) and dispersion indices (CDI) differed significantly (p < 0.05) among the land use. Soil pH differed significantly (p < 0.05) across the land use and locations with mean values ranging from 3.90-6.14. Soil organic carbon (SOC) significantly (p < 0.05) differed across locations and depths. SOC decreases as depth increases depth with mean values of 15.6 gkg⁻¹, 10.1 gkg⁻¹, and 8.6 gkg⁻¹ at 0-10 cm, 10-20 cm, and 20-30 cm respectively. SOC in the three land use was 8.8 g kg-1, 15.2 gkg⁻¹ and 10.4 gkg⁻¹ at CL, FL, and GL respectively. The highest aggregate-associated carbon was recorded in 0.5 mm across the land use and depth except in cultivated land and at 20-30 cm which recorded their highest SOC at 1mm. SOC stock, total nitrogen (TN) and CEC were significantly (p < 0.05) different across the locations with highest values of 23.43 t/ha, 0.07g/kg and 14.27 Cmol/kg respectively recorded in UNN. SOC stock was significantly (p < 0.05) influenced by depth as follows; 0-10>10-20>20-30 cm. TN was low with mean values ranging from 0.03-0.07 across the locations, land use and depths. The mean values of CEC ranged from 9.96-14.27 Cmol kg⁻¹ across the locations and land use. SOC stock showed correlation with silt, coarse sand, N and CEC (r = 0.40*, -0.39*, -0.65** and 0.64** respectively. AS showed correlation with BD, Ksat, pH in water and KCl, and SOC (r = -0.42*, 0.54**, -0.44*, -0.45* and 0.49** respectively. Thus, land use and location play a significant role in sustainable management of soil resources.

Keywords: agricultural practices, structural dynamics, sequestration, soil resources, management

Procedia PDF Downloads 136
10834 The Psychological Significance of Cultural and Religious Values Among the Arab Population

Authors: Michel Mikhail

Abstract:

Introduction: Values, which are the guiding principles and beliefs of our lives, have an influence on one’s psychological health. This study aims to investigate how Schwartz’s four higher-order values (conservation, openness to change, self-transcendence, and self-enhancement) and religious values influence psychological health among the Arab population. Methods: A total of 1,023 respondents from nine Arab countries aged 18 to 71 filled out an online survey with measures of the following constructs: Schwartz’s four higher-order values (Portrait Value Questionnaire-21), religious values (Sahin’s Index of Islamic Moral Values), and general psychological health (General Health Questionnaire-28). Results: Two models of multiple regression were conducted to investigate the relationships between values and psychological health. Higher conservation, self-enhancement, and religious values were significantly associated with better psychological health, with conservation losing significance after adding religious values to the model. All of Schwartz’s four values were found to have a significant relationship with religious values. More self-enhancement and conservation values were associated with higher identification of religious values, and the opposite was true for the other two values. Conclusion: The findings challenged existing assumptions that conservation values relate negatively to psychological health. This finding could be explained by the congruence of conservation values and the Arab culture. The most powerful relationships were those of self-enhancement and religious values, both of which were positively associated with psychological health. As such, therapists should be aware to reconsider biases against religious or conservation values and rather pay attention to their potential positive influence over one’s psychological health.

Keywords: counseling psychology, counseling and cultural values, counseling and religious values, psychotherapy and Arab values

Procedia PDF Downloads 34
10833 Stabilization of Spent Engine Oil Contaminated Lateritic Soil Admixed with Cement Kiln Dust for Use as Road Construction Materials

Authors: Johnson Rotimi Oluremi, A. Adedayo Adegbola, A. Samson Adediran, O. Solomon Oladapo

Abstract:

Spent engine oil contains heavy metals and polycyclic aromatic hydrocarbons which contribute to chronic health hazards, poor soil aeration, immobilisation of nutrients and lowering of pH in soil. It affects geotechnical properties of lateritic soil thereby constituting geotechnical and foundation problems. This study is therefore based on the stabilization of spent engine oil (SEO) contaminated lateritic soil using cement kiln dust (CKD) as a mean of restoring it to its pristine state. Geotechnical tests which include sieve analysis, atterberg limit, compaction, California bearing ratio and unconfined compressive strength tests were carried out on the natural, SEO contaminated and CKD stabilized SEO contaminated lateritic soil samples. The natural soil classified as A-2-7 (2) by AASHTO classification and GC according to the Unified Soil Classification System changed to A-4 non-plastic soil due to SEO contaminated even under the influence of CKD it remained unchanged. However, the maximum dry density (MDD) of the SEO contaminated soil increased while the optimum moisture content (OMC) behaved vice versa with the increase in the percentages of CKD. Similarly, the bearing strength of the stabilized SEO contaminated soil measured by California Bearing Ratio (CBR) increased with percentage increment in CKD. In conclusion, spent engine oil has a detrimental effect on the geotechnical properties of the lateritic soil sample but which can be remediated using 10% CKD as a stand alone admixture in stabilizing spent engine oil contaminated soil.

Keywords: spent engine oil, lateritic soil, cement kiln dust, stabilization, compaction, unconfined compressive strength

Procedia PDF Downloads 383
10832 Irrigation Challenges, Climate Change Adaptation and Sustainable Water Usage in Developing Countries. A Case Study, Nigeria

Authors: Faith Eweluegim Enahoro-Ofagbe

Abstract:

Worldwide, every nation is experiencing the effects of global warming. In developing countries, due to the heavy reliance on agriculture for socioeconomic growth and security, among other things, these countries are more affected by climate change, particularly with the availability of water. Floods, droughts, rising temperatures, saltwater intrusion, groundwater depletion, and other severe environmental alterations are all brought on by climatic change. Life depends on water, a vital resource; these ecological changes affect all water use, including agriculture and household water use. Therefore adequate and adaptive water usage strategies for sustainability are essential in developing countries. Therefore, this paper investigates Nigeria's challenges due to climate change and adaptive techniques that have evolved in response to such issues to ensure water management and sustainability for irrigation and provide quality water to residents. Questionnaires were distributed to respondents in the study area, central Nigeria, for quantitative evaluation of sustainable water resource management techniques. Physicochemical analysis was done, collecting soil and water samples from several locations under investigation. Findings show that farmers use different methods, ranging from intelligent technologies to traditional strategies for water resource management. Also, farmers need to learn better water resource management techniques for sustainability. Since more residents obtain their water from privately held sources, the government should enforce legislation to ensure that private borehole construction businesses treat water sources of poor quality before the general public uses them.

Keywords: developing countries, irrigation, strategies, sustainability, water resource management, water usage

Procedia PDF Downloads 108
10831 Effect of Leachate Presence on Shear Strength Parameters of Bentonite-Amended Zeolite Soil

Authors: R. Ziaie Moayed, H. Keshavarz Hedayati

Abstract:

Over recent years, due to increased population and increased waste production, groundwater protection has become more important, therefore, designing engineered barrier systems such as landfill liners to prevent the entry of leachate into groundwater should be done with greater accuracy. These measures generally involve the application of low permeability soils such as clays. Bentonite is a natural clay with low permeability which makes it a suitable soil for using in liners. Also zeolite with high cation exchange capacity can help to reduce of hazardous materials risk. Bentonite expands when wet, absorbing as much as several times its dry mass in water. This property may effect on some structural properties of soil such as shear strength. In present study, shear strength parameters are determined by both leachates polluted and not polluted bentonite-amended zeolite soil with mixing rates (B/Z) of 5%-10% and 20% with unconfined compression test to obtain the differences. It is shown that leachate presence causes reduction in resistance in general.

Keywords: bentonite, leachate, shear strength parameters, unconfined compression test

Procedia PDF Downloads 100
10830 Effect of Non-Legume Primary Ecological Successor on Nitrogen Content of Soil

Authors: Vikas Baliram Kalyankar

Abstract:

Study of ecology is important as it plays role in development of environment engineering. With the advent of technologies the study of ecosystem structure and changes in it are remaining unnoticed. The ecological succession is the sequential replacement of plant species following changes in the environment. The present study depicts the primary ecological succession in an area leveled up to the height of five feet with no signs of plant life on it. The five quadrates of 1 meter square size were observed during the study period of six months. Rain water being the only source of water in the area increased its ecological importance. The primary successor was non- leguminous plant Balonites roxburgii during the peak drought periods in the region of the summer 2013-14. The increased nitrogen content of soil after the plant implied its role in atmospheric nitrogen fixation.

Keywords: succession, Balonites roxburgii, non-leguminous plant, ecology

Procedia PDF Downloads 485
10829 Effect of Palm Oil Mill Effluent on Microbial Composition in Soil Samples in Isiala Mbano Lga

Authors: Eze Catherine Chinwe, J. D. Njoku

Abstract:

Background: Palm oil mill effluent is the voluminous liquid waste that comes from the sterilization and clarification sections of the oil palm milling process. The raw effluent contains 90-95% water and includes residual oil, soil particles, and suspended solids. Palm oil mill effluent is a highly polluting material and much research has been dedicated to means of alleviating its threat to the environment. Objectives: 1. To compare Physico-chemical and microbiological analysis of soil samples from POME and non-POME sites. 2. To make recommendations on how best to handle POME in the study area. Methods: Quadrant approach was adopted for sampling POME (A) and Non POME (B) locations. Qualities were determined using standard analytical procedures. Conclusions: Results of the analysis were obtained in the following range; pH (3.940 –7.435), dissolved oxygen (DO) (1.582–6.234mg/l), biological oxygen demand (BOD) (50–5463mg/l etc. For the various locations, the population of total heterotrophic bacteria (THB) ranged from 1.36x106–2.42x106 cfu/ml, the total heterotrophic fungi (THF) ranged from 1.22–3.05 x 104 cfu/ml. The frequency of occurrence revealed the microbial isolates Pseudomonas sp., Bacillus sp., Staphylococcus, as the most frequently occurring isolates. Analysis of variance showed that there were significant differences (P<0.05) in microbial populations among locations. The discharge of industrial effluents into the soil in Nigeria invariably results in the presence of high concentrations of pollutant in the soil environment.

Keywords: effluents, mirobial composition, soil samples, isiala mbano

Procedia PDF Downloads 307
10828 A GIS Based Composite Land Degradation Assessment and Mapping of Tarkwa Mining Area

Authors: Bernard Kumi-Boateng, Kofi Bonsu

Abstract:

The clearing of vegetation in the Tarkwa Mining Area (TMA) for the purposes of mining, lumbering and development of settlement for the increasing population has caused a large scale denudation of the forest cover and erosion of the top soil thereby degrading the agriculture land. It is, therefore, essential to know the current status of land degradation in TMA so as to facilitate land conservation policy-making. The types of degradation, the extents of the degradations and their various degrees were combined to develop a composite land degradation index to assess the current status of land degradation in TMA using GIS based techniques. The assessment revealed that the most significant types of degradation in TMA were open pit and quarry mining; urbanisation and other construction projects; and surface scraping during land clearing. It was found that 21.62 % of the total area of TMA (353.07 km2) had high degradation index rating. It is recommended that decision makers use this assessment as a reference point for future initiatives that will be taken in order to develop land conservation policy.

Keywords: degradation, GIS, land, mining

Procedia PDF Downloads 348
10827 Numerical Investigation of Nanofluid Based Thermosyphon System

Authors: Kiran Kumar K., Ramesh Babu Bejjam, Atul Najan

Abstract:

A thermosyphon system is a heat transfer loop which operates on the basis of gravity and buoyancy forces. It guarantees a good reliability and low maintenance cost as it does not involve any mechanical pump. Therefore it can be used in many industrial applications such as refrigeration and air conditioning, electronic cooling, nuclear reactors, geothermal heat extraction, etc. But flow instabilities and loop configuration are the major problems in this system. Several previous researchers studied that stabilities can be suppressed by using nanofluids as loop fluid. In the present study a rectangular thermosyphon loop with end heat exchangers are considered for the study. This configuration is more appropriate for many practical applications such as solar water heater, geothermal heat extraction, etc. In the present work, steady-state analysis is carried out on thermosyphon loop with parallel flow coaxial heat exchangers at heat source and heat sink. In this loop nano fluid is considered as the loop fluid and water is considered as the external fluid in both hot and cold heat exchangers. For this analysis one-dimensional homogeneous model is developed. In this model, conservation equations like conservation of mass, momentum, energy are discretized using finite difference method. A computer code is written in MATLAB to simulate the flow in thermosyphon loop. A comparison in terms of heat transfer is made between water and nano fluid as working fluids in the loop.

Keywords: heat exchanger, heat transfer, nanofluid, thermosyphon loop

Procedia PDF Downloads 473
10826 Numerical Investigation of Embankment Settlement Improved by Method of Preloading by Vertical Drains

Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi

Abstract:

Time dependent settlement due to loading on soft saturated soils produces many problems such as high consolidation settlements and low consolidation rates. Also, long term consolidation settlement of soft soil underlying the embankment leads to unpredicted settlements and cracks on soil surface. Preloading method is an effective improvement method to solve this problem. Using vertical drains in preloading method is an effective method for improving soft soils. Applying deep soil mixing method on soft soils is another effective method for improving soft soils. There are little studies on using two methods of preloading and deep soil mixing simultaneously. In this paper, the concurrent effect of preloading with deep soil mixing by vertical drains is investigated through a finite element code, Plaxis2D. The influence of parameters such as deep soil mixing columns spacing, existence of vertical drains and distance between them, on settlement and stability factor of safety of embankment embedded on soft soil is investigated in this research.

Keywords: preloading, soft soil, vertical drains, deep soil mixing, consolidation settlement

Procedia PDF Downloads 209
10825 Reliability of Using Standard Penetration Test (SPT) in Evaluation of Soil Properties

Authors: Hossein Alimohammadi, Mohsen Amirmojahedi, Mehrdad Rowhani

Abstract:

Soil properties are used by geotechnical engineers to evaluate and analyze site conditions for designing purposes. Although basic soil classification tests are easy to perform and provide useful information to determine the properties of soils, it may take time to get the result and add some costs to the projects. Standard Penetration Test (SPT) provides an opportunity to evaluate soil parameters without performing laboratory tests. In addition to its simplicity and cheapness, the results become available immediately. This research provides a guideline on the application of the SPT test method, reliability of adapting the SPT test results in evaluating soil physical and mechanical properties such as Atterberg limits, shear strength, and compressive strength compressibility parameters. A total of 70 boreholes were investigated in this study by taking soil samples between depths of 1.2 to 15.25 meters. The project site was located in Morrow County, Ohio. A regression-based formula was proposed based on Tobit regression with a stepwise variable selection analysis conducted between SPT and other typical soil properties obtained from soil tests. The results of the research illustrated that the shear strength and physical properties of the soil affect the SPT number. The proposed correlation can help engineers to use SPT test results in their design with higher accuracy.

Keywords: standard penetration test, soil properties, soil classification, regression method

Procedia PDF Downloads 185
10824 Multivariate Statistical Analysis of Heavy Metals Pollution of Dietary Vegetables in Swabi, Khyber Pakhtunkhwa, Pakistan

Authors: Fawad Ali

Abstract:

Toxic heavy metal contamination has a negative impact on soil quality which ultimately pollutes the agriculture system. In the current work, we analyzed uptake of various heavy metals by dietary vegetables grown in wastewater irrigated areas of Swabi city. The samples of soil and vegetables were analyzed for heavy metals viz Cd, Cr, Mn, Fe, Ni, Cu, Zn and Pb using Atomic Absorption Spectrophotometer. High levels of metals were found in wastewater irrigated soil and vegetables in the study area. Especially the concentrations of Pb and Cd in the dietary vegetable crossed the permissible level of World Health Organization. Substantial positive correlation was found among the soil and vegetable contamination. Transfer factor for some metals including Cr, Zn, Mn, Ni, Cd and Cu was greater than 0.5 which shows enhanced accumulation of these metals due to contamination by domestic discharges and industrial effluents. Linear regression analysis indicated significant correlation of heavy metals viz Pb, Cr, Cd, Ni, Zn, Cu, Fe and Mn in vegetables with concentration in soil of 0.964 at P≤0.001. Abelmoschus esculentus indicated Health Risk Index (HRI) of Pb >1 in adults and children. The source identification analysis carried out by Principal Component Analysis (PCA) and Cluster Analysis (CA) showed that ground water and soil were being polluted by the trace metals coming out from industries and domestic wastes. Hierarchical cluster analysis (HCA) divided metals into two clusters for wastewater and soil but into five clusters for soil of control area. PCA extracted two factors for wastewater, each contributing 61.086 % and 16.229 % of the total 77.315 % variance. PCA extracted two factors, for soil samples, having total variance of 79.912 % factor 1 and factor 2 contributed 63.889 % and 16.023 % of the total variance. PCA for sub soil extracted two factors with a total variance of 76.136 % factor 1 being 61.768 % and factor 2 being 14.368 %of the total variance. High pollution load index for vegetables in the study area due to metal polluted soil has opened a study area for proper legislation to protect further contamination of vegetables. This work would further reveal serious health risks to human population of the study area.

Keywords: health risk, vegetables, wastewater, atomic absorption sepctrophotometer

Procedia PDF Downloads 65
10823 The Renewed Constitutional Roots of Agricultural Law in Hungary in Line with Sustainability

Authors: Gergely Horvath

Abstract:

The study analyzes the special provisions of the highest level of national agricultural legislation in the Fundamental Law of Hungary (25 April 2011) with descriptive, analytic and comparative methods. The agriculturally relevant articles of the constitution are very important, because –in spite of their high level of abstraction– they can determine and serve the practice comprehensively and effectively. That is why the objective of the research is to interpret the concrete sentences and phrases in connection with agriculture compared with the methods of some other relevant constitutions (historical-grammatical interpretation). The major findings of the study focus on searching for the appropriate provisions and approach capable of solving the problems of sustainable food production. The real challenge agricultural law must face with in the future is protecting or conserving its background and subjects: the environment, the ecosystem services and all the 'roots' of food production. In effect, agricultural law is the legal aspect of the production of 'our daily bread' from farm to table. However, it also must guarantee the safe daily food for our children and for all our descendants. In connection with sustainability, this unique, value-oriented constitution of an agrarian country even deals with uncustomary questions in this level of legislation like GMOs (by banning the production of genetically modified crops). The starting point is that the principle of public good (principium boni communis) must be the leading notion of the norm, which is an idea partly outside the law. The public interest is reflected by the agricultural law mainly in the concept of public health (in connection with food security) and the security of supply with healthy food. The construed Article P claims the general protection of our natural resources as a requirement. The enumeration of the specific natural resources 'which all form part of the common national heritage' also means the conservation of the grounds of sustainable agriculture. The reference of the arable land represents the subfield of law of the protection of land (and soil conservation), that of the water resources represents the subfield of water protection, the reference of forests and the biological diversity visualize the specialty of nature conservation, which is an essential support for agrobiodiversity. The mentioned protected objects constituting the nation's common heritage metonymically melt with their protective regimes, strengthening them and forming constitutional references of law. This regimes also mean the protection of the natural foundations of the life of the living and also the future generations, in the name of intra- and intergenerational equity.

Keywords: agricultural law, constitutional values, natural resources, sustainability

Procedia PDF Downloads 163
10822 Stress-Strain Behavior of Banana Fiber Reinforced and Biochar Amended Compressed Stabilized Earth Blocks

Authors: Farnia Nayar Parshi, Mohammad Shariful Islam

Abstract:

Though earth construction is an ancient technology, researchers are working on increasing its strength by adding different types of stabilizers. Ordinary Portland cement for sandy soil and lime for clayey soil is very popular practice as well as recommended by various authorities for making stabilized blocks for satisfactory performance. The addition of these additives improves compressive strength but fails to improve ductility. The addition of both synthetic and natural fibers increases both compressive strength and ductility. Studies are conducted to make earth blocks more cost-effective, energy-efficient and sustainable. In this experiment, an agricultural waste banana fiber and biochar is used to study the compressive stress-strain behavior of earth blocks made with four types of soil low plastic clay, sandy low plastic clay, very fine sand and medium to fine sand. Biochar is a charcoal-like carbon usually produced from organic or agricultural waste in high temperatures through a controlled condition called pyrolysis. In this experimental study, biochar was collected from BBI (Bangladesh Biochar Initiative) produced from wood flakes around 400 deg. Celsius. Locally available PPC (Portland Pozzolana Cement) is used. 5 cm × 5 cm × 5 cm earth blocks were made with eight different combinations such as bare soil, soil with 6% cement, soil with 6% cement and 5% biochar, soil with 6% cement, 5% biochar and 1% fiber, soil with 1% fiber, soil with 5% biochar and 1% fiber and soil with 6% cement and 1% fiber. All samples were prepared with 10-12% water content. Uniaxial compressive strength tests were conducted on 21 days old earth blocks. Stress-strain diagram shows that the addition of banana fiber improved compressive strength drastically, but the combined effect of fiber and biochar is different based on different soil types. For clayey soil, 6% cement and 1% fiber give maximum compressive strength of 991 kPa, and for very fine sand, a combination of 5% biochar, 6% cement and 1% fiber gives maximum compressive strength of 522 kPa as well as ductility. For medium-to-find sand, 6% cement and 1% fiber give the best result, 1530 kPa, among other combinations. The addition of fiber increases not only ductility but also compressive strength as well. The effect of biochar with fiber varies with the soil type.

Keywords: banana fiber, biochar, cement, compressed stabilized earth blocks, compressive strength

Procedia PDF Downloads 117
10821 Water Detection in Aerial Images Using Fuzzy Sets

Authors: Caio Marcelo Nunes, Anderson da Silva Soares, Gustavo Teodoro Laureano, Clarimar Jose Coelho

Abstract:

This paper presents a methodology to pixel recognition in aerial images using fuzzy $c$-means algorithm. This algorithm is a alternative to recognize areas considering uncertainties and inaccuracies. Traditional clustering technics are used in recognizing of multispectral images of earth's surface. This technics recognize well-defined borders that can be easily discretized. However, in the real world there are many areas with uncertainties and inaccuracies which can be mapped by clustering algorithms that use fuzzy sets. The methodology presents in this work is applied to multispectral images obtained from Landsat-5/TM satellite. The pixels are joined using the $c$-means algorithm. After, a classification process identify the types of surface according the patterns obtained from spectral response of image surface. The classes considered are, exposed soil, moist soil, vegetation, turbid water and clean water. The results obtained shows that the fuzzy clustering identify the real type of the earth's surface.

Keywords: aerial images, fuzzy clustering, image processing, pattern recognition

Procedia PDF Downloads 471
10820 Investigating the Effect of Industrial Wastewater Application on the Concentration of Nitrate and Phosphate in the Soil of the Land Space of Chaharmahal and Bakhtiari Sefid Dasht Steel Company

Authors: Seyed Alireza Farrokhzad, Seyed Amin Alavi, Ebrahim Panahpour

Abstract:

The use of industrial wastewater affects the properties of soil, including its chemical properties. This research was conducted randomly in order to investigate the effect of industrial wastewater application on the concentration of nitrate and phosphate in loamy soil in the land space of Chaharmahal and Bakhtiari Sefid Dasht Steel Company. Industrial wastewater was added in ten irrigation periods in the three months of summer 2022 and was used in a part of the land space of the factory. After finishing the irrigation process with wastewater, the soil nitrate and phosphate values were measured at the depths of 0-25, 25-50 and 50-100 cm. The results showed that adding sewage to the soil increased nitrate and phosphate. The increase of these ions in the soil became loamy. Also, the results showed that the amount of phosphate in the soil decreases with increasing depth, while the amount of nitrate in the soil increases with increasing depth, which is due to the high mobility of nitrate along the soil profile. Also, with the increase in the level of use of wastewater, the amount of nitrate accumulation in the lower layers of the soil increased.

Keywords: industrial wastewater, soil chemical properties, loamy texture, land space

Procedia PDF Downloads 77
10819 Remediation of Heavy Metal Contaminated Soil with Vivianite Nanoparticles

Authors: Shinen B., Bavor J., Dorjkhand B., Suvd B., Maitsetseg B.

Abstract:

A number of remediation techniques are available for the treatment of soils and sediments contaminated by heavy metals. However, some of these techniques are expensive and environmentally disruptive. Nanomaterials are used in the environment as environmental catalysts to convert toxic substances from water, soil, and sediment into environmentally benign compounds. This study was carried out to scrutinize the feasibility of vivianite nanoparticles for remediation of soils contaminated with heavy metals. Column experiments were performed in the laboratory to examine nanoparticle sequestration of metal in soil amended with vivianite nanoparticle suspension. The effect of environmental parameters such as temperature, pH and redox potential on metal leachability and bioavailability of soil amended with nanoparticle suspension was examined and compared with non-amended soils. The vivianite was effective in reducing the leachability of metals in soils. It is suggested that vivianite nanoparticles could be applied for the remediation of contaminated sites polluted by heavy metals due to mining activities, particularly in Mongolia, where mining industries have been developing rapidly in the last decade.

Keywords: bioavailability, heavy metals, nanoparticles, remediation

Procedia PDF Downloads 183
10818 Climate Change Adaptation Strategy Recommended for the Conservation of Biodiversity in Western Ghats, India

Authors: Mukesh Lal Das, Muthukumar Muthuchamy

Abstract:

Climate change Adaptation strategy (AS) is a scientific approach to dealing with the impacts of climate change (CC). Efforts are being made to contain the global emission of greenhouse gas within threshold limits, thereby limiting the rise of global temperature to an optimal level. Global Climate change is a spontaneous process; therefore, reversing the damage would take decades. The climate change adaptation strategy recommended by various stakeholders could be a key to resilience for biodiversity. The Indian Government has constituted the panel to synthesize the climate change action report at the federal and state levels. This review scavenged the published literature on the Western Ghats hotspots. And highlight the adaptation strategy recommended by diverse scientific actors to conserve biodiversity. It also reviews the grey literature adopted by state and federal governments and its effectiveness in mitigating the impacts on biodiversity. We have narrowed the scope of interest to the state action report by 6 Indian states such as Gujarat, Maharashtra, Goa, Karnataka, Kerala and Tamil Nadu, which host Western Ghats global biodiversity hotspot. Western Ghats(WGs) act as the water tower to the peninsular part of India, and its extensive watershed caters to the water demand of the Industry sector, Agriculture and urban community. Conservation of WGs is the key to the prosperity of Peninsular India. The global scientific community suggested more than 600+ Climate change adaptation strategies for the policymakers, stakeholders, and other state actors to take proactive actions. The preliminary analysis of the federal and the state action plan on climate change in the wake of CC indicate inadequacy in motion as per recommended scientific adaptation strategies. Tamil Nadu and Kerala state constitute nine effective adaptation strategies out of the 40+ recommended for Western Ghats conservation. And other four states' adaptation strategies are deficient, confusing and vague. Western Ghats' resilience capacity will soon or might have reached its threshold, and the frequency of severe drought and flash floods might upsurge manifold in the decades to come. The lack of a clear roadmap to climate change adaptation strategies in the federal and state action stirred us to identify the gap and address it by offering a holistic approach to WGs biodiversity conservation.

Keywords: adaptation strategy, biodiversity conservation, climate change, resilience, Western Ghats

Procedia PDF Downloads 100
10817 Impact of Climate Change on Forest Ecosystem Services: In situ Biodiversity Conservation and Sustainable Management of Forest Resources in Tropical Forests

Authors: Rajendra Kumar Pandey

Abstract:

Forest genetic resources not only represent regional biodiversity but also have immense value as the wealth for securing livelihood of poor people. These are vulnerable to ecological due to depletion/deforestation and /or impact of climate change. These resources of various plant categories are vulnerable on the floor of natural tropical forests, and leading to the threat on the growth and development of future forests. More than 170 species, including NTFPs, are in critical condition for their survival in natural tropical forests of Central India. Forest degradation, commensurate with biodiversity loss, is now pervasive, disproportionately affecting the rural poor who directly depend on forests for their subsistence. Looking ahead the interaction between forest and water, soil, precipitation, climate change, etc. and its impact on biodiversity of tropical forests, it is inevitable to develop co-operation policies and programmes to address new emerging realities. Forests ecosystem also known as the 'wealth of poor' providing goods and ecosystem services on a sustainable basis, are now recognized as a stepping stone to move poor people beyond subsistence. Poverty alleviation is the prime objective of the Millennium Development Goals (MDGs). However, environmental sustainability including other MDGs, is essential to ensure successful elimination of poverty and well being of human society. Loss and degradation of ecosystem are the most serious threats to achieving development goals worldwide. Millennium Ecosystem Assessment (MEA, 2005) was an attempt to identify provisioning and regulating cultural and supporting ecosystem services to provide livelihood security of human beings. Climate change may have a substantial impact on ecological structure and function of forests, provisioning, regulations and management of resources which can affect sustainable flow of ecosystem services. To overcome these limitations, policy guidelines with respect to planning and consistent research strategy need to be framed for conservation and sustainable development of forest genetic resources.

Keywords: climate change, forest ecosystem services, sustainable forest management, biodiversity conservation

Procedia PDF Downloads 292
10816 Assessment of Factors Influencing Adoption of Agroforestry Technologies in Halaba Special Woreda, Southern Ethiopia

Authors: Mihretu Erjabo

Abstract:

Halaba special district is characterized by drought, soil erosion, high population pressure, poor livestock production, lack of feed for livestock, very deep water table, very low productivity of crops and food insufficiency. In order to address these problems, the woreda agricultural development office along with other management practices such as soil physical conservation measures agroforestry was introduced decades ago as a means to alleviate the problem. However, the level of agroforestry adoption remains low. Objective of this study was to identify the factors that influence adoption of agroforestry technologies by farmers in the district. Random sampling was employed to select two kebele administrations and respondents. Data collection was conducted by rural household questionnaire survey, participatory rural appraisal, questionnaires for local and woreda extension staff, secondary data resources and field observation. A sample of 12 key informants, 6 extension staffs, and 182 households, were used in the data collection. Chi square test used to determine significant relationships between adoption of agroforestry and 15 selected variables. Out of which eleven were found to be significant to affect farmers’ adoptiveness. These were frequency of visits of farmers (13.39%), participation in training (11.49%), farmers’ attitude towards agroforestry practices (10.61%), frequency of visits of extensionists (10.38%), participation in extension meeting (10.34%), participation in field day (10.28%), land holding size (9.29%), level of literacy (8.78%), awareness about the importance of agroforestry technology packages (7.06%), time taken from their residence to nearest extension (5.04%) and gender of respondents (3.34%). This study also identified various factors that result in low adoption rates of agroforestry including fear of competition, seedling, rainfall and labour shortage, free grazing, financial problem, expecting trees as soil degrader and long span of trees and lack of need ranking. To improve farmers’ adoption, the factors identified should be well addressed by launching a series and recurrent outreach extension program appropriate and suitable to farmers need.

Keywords: farmers attitude, farmers participation, soil degradation, technology packages

Procedia PDF Downloads 153
10815 Laboratory Calibration of Soil Pressure Transducer for a Specified Field Application

Authors: Mohammad Zahidul Islam Bhuiyan, Shanyong Wang, Scott William Sloan, Daichao Sheng

Abstract:

Nowadays soil pressure transducers are widely used to measure the soil stress states in laboratory and field experiments. The soil pressure transducers, investigated here, are traditional diaphragm-type earth pressure cells (DEPC) based on strain gauge principle. It is found that the output of these sensors varies with the soil conditions as well as the position of a sensor. Therefore, it is highly recommended to calibrate the pressure sensors based on the similar conditions of their intended applications. The factory calibration coefficients of the EPCs are not reliable to use since they are normally calibrated by applying fluid (a special type of oil) pressure only over load sensing zone, which does not represent the actual field conditions. Thus, the calibration of these sensors is utmost important, and they play a pivotal role for assessing earth pressures precisely. In the present study, TML soil pressure sensor is used to compare its sensitivity under different calibration systems, for example, fluid calibration, and static load calibration with or without soil. The results report that the sensor provides higher sensitivity (more accurate results) under soil calibration system.

Keywords: calibration, soil pressure, earth pressure cell, sensitivity

Procedia PDF Downloads 237
10814 Nursery Treatments May Improve Restoration Outcomes by Reducing Seedling Transplant Shock

Authors: Douglas E. Mainhart, Alejandro Fierro-Cabo, Bradley Christoffersen, Charlotte Reemts

Abstract:

Semi-arid ecosystems across the globe have faced land conversion for agriculture and resource extraction activities, posing a threat to the important ecosystem services they provide. Revegetation-centered restoration efforts in these regions face low success rates due to limited soil water availability and high temperatures leading to elevated seedling mortality after planting. Typical methods to alleviate these stresses require costly post-planting interventions aimed at improving soil moisture status. We set out to evaluate the efficacy of applying in-nursery treatments to address transplant shock. Four native Tamaulipan thornscrub species were compared. Three treatments were applied: elevated CO2, drought hardening (four-week exposure each), and antitranspirant foliar spray (the day prior to planting). Our goal was to answer two primary questions: (1) Do treatments improve survival and growth of seedlings in the early period post-planting? (2) If so, what underlying physiological changes are associated with this improved performance? To this end, we measured leaf gas exchange (stomatal conductance, light saturated photosynthetic rate, water use efficiency), leaf morphology (specific leaf area), and osmolality before and upon the conclusion of treatments. A subset of seedlings from all treatments have been planted, which will be monitored in coming months for in-field survival and growth.First month field survival for all treatment groups were high due to ample rainfall following planting (>85%). Growth data was unreliable due to high herbivory (68% of all sampled plants). While elevated CO2 had infrequent or no detectable influence on all aspects of leaf gas exchange, drought hardening reduced stomatal conductance in three of the four species measured without negatively impacting photosynthesis. Both CO2 and drought hardening elevated leaf osmolality in two species. Antitranspirant application significantly reduced conductance in all species for up to four days and reduced photosynthesis in two species. Antitranspirants also increased the variability of water use efficiency compared to controls. Collectively, these results suggest that antitranspirants and drought hardening are viable treatments for reducing short-term water loss during the transplant shock period. Elevated CO2, while not effective at reducing water loss, may be useful for promoting more favorable water status via osmotic adjustment. These practices could improve restoration outcomes in Tamaulipan thornscrub and other semi-arid systems. Further research should focus on evaluating combinations of these treatments and their species-specific viability.

Keywords: conservation, drought conditioning, semi-arid restoration, plant physiology

Procedia PDF Downloads 84