Search results for: logistic regression analysis
28768 Prevalence and Associated Factors with Burnout Among Secondary School Teachers in the City of Cotonou in Benin in 2022
Authors: Antoine Vikkey Hinson, Ranty Jolianelle Dassi, Menonli Adjobimey, Rose Mikponhoue, Paul Ayelo
Abstract:
Introduction: The psychological hardship of the teaching profession maintains a chronic stress that inevitably evolves into burnout (BO) in the absence of adequate preventive measures. The objective of this study is to study the prevalence and factors associated with burnout among secondary school teachers in the city of Cotonou in 2022. Methods: This was a descriptive cross-sectional study with an analytical aim and prospective data collection that took place over a period of 2 months, from July 19 to August 19 and from October 1 to October 31, 2022. Sampling was done using a three-stage probability sampling technique. Data analysis was performed using R 4.1.1 software. Bivariate logistic regression was used to identify associated factors. The significance level chosen was 5% (p < 0.05). Results: A total of 270 teachers were included in the study, of whom 208 (77.00%) were men. The mean age of the workers was 38.03 ± 8.30 years. According to the Maslach Burnout Inventory, 58.51% of the teachers had burnout, with 41.10% of teachers in emotional exhaustion, 27.40% in depersonalization and 21.90% in loss of personal accomplishment. The severity of the syndrome was low to moderate in almost all teachers. The occurrence of BO was associated with), not practicing sports (ORa= 2,38 [1,32; 4,28]), jobs training (ORa= 1,86 [1,04; 3,34]) and an imbalance of effort/reward (ORa= 5,98 [2,24;15,98]). Conclusion: The prevalence of BO is high among secondary school teachers in the city of Cotonou. A larger scale study, including research on its consequences on the teacher and the learner, is necessary in order to act quickly to implement a prevention program.Keywords: burnout, teachers, Maslach burnout inventory, associated factors, Benin
Procedia PDF Downloads 7628767 The Labor Participation–Fertility Trade-off: The Case of the Philippines
Authors: Daphne Ashley Sze, Kenneth Santos, Ariane Gabrielle Lim
Abstract:
As women are now given more freedom and choice to pursue employment, the world’s over-all fertility has been decreasing mainly due to the shift in time allocation between working and child rearing. As such, we study the case of the Philippines, where there exists a decreasing fertility rate and increasing openness for women labor participation. We focused on the distinction between fertility and fecundity, the former being the manifestation of the latter and aim to trace and compare the effects of both fecundity and fertility to women’s employment status through the estimation of the reproduction function and multinomial logistic function. Findings suggest that the perception of women regarding employment opportunities in the Philippines links the negative relationship observed between fertility, fecundity and women’s employment status. Today, there has been a convergence in the traditional family roles of men and women, as both genders now have identical employment opportunities that continue to shape their preferences.Keywords: multinomial logistic function, tobit, fertility, women employment status, fecundity
Procedia PDF Downloads 60628766 The Effect of Non-Surgical Periodontal Therapy on Metabolic Control in Children
Authors: Areej Al-Khabbaz, Swapna Goerge, Majedah Abdul-Rasoul
Abstract:
Introduction: The most prevalent periodontal disease among children is gingivitis, and it usually becomes more severe in adolescence. A number of intervention studies suggested that resolution of periodontal inflammation can improve metabolic control in patients diagnosed with diabetes mellitus. Aim: to assess the effect of non-surgical periodontal therapy on glycemic control of children diagnosed with diabetes mellitus. Method: Twenty-eight children diagnosed with diabetes mellitus were recruited with established diagnosis diabetes for at least 1 year. Informed consent and child assent form were obtained from children and parents prior to enrolment. The dental examination for the participants was performed on the same week directly following their annual medical assessment. All patients had their glycosylated hemoglobin (HbA1c%) test one week prior to their annual medical and dental visit and 3 months following non-surgical periodontal therapy. All patients received a comprehensive periodontal examination The periodontal assessment included clinical attachment loss, bleeding on probing, plaque score, plaque index and gingival index. All patients were referred for non-surgical periodontal therapy, which included oral hygiene instruction and motivation followed by supra-gingival and subg-ingival scaling using ultrasonic and hand instruments. Statistical Analysis: Data were entered and analyzed using the Statistical Package for Social Science software (SPSS, Chicago, USA), version 18. Statistical analysis of clinical findings was performed to detect differences between the two groups in term of periodontal findings and HbA1c%. Binary logistic regression analysis was performed in order to examine which factors were significant in multivariate analysis after adjusting for confounding between effects. The regression model used the dependent variable ‘Improved glycemic control’, and the independent variables entered in the model were plaque index, gingival index, bleeding %, plaque Statistical significance was set at p < 0.05. Result: A total of 28 children. The mean age of the participants was 13.3±1.92 years. The study participants were divided into two groups; Compliant group (received dental scaling) and non-complaints group (received oral hygiene instructions only). No statistical difference was found between compliant and non-compliant group in age, gender distribution, oral hygiene practice and the level of diabetes control. There was a significant difference between compliant and non-compliant group in term of improvement of HBa1c before and after periodontal therapy. Mean gingival index was the only significant variable associated with improved glycemic control level. In conclusion, this study has demonstrated that non-surgical mechanical periodontal therapy can improve HbA1c% control. The result of this study confirmed that children with diabetes mellitus who are compliant to dental care and have routine professional scaling may have better metabolic control compared to diabetic children who are erratic with dental care.Keywords: children, diabetes, metabolic control, periodontal therapy
Procedia PDF Downloads 16128765 The Labor Participation-Fertility Trade-Off: Exploring Fecundity and Its Consequences to Women's Employment in the Philippines
Authors: Ariane C. Lim, Daphne Ashley L. Sze, Kenneth S. Santos
Abstract:
As women are now given more freedom and choice to pursue employment, the world’s over-all fertility has been decreasing mainly due to the shift in time allocation between working and child-rearing. As such, we study the case of the Philippines, where there exists a decreasing fertility rate and increasing openness for women labor participation. We focused on the distinction between fertility and fecundity, the former being the manifestation of the latter and aim to trace and compare the effects of both fecundity and fertility to women’s employment status through the estimation of the reproduction function and multinomial logistic function. Findings suggest that the perception of women regarding employment opportunities in the Philippines links the negative relationship observed between fertility, fecundity and women’s employment status. Today, there has been a convergence in the traditional family roles of men and women, as both genders now have identical employment opportunities that continue to shape their preferences.Keywords: multinomial logistic function, tobit, fertility, women employment status, fecundity
Procedia PDF Downloads 62928764 Blood Pressure Level, Targeted Blood Pressure Control Rate, and Factors Related to Blood Pressure Control in Post-Acute Ischemic Stroke Patients
Authors: Nannapus Saramad, Rewwadee Petsirasan, Jom Suwanno
Abstract:
Background: This retrospective study design was to describe average blood pressure, blood pressure level, target blood pressure control rate post-stroke BP control in the year following discharge from Sichon hospital, Sichon District, Nakhon Si Thammarat province. The secondary data analysis was employed from the patient’s health records with patient or caregiver interview. A total of 232 eligible post-acute ischemic strokes in the year following discharge (2017-2018) were recruited. Methods: Data analyses were applied to identify the relationship values of single variables were determined through univariate analyses: The Chi-square test, Fisher exact test, the variables found to have a p-value < 0.2 were analyzed by the binary logistic regression Results: Most of the patients in this study were men 61.6%, an average age of 65.4 ± 14.8 years. Systolic blood pressure levels were in the grade 1-2 hypertension and diastolic pressure at optimal and normal at all times during the initial treatment through the present. The results revealed 25% among the groups under the age of 60 achieved BP control; 36.3% for older than 60 years group; and 27.9% for diabetic group. The multivariate analysis revealed the final relationship of four significant variables: 1) receiving calcium-channel blocker (p =.027); 2) medication adherence of antihypertensive (p = .024) 3) medication adherence of antiplatelet ( p = .020); and 4) medication behavior ( p = . 010) . Conclusion: The medical nurse and health care provider should promote their adherence to behavior to improve their blood pressure control.Keywords: acute ischemic stroke, target blood pressure control, medication adherence, recurrence stroke
Procedia PDF Downloads 12228763 Sensitivity Based Robust Optimization Using 9 Level Orthogonal Array and Stepwise Regression
Authors: K. K. Lee, H. W. Han, H. L. Kang, T. A. Kim, S. H. Han
Abstract:
For the robust optimization of the manufacturing product design, there are design objectives that must be achieved, such as a minimization of the mean and standard deviation in objective functions within the required sensitivity constraints. The authors utilized the sensitivity of objective functions and constraints with respect to the effective design variables to reduce the computational burden associated with the evaluation of the probabilities. The individual mean and sensitivity values could be estimated easily by using the 9 level orthogonal array based response surface models optimized by the stepwise regression. The present study evaluates a proposed procedure from the robust optimization of rubber domes that are commonly used for keyboard switching, by using the 9 level orthogonal array and stepwise regression along with a desirability function. In addition, a new robust optimization process, i.e., the I2GEO (Identify, Integrate, Generate, Explore and Optimize), was proposed on the basis of the robust optimization in rubber domes. The optimized results from the response surface models and the estimated results by using the finite element analysis were consistent within a small margin of error. The standard deviation of objective function is decreasing 54.17% with suggested sensitivity based robust optimization. (Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2017, S2455569)Keywords: objective function, orthogonal array, response surface model, robust optimization, stepwise regression
Procedia PDF Downloads 28828762 Automatic API Regression Analyzer and Executor
Authors: Praveena Sridhar, Nihar Devathi, Parikshit Chakraborty
Abstract:
As the software product changes versions across releases, there are changes to the API’s and features and the upgrades become necessary. Hence, it becomes imperative to get the impact of upgrading the dependent components. This tool finds out API changes across two versions and their impact on other API’s followed by execution of the automated regression suites relevant to updates and their impacted areas. This tool has 4 layer architecture, each layer with its own unique pre-assigned capability which it does and sends the required information to next layer. This are the 4 layers. 1) Comparator: Compares the two versions of API. 2) Analyzer: Analyses the API doc and gives the modified class and its dependencies along with implemented interface details. 3) Impact Filter: Find the impact of the modified class on the other API methods. 4) Auto Executer: Based on the output given by Impact Filter, Executor will run the API regression Suite. Tool reads the java doc and extracts the required information of classes, interfaces and enumerations. The extracted information is saved into a data structure which shows the class details and its dependencies along with interfaces and enumerations that are listed in the java doc.Keywords: automation impact regression, java doc, executor, analyzer, layers
Procedia PDF Downloads 48828761 Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems
Authors: Nermin Sökmen
Abstract:
An effort estimation model is needed for software-intensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.Keywords: functional complexity, functional decomposition, development effort, technical difficulty, design team capability, regression analysis
Procedia PDF Downloads 29328760 Insights and Inferences Associated with Subscription of Health Insurance in the Informal Sector of India
Authors: Harinder Singh
Abstract:
The paper sheds light on the perceptions of the uninsured workers employed in the urban informal sector of India, towards the health insurance. In addition to this, it also explores the association of the identified perceptions with household decisions to enroll for health insurance schemes in India. Firstly the data taken from the primary survey of the uninsured workers employed in the urban informal sector was analyzed using exploratory factor analysis to evaluate the perceptions. Thereafter, logistic regression was employed to determine the association of the identified perceptions regarding the enrollment. Our study identifies twelve perceptions related to the health insurance enrollment of the uninsured workers employed in the urban informal sector of India. The study demonstrates that perceptions have the strongest association with the voluntary enrollment. These specifically relate to the lack of awareness about the need to buy health insurance; comprehensive coverage; income constraint; future contingencies and social obligations; lack of information; availability of subsidized government health care; linkage with government hospitals and preference for government schemes. Conclusions: Along with the food security, health security has become a crying need of the workers employed in the informal sector and the time has come to scale up the health insurance schemes for them in the country. Policy makers or marketers of health insurance policies should recognize the household perceptions as a potential barrier and try to develop a health insurance package as per the actual needs of the informal sector (low income) in India.Keywords: association, enrollment, health insurance, informal sector, perceptions, uninsured
Procedia PDF Downloads 26928759 A Case Comparative Study of Infant Mortality Rate in North-West Nigeria
Authors: G. I. Onwuka, A. Danbaba, S. U. Gulumbe
Abstract:
This study investigated of Infant Mortality Rate as observed at a general hospital in Kaduna-South, Kaduna State, North West Nigeria. The causes of infant Mortality were examined. The data used for this analysis were collected at the statistics unit of the Hospital. The analysis was carried out on the data using Multiple Linear regression Technique and this showed that there is linear relationship between the dependent variable (death) and the independent variables (malaria, measles, anaemia, and coronary heart disease). The resultant model also revealed that a unit increment in each of these diseases would result to a unit increment in death recorded, 98.7% of the total variation in mortality is explained by the given model. The highest number of mortality was recorded in July, 2005 and the lowest mortality recorded in October, 2009.Recommendations were however made based on the results of the study.Keywords: infant mortality rate, multiple linear regression, diseases, serial correlation
Procedia PDF Downloads 32928758 Non-Methane Hydrocarbons Emission during the Photocopying Process
Authors: Kiurski S. Jelena, Aksentijević M. Snežana, Kecić S. Vesna, Oros B. Ivana
Abstract:
The prosperity of electronic equipment in photocopying environment not only has improved work efficiency, but also has changed indoor air quality. Considering the number of photocopying employed, indoor air quality might be worse than in general office environments. Determining the contribution from any type of equipment to indoor air pollution is a complex matter. Non-methane hydrocarbons are known to have an important role of air quality due to their high reactivity. The presence of hazardous pollutants in indoor air has been detected in one photocopying shop in Novi Sad, Serbia. Air samples were collected and analyzed for five days, during 8-hr working time in three-time intervals, whereas three different sampling points were determined. Using multiple linear regression model and software package STATISTICA 10 the concentrations of occupational hazards and micro-climates parameters were mutually correlated. Based on the obtained multiple coefficients of determination (0.3751, 0.2389, and 0.1975), a weak positive correlation between the observed variables was determined. Small values of parameter F indicated that there was no statistically significant difference between the concentration levels of non-methane hydrocarbons and micro-climates parameters. The results showed that variable could be presented by the general regression model: y = b0 + b1xi1+ b2xi2. Obtained regression equations allow to measure the quantitative agreement between the variation of variables and thus obtain more accurate knowledge of their mutual relations.Keywords: non-methane hydrocarbons, photocopying process, multiple regression analysis, indoor air quality, pollutant emission
Procedia PDF Downloads 37828757 Impact of Perceived Stress on Psychological Well-Being, Aggression and Emotional Regulation
Authors: Nishtha Batra
Abstract:
This study was conducted to identify the effect of perceived stress on emotional regulation, aggression and psychological well-being. Analysis was conducted using correlational and regression models to examine the relationships between perceived stress (independent variable) and psychological factors containing emotional intelligence, psychological well-being and aggression. Subjects N=100, Male students 50 and Female students 50. The data was collected using Cohen's Perceived Stress Scale, Gross’s Emotional Regulation Questionnaire (ERQ), Ryff’s Psychological Well-being scale and Orispina’s aggression scale. Correlation and regression (SPSS version 22) Emotional regulation and psychological well-being had a significant relationship with Perceived stress.Keywords: perceived stress, psychological well-being, aggression, emotional regulation, students
Procedia PDF Downloads 2628756 Measuring Enterprise Growth: Pitfalls and Implications
Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić
Abstract:
Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.Keywords: growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises
Procedia PDF Downloads 25228755 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients
Authors: Bliss Singhal
Abstract:
Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels
Procedia PDF Downloads 8428754 Combined Analysis of m⁶A and m⁵C Modulators on the Prognosis of Hepatocellular Carcinoma
Authors: Hongmeng Su, Luyu Zhao, Yanyan Qian, Hong Fan
Abstract:
Aim: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors that endanger human health seriously. RNA methylation, especially N6-methyladenosine (m⁶A) and 5-methylcytosine (m⁵C), a crucial epigenetic transcriptional regulatory mechanism, plays an important role in tumorigenesis, progression and prognosis. This research aims to systematically evaluate the prognostic value of m⁶A and m⁵C modulators in HCC patients. Methods: Twenty-four modulators of m⁶A and m⁵C were candidates to analyze their expression level and their contribution to predict the prognosis of HCC. Consensus clustering analysis was applied to classify HCC patients. Cox and LASSO regression were used to construct the risk model. According to the risk score, HCC patients were divided into high-risk and low/medium-risk groups. The clinical pathology factors of HCC patients were analyzed by univariate and multivariate Cox regression analysis. Results: The HCC patients were classified into 2 clusters with significant differences in overall survival and clinical characteristics. Nine-gene risk model was constructed including METTL3, VIRMA, YTHDF1, YTHDF2, NOP2, NSUN4, NSUN5, DNMT3A and ALYREF. It was indicated that the risk score could serve as an independent prognostic factor for patients with HCC. Conclusion: This study constructed a Nine-gene risk model by modulators of m⁶A and m⁵C and investigated its effect on the clinical prognosis of HCC. This model may provide important consideration for the therapeutic strategy and prognosis evaluation analysis of patients with HCC.Keywords: hepatocellular carcinoma, m⁶A, m⁵C, prognosis, RNA methylation
Procedia PDF Downloads 6828753 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 25428752 The Effect of User Comments on Traffic Application Usage
Authors: I. Gokasar, G. Bakioglu
Abstract:
With the unprecedented rates of technological improvements, people start to solve their problems with the help of technological tools. According to application stores and websites in which people evaluate and comment on the traffic apps, there are more than 100 traffic applications which have different features with respect to their purpose of usage ranging from the features of traffic apps for public transit modes to the features of traffic apps for private cars. This study focuses on the top 30 traffic applications which were chosen with respect to their download counts. All data about the traffic applications were obtained from related websites. The purpose of this study is to analyze traffic applications in terms of their categorical attributes with the help of developing a regression model. The analysis results suggest that negative interpretations (e.g., being deficient) does not lead to lower star ratings of the applications. However, those negative interpretations result in a smaller increase in star rate. In addition, women use higher star rates than men for the evaluation of traffic applications.Keywords: traffic app, real–time information, traffic congestion, regression analysis, dummy variables
Procedia PDF Downloads 42928751 Influence of HIV Testing on Knowledge of HIV/AIDS Prevention Practices and Transmission among Undergraduate Youths in North-West University, Mafikeng
Authors: Paul Bigala, Samuel Oladipo, Steven Adebowale
Abstract:
This study examines factors influencing knowledge of HIV/AIDS Prevention Practices and Transmission (KHAPPT) among young undergraduate students (15-24 years). Knowledge composite index was computed for 820 randomly selected students. Chi-square, ANOVA, and multinomial logistic regression were used for the analyses (α=.05). The overall mean knowledge score was 16.5±3.4 out of a possible score of 28. About 83% of the students have undergone HIV test, 21.0% have high KHAPPT, 18% said there is cure for the disease, 23% believed that asking for condom is embarrassing and 11.7% said it is safe to share unsterilized sharp objects with friends or family members. The likelihood of high KHAPPT was higher among students who have had HIV test (OR=3.314; C.I=1.787-6.145, p<0.001) even when other variables were used as control. The identified predictors of high KHAPPT were; ever had HIV test, faculty, and ever used any HIV/AIDS prevention services. North-West University Mafikeng should intensify efforts on the HIV/AIDS awareness program on the campus.Keywords: HIV/AIDS knowledge, undergraduate students, HIV testing, Mafikeng
Procedia PDF Downloads 44328750 Prevalence of Caesarean-Section Delivery and Its Determinants in India: Evidence for Fifth National Family Health Surveys
Authors: Daisy Saikia
Abstract:
Long-term maternal health issues with Caesarean section deliveries are significant. Thus, this study aims to investigate the prevalence of caesarean section deliveries in India and to comprehend its associated predictors in light of the high caesarean section delivery rate. The study uses data from the fifth National Family Health Surveys (NFHS-5) round. Specifically, live births to women aged 15-49 in the 5 years preceding the survey. Binary logistic regression was used to check the adjusted effects of the predictor variables on caesarean section delivery. STATA/SE v16.0 was used for the data analysis with a 5% significance level. Twenty-two per cent of the live births to women were delivered by caesarean section. There was socio-economic, demographic and geographical variation in the prevalence of caesarean section delivery in India. Increasing age, body mass index, marital status, mother’s occupation and education, birth order, place of delivery, full ANC, non-tribal status, wealth quintile and region are significantly associated with caesarean section deliveries in India. Caesarean section deliveries should only be performed when essential from a medical perspective, and regions, where the rate is too high, should follow the guidelines. Additionally, it needs to be investigated whether private hospitals compel patients to have caesarean section deliveries to increase their revenue. Thus, these unnecessary deliveries must be examined immediately for safe childbirth and the wellness of both mother and child.Keywords: caesarean section, delivery, maternal health, India
Procedia PDF Downloads 7928749 Impact of Trade Cooperation of BRICS Countries on Economic Growth
Authors: Svetlana Gusarova
Abstract:
The essential role in the recent development of world economy has led to the developing countries, notably to BRICS countries (Brazil, Russia, India, China, South Africa). Over the next 50 years the BRICS countries are expected to be the engines of global trade and economic growth. Trade cooperation of BRICS countries can enhance their economic development. BRICS countries were among Top 10 world exporters of office and telecom equipment, of textiles, of clothing, of iron and steel, of chemicals, of agricultural products, of automotive products, of fuel and mining products. China was one of the main trading partners of all BRICS countries, maintaining close relationship with all BRICS countries in the development of trade. Author analyzed trade complementarity of BRICS countries and revealed the high level of complementarity of their trade flows in connection with availability of specialization in different types of goods. The correlation and regression analysis of communication of Intra-BRICS merchandise turnover and their GDP (PPP) revealed very strong impact on the development of their economies.Keywords: BRICS countries, trade cooperation, complementarity, regression analysis
Procedia PDF Downloads 28128748 Quantifying Stakeholders’ Values of Technical and Vocational Education and Training Provision in Nigeria
Authors: Lidimma Benjamin, Nimmyel Gwakzing, Wuyep Nanyi
Abstract:
Technical and Vocational Education and Training (TVET) has many stakeholders, each with their own values and interests. This study will focus on the diversity of the values and interests within and across groups of stakeholders by quantifying the value that stakeholders attached to several quality attributes of TVET, and also find out to what extent TVET stakeholders differ in their values. The quality of TVET therefore, depends on how well it aligns with the values and interests of these stakeholders. The five stakeholders are parents, students, teachers, policy makers, and work place training supervisors. The 9 attributes are employer appreciation of students, graduation rate, obtained computer skills of students, mentoring hours in workplace learning/Students Industrial Work Experience Scheme (SIWES), challenge, structure, students’ appreciation of teachers, schooling hours, and attention to civic education. 346 respondents (comprising Parents, Students, Teachers, Policy Makers, and Workplace Training Supervisors) were repeatedly asked to rank a set of 4 programs, each with a specific value on the nine quality indicators. Conjoint analysis was used to obtain the values that the stakeholders assigned to the 9 attributes when evaluating the quality of TVET programs. Rank-ordered logistic regression was the statistical/tool used for ranking the respondents values assign to the attributes. The similarities and diversity in values and interests of the different stakeholders will be of use by both Nigerian government and TVET colleges, to improve the overall quality of education and the match between vocational programs and their stakeholders simultaneous evaluation and combination of information in product attributes. Such approach models the decision environment by confronting a respondent with choices that are close to real-life choices. Therefore, it is more realistically than traditional survey methods.Keywords: TVET, vignette study, conjoint analysis, quality perception, educational stakeholders
Procedia PDF Downloads 8028747 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets
Abstract:
The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 600. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modelling mass transfer by multiple plunging jets.Keywords: mass transfer, multiple plunging jets, multi-linear regression, earth sciences
Procedia PDF Downloads 46128746 Pre-Operative Psychological Factors Significantly Add to the Predictability of Chronic Narcotic Use: A Two Year Prospective Study
Authors: Dana El-Mughayyar, Neil Manson, Erin Bigney, Eden Richardson, Dean Tripp, Edward Abraham
Abstract:
Use of narcotics to treat pain has increased over the past two decades and is a contributing factor to the current public health crisis. Understanding the pre-operative risks of chronic narcotic use may be aided through investigation of psychological measures. The objective of the reported study is to determine predictors of narcotic use two years post-surgery in a thoracolumbar spine surgery population, including an array of psychological factors. A prospective observational study of 191 consecutively enrolled adult patients having undergone thoracolumbar spine surgery is presented. Baseline measures of interest included the Pain Catastrophizing Scale (PCS), Tampa Scale for Kinesiophobia, Multidimensional Scale for Perceived Social Support (MSPSS), Chronic Pain Acceptance Questionnaire (CPAQ-8), Oswestry Disability Index (ODI), Numeric Rating Scales for back and leg pain (NRS-B/L), SF-12’s Mental Component Summary (MCS), narcotic use and demographic variables. The post-operative measure of interest is narcotic use at 2-year follow-up. Narcotic use is collapsed into binary categories of use and no use. Descriptive statistics are run. Chi Square analysis is used for categorical variables and an ANOVA for continuous variables. Significant variables are built into a hierarchical logistic regression to determine predictors of post-operative narcotic use. Significance is set at α < 0.05. Results: A total of 27.23% of the sample were using narcotics two years after surgery. The regression model included ODI, NRS-Leg, time with condition, chief complaint, pre-operative drug use, gender, MCS, PCS subscale helplessness, and CPAQ subscale pain willingness and was significant χ² (13, N=191)= 54.99; p = .000. The model accounted for 39.6% of the variance in narcotic use and correctly predicted in 79.7% of cases. Psychological variables accounted for 9.6% of the variance over and above the other predictors. Conclusions: Managing chronic narcotic usage is central to the patient’s overall health and quality of life. Psychological factors in the preoperative period are significant predictors of narcotic use 2 years post-operatively. The psychological variables are malleable, potentially allowing surgeons to direct their patients to preventative resources prior to surgery.Keywords: narcotics, psychological factors, quality of life, spine surgery
Procedia PDF Downloads 14428745 Predictors of School Drop out among High School Students
Authors: Osman Zorbaz, Selen Demirtas-Zorbaz, Ozlem Ulas
Abstract:
The factors that cause adolescents to drop out school were several. One of the frameworks about school dropout focuses on the contextual factors around the adolescents whereas the other one focuses on individual factors. It can be said that both factors are important equally. In this study, both adolescent’s individual factors (anti-social behaviors, academic success) and contextual factors (parent academic involvement, parent academic support, number of siblings, living with parent) were examined in the term of school dropout. The study sample consisted of 346 high school students in the public schools in Ankara who continued their education in 2015-2016 academic year. One hundred eighty-five the students (53.5%) were girls and 161 (46.5%) were boys. In addition to this 118 of them were in ninth grade, 122 of them in tenth grade and 106 of them were in eleventh grade. Multiple regression and one-way ANOVA statistical methods were used. First, it was examined if the data meet the assumptions and conditions that are required for regression analysis. After controlling the assumptions, regression analysis was conducted. Parent academic involvement, parent academic support, number of siblings, anti-social behaviors, academic success variables were taken into the regression model and it was seen that parent academic involvement (t=-3.023, p < .01), anti-social behaviors (t=7.038, p < .001), and academic success (t=-3.718, p < .001) predicted school dropout whereas parent academic support (t=-1.403, p > .05) and number of siblings (t=-1.908, p > .05) didn’t. The model explained 30% of the variance (R=.557, R2=.300, F5,345=30.626, p < .001). In addition to this the variance, results showed there was no significant difference on high school students school dropout levels according to living with parents or not (F2;345=1.183, p > .05). Results discussed in the light of the literature and suggestion were made. As a result, academic involvement, academic success and anti-social behaviors will be considered as an important factors for preventing school drop-out.Keywords: adolescents, anti-social behavior, parent academic involvement, parent academic support, school dropout
Procedia PDF Downloads 28428744 The Role of Environmental Analysis in Managing Knowledge in Small and Medium Sized Enterprises
Authors: Liu Yao, B. T. Wan Maseri, Wan Mohd, B. T. Nurul Izzah, Mohd Shah, Wei Wei
Abstract:
Effectively managing knowledge has become a vital weapon for businesses to survive or to succeed in the increasingly competitive market. But do they perform environmental analysis when managing knowledge? If yes, how is the level and significance? This paper established a conceptual framework covering the basic knowledge management activities (KMA) to examine their contribution towards organizational performance (OP). Environmental analysis (EA) was then investigated from both internal and external aspects, to identify its effects on that contribution. Data was collected from 400 Chinese SMEs by questionnaires. Cronbach's α and factor analysis were conducted. Regression results show that the external analysis presents higher level than internal analysis. However, the internal analysis mediates the effects of external analysis on the KMA-OP relation and plays more significant role in the relation comparing with the external analysis. Thus, firms shall improve environmental analysis especially the internal analysis to enhance their KM practices.Keywords: knowledge management, environmental analysis, performance, mediating, small sized enterprises, medium sized enterprises
Procedia PDF Downloads 61428743 Estimation of Missing Values in Aggregate Level Spatial Data
Authors: Amitha Puranik, V. S. Binu, Seena Biju
Abstract:
Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis
Procedia PDF Downloads 38228742 Assessing the Impact of Covid-19 Pandemic on Waste Management Workers in Ghana
Authors: Mensah-Akoto Julius, Kenichi Matsui
Abstract:
This paper examines the impact of COVID-19 on waste management workers in Ghana. A questionnaire survey was conducted among 60 waste management workers in Accra metropolis, the capital region of Ghana, to understand the impact of the COVID-19 pandemic on waste generation, workers’ safety in collecting solid waste, and service delivery. To find out correlations between the pandemic and safety of waste management workers, a regression analysis was used. Regarding waste generation, the results show the pandemic led to the highest annual per capita solid waste generation, or 3,390 tons, in 2020. Regarding the safety of workers, the regression analysis shows a significant and inverse association between COVID-19 and waste management services. This means that contaminated wastes may infect field workers with COVID-19 due to their direct exposure. A rise in new infection cases would have a negative impact on the safety and service delivery of the workers. The result also shows that an increase in economic activities negatively impacts waste management workers. The analysis, however, finds no statistical relationship between workers’ service deliveries and employees’ salaries. The study then discusses how municipal waste management authorities can ensure safe and effective waste collection during the pandemic.Keywords: Covid-19, waste management worker, waste collection, Ghana
Procedia PDF Downloads 20328741 Domestic Violence against Women and the Nutritional Status of Their Under-5 Children: A Cross Sectional Survey in Urban Slums of Chittagong, Bangladesh
Authors: Mohiuddin Ahsanul Kabir Chowdhury, Ahmed Ehsanur Rahman, Nazia Binte Ali, Abdullah Nurus Salam Khan, Afrin Iqbal, Mohammad Mehedi Hasan, Salma Morium, Afsana Bhuiyan, Shams El Arifeen
Abstract:
Violence against women has been treated as a global epidemic which is as fatal as any serious disease or accidents. Like many other low-income countries it is also common in Bangladesh. In spite of existence of a few documented evidences in some other countries, in Bangladesh, domestic violence against women (DVAW) is not considered as a factor for malnutrition in children yet. Hence, the aim of the study was to investigate the association between DVAW and the nutritional status of their under-5 children in the context of slum areas of Chittagong, Bangladesh. A Cross-sectional survey was conducted among 87 women of reproductive age having at least one child under-5 years of age and staying with husband for at least last 1 year in selected slums under Chittagong City Corporation area. Data collection tools were structured questionnaire for the study participants and mid-upper arm circumference (MUAC) to measure the nutritional status of the under-5 children. The data underwent descriptive and regression analysis. Out of 87 respondents, 50 (57.5%) reported to suffer from domestic violence by their husband during last one year. Physical violence was found to be significantly associated with age (p=0.02), age at marriage (p=0.043), wealth score (p=0.000), and with knowledge regarding law (p=0.017). According to the measurement of mid-upper arm circumference (MUAC) 21% children were suffering from severe acute malnutrition (SAM) and the same percentage of children were suffering from moderate acute malnutrition (MAM). However, unadjusted odds ratio suggested that there was negative association with domestic violence and nutritional status. But, the logistic regression confounding for other variable showed significant association with total family income (p=0.006), wealth score (p=0.031), age at marriage (p=0.029) and number of child (p=0.006). Domestic violence against women and under nutrition of the children, both are highly prevalent in Bangladesh. More extensive research should be performed to identify the factors contributing to the high prevalence of domestic violence and malnutrition in urban slums of Bangladesh. Household-based intervention is needed to limit this burning problem. In a nutshell, effective community participation, education and counseling are essential to create awareness among the community.Keywords: Bangladesh, cross sectional survey, domestic violence against women, nutritional status, under-5 children, urban slums
Procedia PDF Downloads 19628740 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race
Authors: Joonas Pääkkönen
Abstract:
In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling
Procedia PDF Downloads 12428739 The Nexus between Child Marriage and Women Empowerment with Physical Violence in Two Culturally Distinct States of India
Authors: Jayakant Singh, Enu Anand
Abstract:
Background: Child marriage is widely prevalent in India. It is a form of gross human right violation that succumbs a child bride to be subservient to her husband within a marital relation. We investigated the relationship between age at marriage of women and her level of empowerment with physical violence experienced 12 months preceding the survey among young women aged 20-24 in two culturally distinct states- Bihar and Tamil Nadu of India. Methods: We used the information collected from 10514 young married women (20-24 years) at all India level, 373 in Bihar and 523 in Tamil Nadu from the third round of National Family Health Survey. Empowerment index was calculated using different parameters such as mobility, economic independence and decision making power of women using Principal Component Analysis method. Bivariate analysis was performed primarily using chi square for the test of significance. Logistic regression was carried out to assess the effect of age at marriage and empowerment on physical violence. Results: Lower level of women empowerment was significantly associated with physical violence in Tamil Nadu (OR=2.38, p<0.01) whereas child marriage (marriage before age 15) was associated with physical violence in Bihar (OR=3.27, p<0.001). The mean difference in age at marriage between those who experienced physical violence and those who did not experience varied by 7 months in Bihar and 10 months in Tamil Nadu. Conclusion: Culture specific intervention may be a key to reduction of violence against women as the results showed association of different factors contributing to physical violence in Bihar and Tamil Nadu. Marrying at an appropriate age perhaps is protective of abuse because it equips a woman to assert her rights effectively. It calls for an urgent consideration to curb both violence and child marriage with stricter involvement of family, civil society and the government. In the meanwhile physical violence may be recognized as a public health problem and integrate appropriate treatment to the victims within the health care institution.Keywords: child marriage, empowerment, India, physical violence
Procedia PDF Downloads 312