Search results for: game predictions
784 All at Sea: Why OT / IT Infrastructure Is So Complex and the Challenges of Securing These on a Cruise Ship
Authors: Ken Munro
Abstract:
Cruise ships are possibly the most complex collection of systems it is possible to find in one physical, moving location. Propulsion, navigation, power generation and more, combined with a hotel, restaurant, casino, theatre etc, with safety and fire control systems to boot. That complexity creates huge challenges with keeping OT and IT systems apart. Ships engines are often remotely managed, network segregation is often defeated through troubleshooting when at sea. This session will refer to multiple entertaining and informative tales of taking control of ships, including accessing a ships Azipods via a game simulator for passengers. Fortunately, genuine attacks against vessels are very rare, but the effects and impacts to world trade are becoming increasingly obvious.Keywords: maritime security, cybersecurity, OT, IT, networks
Procedia PDF Downloads 33783 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles
Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan
Abstract:
Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks
Procedia PDF Downloads 54782 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 38781 Modeling of Landslide-Generated Tsunamis in Georgia Strait, Southern British Columbia
Authors: Fatemeh Nemati, Lucinda Leonard, Gwyn Lintern, Richard Thomson
Abstract:
In this study, we will use modern numerical modeling approaches to estimate tsunami risks to the southern coast of British Columbia from landslides. Wave generation is to be simulated using the NHWAVE model, which solves the Navier-Stokes equations due to the more complex behavior of flow near the landslide source; far-field wave propagation will be simulated using the simpler model FUNWAVE_TVD with high-order Boussinesq-type wave equations, with a focus on the accurate simulation of wave propagation and regional- or coastal-scale inundation predictions.Keywords: FUNWAVE-TVD, landslide-generated tsunami, NHWAVE, tsunami risk
Procedia PDF Downloads 154780 Clusterization Probability in 14N Nuclei
Authors: N. Burtebayev, Sh. Hamada, Zh. Kerimkulov, D. K. Alimov, A. V. Yushkov, N. Amangeldi, A. N. Bakhtibaev
Abstract:
The main aim of the current work is to examine if 14N is candidate to be clusterized nuclei or not. In order to check this attendance, we have measured the angular distributions for 14N ion beam elastically scattered on 12C target nuclei at different low energies; 17.5, 21, and 24.5MeV which are close to the Coulomb barrier energy for 14N+12C nuclear system. Study of various transfer reactions could provide us with useful information about the attendance of nuclei to be in a composite form (core + valence). The experimental data were analyzed using two approaches; Phenomenological (Optical Potential) and semi-microscopic (Double Folding Potential). The agreement between the experimental data and the theoretical predictions is fairly good in the whole angular range.Keywords: deuteron transfer, elastic scattering, optical model, double folding, density distribution
Procedia PDF Downloads 327779 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model
Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho
Abstract:
Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem
Procedia PDF Downloads 294778 On the Creep of Concrete Structures
Authors: A. Brahma
Abstract:
Analysis of deferred deformations of concrete under sustained load shows that the creep has a leading role on deferred deformations of concrete structures. Knowledge of the creep characteristics of concrete is a Necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable deformation in pre-stressed concrete or reinforced and the appropriate steps can be taken in design to accommodate this movement. In this study, we propose a prediction model that involves the acting principal parameters on the deferred behaviour of concrete structures. For the estimation of the model parameters Levenberg-Marquardt method has proven very satisfactory. A confrontation between the experimental results and the predictions of models designed shows that it is well suited to describe the evolution of the creep of concrete structures.Keywords: concrete structure, creep, modelling, prediction
Procedia PDF Downloads 291777 Using Cooperation without Communication in a Multi-Agent Unpredictable Dynamic Real-Time Environment
Authors: Abbas Khosravi
Abstract:
This paper discusses the use of cooperation without communication in a multi-agent, unpredictable, dynamic real-time environment. The architecture of the Persian Gulf agent consists of three layers: fixed rule, low level, and high level layers, allowing for cooperation without direct communication. A scenario is presented to each agent in the form of a file, specifying each player's role and actions in the game. The scenario helps in cases of miscommunication, improving team performance. Cooperation without communication enhances reliability and coordination among agents, leading to better results in challenging situations.Keywords: multi-agent systems, communication, Robocop, software engineering
Procedia PDF Downloads 34776 Status Quo Bias: A Paradigm Shift in Policy Making
Authors: Divyansh Goel, Varun Jain
Abstract:
Classical economics works on the principle that people are rational and analytical in their decision making and their choices fall in line with the most suitable option according to the dominant strategy in a standard game theory model. This model has failed at many occasions in estimating the behavior and dealings of rational people, giving proof of some other underlying heuristics and cognitive biases at work. This paper probes into the study of these factors, which fall under the umbrella of behavioral economics and through their medium explore the solution to a problem which a lot of nations presently face. There has long been a wide disparity in the number of people holding favorable views on organ donation and the actual number of people signing up for the same. This paper, in its entirety, is an attempt to shape the public policy which leads to an increase the number of organ donations that take place and close the gap in the statistics of the people who believe in signing up for organ donation and the ones who actually do. The key assumption here is that in cases of cognitive dissonance, where people have an inconsistency due to conflicting views, people have a tendency to go with the default choice. This tendency is a well-documented cognitive bias known as the status quo bias. The research in this project involves an assay of mandated choice models of organ donation with two case studies. The first of an opt-in system of Germany (where people have to explicitly sign up for organ donation) and the second of an opt-out system of Austria (every citizen at the time of their birth is an organ donor and has to explicitly sign up for refusal). Additionally, there has also been presented a detailed analysis of the experiment performed by Eric J. Johnson and Daniel G. Goldstein. Their research as well as many other independent experiments such as that by Tsvetelina Yordanova of the University of Sofia, both of which yield similar results. The conclusion being that the general population has by and large no rigid stand on organ donation and are gullible to status quo bias, which in turn can determine whether a large majority of people will consent to organ donation or not. Thus, in our paper, we throw light on how governments can use status quo bias to drive positive social change by making policies in which everyone by default is marked an organ donor, which will, in turn, save the lives of people who succumb on organ transplantation waitlists and save the economy countless hours of economic productivity.Keywords: behavioral economics, game theory, organ donation, status quo bias
Procedia PDF Downloads 300775 Importance of Human Capital Development and Management in Industries
Authors: Birce Boga Bakirli
Abstract:
In this paper, we investigate ideas on human capital development and management in industries. We structured a model to be able to gather the data from the interviews conducted with worker, specialists and owners of companies. Different aspects of the situation are found in these interviews, and we used the information to model the benefit of the business owners and workers perspectives. These are modelled as a bi-level programming problem. Several instances of the generic cases are solved. The results show the importance of education within and out of the company for workers, and it returns for the company.Keywords: bi-level programming, corporate strategy, cost tradeoffs, human capital, mixed integer programming, Stackelberg game, supplier relations, strategic planning
Procedia PDF Downloads 354774 Numerical Simulation and Optimal Control in Gas Dynamic Laser GDLs
Authors: Laggoun Chouki
Abstract:
In this paper we present the design and mechanisms of the physics process and discuss the performances of continuous gas laser dynamics, based on molecules N2(v=1)→C02(001)(v=3). The main objectives of work in this area are, obtaining the high laser energies in short time durations needed for the feasibility studies the physical principles that can be used to make laser sources capable of delivering high average powers. We note that, in order to reach both objectives, one has to convert electrical or chemical energy into laser energy, using gaseous media. The process generating the wave excited, on the basis of the excited level vibration, Theoretical predictions are compared with experimental results. The feasibility and effectiveness of the proposed method is demonstrated by computer simulation.Keywords: modelling, lasers, gas, numerical, nozzle
Procedia PDF Downloads 82773 Numerical Investigation of Flow Past in a Staggered Tube Bundle
Authors: Kerkouri Abdelkadir
Abstract:
Numerical calculations of turbulent flows are one of the most prominent modern interests in various engineering applications. Due to the difficulty of predicting, following up and studying this flow for computational fluid dynamic (CFD), in this paper, we simulated numerical study of a flow past in a staggered tube bundle, using CFD Code ANSYS FLUENT with several models of turbulence following: k-ε, k-ω and SST approaches. The flow is modeled based on the experimental studies. The predictions of mean velocities are in very good agreement with detailed LDA (Laser Doppler Anemometry) measurements performed in 8 stations along the depth of the array. The sizes of the recirculation zones behind the cylinders are also predicted. The simulations are conducted for Reynolds numbers of 12858. The Reynolds number is set to depend experimental results.Keywords: flow, tube bundle, ANSYS Fluent, CFD, turbulence, LDA, RANS (k-ε, k-ω, SST)
Procedia PDF Downloads 164772 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects
Authors: Sami Mestiri, Abdeljelil Farhat
Abstract:
The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC
Procedia PDF Downloads 542771 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis
Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos
Abstract:
The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy
Procedia PDF Downloads 7770 Reliability Based Topology Optimization: An Efficient Method for Material Uncertainty
Authors: Mehdi Jalalpour, Mazdak Tootkaboni
Abstract:
We present a computationally efficient method for reliability-based topology optimization under material properties uncertainty, which is assumed to be lognormally distributed and correlated within the domain. Computational efficiency is achieved through estimating the response statistics with stochastic perturbation of second order, using these statistics to fit an appropriate distribution that follows the empirical distribution of the response, and employing an efficient gradient-based optimizer. The proposed algorithm is utilized for design of new structures and the changes in the optimized topology is discussed for various levels of target reliability and correlation strength. Predictions were verified thorough comparison with results obtained using Monte Carlo simulation.Keywords: material uncertainty, stochastic perturbation, structural reliability, topology optimization
Procedia PDF Downloads 605769 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams
Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim
Abstract:
As the number of fire incidents has been increased, fire incidents significantly damage economy and human lives. Especially when high strength reinforced concrete is exposed to high temperature due to a fire, deterioration occurs such as loss in strength and elastic modulus, cracking, and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. After heated, the fire damaged reinforced concrete (RC) beams having different cover thicknesses and fire exposure time periods are rehabilitated by removing damaged part of cover thickness and filling polymeric mortar into the removed part. From four-point loading test, results show that maximum loads of the rehabilitated RC beams are 1.8~20.9% higher than those of the non-fire damaged RC beam. On the other hand, ductility ratios of the rehabilitated RC beams are decreased than that of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. For the rehabilitated RC beam models, integrated temperature–structural analyses are performed in advance to obtain geometries of the fire damaged RC beams. After spalled and damaged parts are removed, rehabilitated part is added to the damaged model with material properties of polymeric mortar. Three dimensional continuum brick elements are used for both temperature and structural analyses. The same loading and boundary conditions as experiments are implemented to the rehabilitated beam models and nonlinear geometrical analyses are performed. Structural analytical results show good rehabilitation effects, when the result predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric mortar. From four point loading tests, it is found that such rehabilitation is able to make the structural performance of fire damaged beams similar to non-damaged RC beams. The predictions from the finite element models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.Keywords: fire, high strength concrete, rehabilitation, reinforced concrete beam
Procedia PDF Downloads 445768 Gas-Solid Nitrocarburizing of Steels: Kinetic Modelling and Experimental Validation
Authors: L. Torchane
Abstract:
This study is devoted to defining the optimal conditions for the nitriding of pure iron at atmospheric pressure by using NH3-Ar-C3H8 gas mixtures. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the ε-carbonitride layer growth rate and the nitrogen and carbon concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses and metallurgical observations (X-ray diffraction, optical microscopy and electron microprobe analysis). Results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions.Keywords: gaseous nitrocarburizing, kinetic model, diffusion, layer growth kinetic
Procedia PDF Downloads 534767 The Dao of Political Economy - A Holistic Perspective
Authors: Tao Peng
Abstract:
This paper presents a holistic model of political economy based on Daoism – the foundational philosophy of classical Chinese epistemology. Daoism is both comprehensive and subtle in its manifestations and applications in all aspects of nature and society. Based on Daoist creation theory of the universe, life theory and five element functioning theory, a holistic model in economics with minimal assumptions and independent of ideology are constructed. Under this framework, different schools of economics, such as neo-liberal, Marxism, and Austrian school, are explored and shed new light on. Economic and financial predictions can be realized in applications to Qi Men Dun Jia. This framework can provide guidelines and inspirations to economic modelling, economic policies formulation and strategy development and guide society towards a more sustainable future.Keywords: daoism, economics, holistic, philosophy
Procedia PDF Downloads 86766 People Abandoning Mobile Social Games: Using Candy Crush Saga as an Example
Authors: Pei-Shan Wei, Szu-Ying Lee, Hsi-Peng Lu, Jen-Chuen Tzou, Chien-I Weng
Abstract:
Mobile social games recently become extremely popular, spawning a whole new entertainment culture. However, mobile game players are fickle, quickly and easily picking up and abandoning games. This pilot study seeks to identify factors that influence users to discontinue playing mobile social games. We identified three sacrifices which can prompt users to abandon games: monetary sacrifice, time sacrifice and privacy sacrifice. The results showed that monetary sacrifice has a greater impact than the other two factors in causing players to discontinue usage intention.Keywords: abandon, mobile devices, mobile social games, perceived sacrifice
Procedia PDF Downloads 495765 Data Mining Algorithms Analysis: Case Study of Price Predictions of Lands
Authors: Julio Albuja, David Zaldumbide
Abstract:
Data analysis is an important step before taking a decision about money. The aim of this work is to analyze the factors that influence the final price of the houses through data mining algorithms. To our best knowledge, previous work was researched just to compare results. Furthermore, before using the data of the data set, the Z-Transformation were used to standardize the data in the same range. Hence, the data was classified into two groups to visualize them in a readability format. A decision tree was built, and graphical data is displayed where clearly is easy to see the results and the factors' influence in these graphics. The definitions of these methods are described, as well as the descriptions of the results. Finally, conclusions and recommendations are presented related to the released results that our research showed making it easier to apply these algorithms using a customized data set.Keywords: algorithms, data, decision tree, transformation
Procedia PDF Downloads 374764 Performance Evaluation of the Classic seq2seq Model versus a Proposed Semi-supervised Long Short-Term Memory Autoencoder for Time Series Data Forecasting
Authors: Aswathi Thrivikraman, S. Advaith
Abstract:
The study is aimed at designing encoders for deciphering intricacies in time series data by redescribing the dynamics operating on a lower-dimensional manifold. A semi-supervised LSTM autoencoder is devised and investigated to see if the latent representation of the time series data can better forecast the data. End-to-end training of the LSTM autoencoder, together with another LSTM network that is connected to the latent space, forces the hidden states of the encoder to represent the most meaningful latent variables relevant for forecasting. Furthermore, the study compares the predictions with those of a traditional seq2seq model.Keywords: LSTM, autoencoder, forecasting, seq2seq model
Procedia PDF Downloads 155763 Actionable Personalised Learning Strategies to Improve a Growth-Mindset in an Educational Setting Using Artificial Intelligence
Authors: Garry Gorman, Nigel McKelvey, James Connolly
Abstract:
This study will evaluate a growth mindset intervention with Junior Cycle Coding and Senior Cycle Computer Science students in Ireland, where gamification will be used to incentivise growth mindset behaviour. An artificial intelligence (AI) driven personalised learning system will be developed to present computer programming learning tasks in a manner that is best suited to the individuals’ own learning preferences while incentivising and rewarding growth mindset behaviour of persistence, mastery response to challenge, and challenge seeking. This research endeavours to measure mindset with before and after surveys (conducted nationally) and by recording growth mindset behaviour whilst playing a digital game. This study will harness the capabilities of AI and aims to determine how a personalised learning (PL) experience can impact the mindset of a broad range of students. The focus of this study will be to determine how personalising the learning experience influences female and disadvantaged students' sense of belonging in the computer science classroom when tasks are presented in a manner that is best suited to the individual. Whole Brain Learning will underpin this research and will be used as a framework to guide the research in identifying key areas such as thinking and learning styles, cognitive potential, motivators and fears, and emotional intelligence. This research will be conducted in multiple school types over one academic year. Digital games will be played multiple times over this period, and the data gathered will be used to inform the AI algorithm. The three data sets are described as follows: (i) Before and after survey data to determine the grit scores and mindsets of the participants, (ii) The Growth Mind-Set data from the game, which will measure multiple growth mindset behaviours, such as persistence, response to challenge and use of strategy, (iii) The AI data to guide PL. This study will highlight the effectiveness of an AI-driven personalised learning experience. The data will position AI within the Irish educational landscape, with a specific focus on the teaching of CS. These findings will benefit coding and computer science teachers by providing a clear pedagogy for the effective delivery of personalised learning strategies for computer science education. This pedagogy will help prevent students from developing a fixed mindset while helping pupils to exhibit persistence of effort, use of strategy, and a mastery response to challenges.Keywords: computer science education, artificial intelligence, growth mindset, pedagogy
Procedia PDF Downloads 87762 Integrating Historical Narratives with Merge Games as Tools for Pedagogy In Education
Authors: Aathira H.
Abstract:
Digital games can act as catalysts for educational transformation in the current scenario. Children and adolescence acquire this digital knowledge quickly and hence digital games can act as one of the most effective media for technology-mediated learning. Mobile gaming industries have seen the rise of a new trending genre of games, i.e., “Merge games” which is currently thriving in the market. This paper analysis on how gamifying historic and cultural narratives with merge mechanics can be an effective way to educate school children. Through the study of how merge mechanics in games have currently emerged as a trend., this paper argues how it can be integrated with a strong narrative which can convey history in an engaging way for education.Keywords: game-based learning, merge mechanics, historical narratives, gaming innovations
Procedia PDF Downloads 104761 Mathematical Modeling of the Water Bridge Formation in Porous Media: PEMFC Microchannels
Authors: N. Ibrahim-Rassoul, A. Kessi, E. K. Si-Ahmed, N. Djilali, J. Legrand
Abstract:
The static and dynamic formation of liquid water bridges is analyzed using a combination of visualization experiments in a microchannel with a mathematical model. This paper presents experimental and theoretical findings of water plug/capillary bridge formation in a 250 μm squared microchannel. The approach combines mathematical and numerical modeling with experimental visualization and measurements. The generality of the model is also illustrated for flow conditions encountered in manipulation of polymeric materials and formation of liquid bridges between patterned surfaces. The predictions of the model agree favorably the observations as well as with the experimental recordings.Keywords: green energy, mathematical modeling, fuel cell, water plug, gas diffusion layer, surface of revolution
Procedia PDF Downloads 530760 Festival Gamification: Conceptualization and Scale Development
Authors: Liu Chyong-Ru, Wang Yao-Chin, Huang Wen-Shiung, Tang Wan-Ching
Abstract:
Although gamification has been concerned and applied in the tourism industry, limited literature could be found in tourism academy. Therefore, to contribute knowledge in festival gamification, it becomes essential to start by establishing a Festival Gamification Scale (FGS). This study defines festival gamification as the extent of a festival to involve game elements and game mechanisms. Based on self-determination theory, this study developed an FGS. Through the multi-study method, in study one, five FGS dimensions were sorted through literature review, followed by twelve in-depth interviews. A total of 296 statements were extracted from interviews and were later narrowed down to 33 items under six dimensions. In study two, 226 survey responses were collected from a cycling festival for exploratory factor analysis, resulting in twenty items under five dimensions. In study three, 253 survey responses were obtained from a marathon festival for confirmatory factor analysis, resulting in the final sixteen items under five dimensions. Then, results of criterion-related validity confirmed the positive effects of these five dimensions on flow experience. In study four, for examining the model extension of the developed five-dimensional 16-item FGS, which includes dimensions of relatedness, mastery, competence, fun, and narratives, cross-validation analysis was performed using 219 survey responses from a religious festival. For the tourism academy, the FGS could further be applied in other sub-fields such as destinations, theme parks, cruise trips, or resorts. The FGS serves as a starting point for examining the mechanism of festival gamification in changing tourists’ attitudes and behaviors. Future studies could work on follow-up studies of FGS by testing outcomes of festival gamification or examining moderating effects of enhancing outcomes of festival gamification. On the other hand, although the FGS has been tested in cycling, marathon, and religious festivals, the research settings are all in Taiwan. Cultural differences of FGS is another further direction for contributing knowledge in festival gamification. This study also contributes to several valuable practical implications. First, this FGS could be utilized in tourist surveys for evaluating the extent of gamification of a festival. Based on the results of the performance assessment by FGS, festival management organizations and festival planners could learn the relative scores among dimensions of FGS, and plan for future improvement of gamifying the festival. Second, the FGS could be applied in positioning a gamified festival. Festival management organizations and festival planners could firstly consider the features and types of their festival, and then gamify their festival based on investing resources in key FGS dimensions.Keywords: festival gamification, festival tourism, scale development, self-determination theory
Procedia PDF Downloads 146759 Multilevel Gray Scale Image Encryption through 2D Cellular Automata
Authors: Rupali Bhardwaj
Abstract:
Cryptography is the science of using mathematics to encrypt and decrypt data; the data are converted into some other gibberish form, and then the encrypted data are transmitted. The primary purpose of this paper is to provide two levels of security through a two-step process, rather than transmitted the message bits directly, first encrypted it using 2D cellular automata and then scrambled with Arnold Cat Map transformation; it provides an additional layer of protection and reduces the chance of the transmitted message being detected. A comparative analysis on effectiveness of scrambling technique is provided by scrambling degree measurement parameters i.e. Gray Difference Degree (GDD) and Correlation Coefficient.Keywords: scrambling, cellular automata, Arnold cat map, game of life, gray difference degree, correlation coefficient
Procedia PDF Downloads 377758 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 292757 From Prince to Vampire: The Image of Vlad Tepeș Dracula in Popular Culture. Case Study: Castlevania, From Video Game to Netflix Production
Authors: Claudia Horeanu
Abstract:
Ever since the first horror films, Count Dracula, the image inspired mainly by the novel written by Bram Stoker, is an almost indispensable character in popular culture. In the shadow of his vampire image is a Romanian ruler, Vlad Țepeș, from Wallachia, a ruler who was also nicknamed Drăculea. The purpose of this research is to analyze the evolution of the image of Vlad Tepeș/Dracula in popular culture, identifying the reasons and themes associated with this character, and to explore how the figure of Vlad Tepeș/Dracula evolved according to social and political changes in different historical periods. It is also believed that there are elements that have remained constant in the depictions of Vlad the Impaler/Dracula.Keywords: popular culture, dracula, vlad tepes, castlevania, vampire
Procedia PDF Downloads 60756 Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion
Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao
Abstract:
Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed.Keywords: erosion, prediction, elbow, computational fluid dynamics
Procedia PDF Downloads 157755 Inverse Heat Transfer Analysis of a Melting Furnace Using Levenberg-Marquardt Method
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study presents a simple inverse heat transfer procedure for predicting the wall erosion and the time-varying thickness of the protective bank that covers the inside surface of the refractory brick wall of a melting furnace. The direct problem is solved by using the Finite-Volume model. The melting/solidification process is modeled using the enthalpy method. The inverse procedure rests on the Levenberg-Marquardt method combined with the Broyden method. The effect of the location of the temperature sensors and of the measurement noise on the inverse predictions is investigated. Recommendations are made concerning the location of the temperature sensor.Keywords: melting furnace, inverse heat transfer, enthalpy method, levenberg–marquardt method
Procedia PDF Downloads 324