Search results for: frictional flow resistance
2824 Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression
Authors: Siqi Lin, Yangang Zhao
Abstract:
Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube.Keywords: concrete-filled steel tube, axial compression, ultimate stress, utilization efficiency
Procedia PDF Downloads 4252823 Nadler's Fixed Point Theorem on Partial Metric Spaces and its Application to a Homotopy Result
Authors: Hemant Kumar Pathak
Abstract:
In 1994, Matthews (S.G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183-197) introduced the concept of a partial metric as a part of the study of denotational semantics of data flow networks. He gave a modified version of the Banach contraction principle, more suitable in this context. In fact, (complete) partial metric spaces constitute a suitable framework to model several distinguished examples of the theory of computation and also to model metric spaces via domain theory. In this paper, we introduce the concept of almost partial Hausdorff metric. We prove a fixed point theorem for multi-valued mappings on partial metric space using the concept of almost partial Hausdorff metric and prove an analogous to the well-known Nadler’s fixed point theorem. In the sequel, we derive a homotopy result as an application of our main result.Keywords: fixed point, partial metric space, homotopy, physical sciences
Procedia PDF Downloads 4412822 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 1692821 Land Use Sensitivity Map for the Extreme Flood Events in the Kelantan River Basin
Authors: Nader Saadatkhah, Jafar Rahnamarad, Shattri Mansor, Zailani Khuzaimah, Arnis Asmat, Nor Aizam Adnan, Siti Noradzah Adam
Abstract:
Kelantan river basin as a flood prone area at the east coast of the peninsular Malaysia has suffered several flood and mudflow events in the recent years. The current research attempted to assess the land cover changes impact in the Kelantan river basin focused on the runoff contributions from different land cover classes and the potential impact of land cover changes on runoff generation. In this regards, the hydrological regional modeling of rainfall induced runoff event as the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) was employed to compute rate of infiltration, and subsequently changes in the discharge volume in this study. The effects of land use changes on peak flow and runoff volume was investigated using storm rainfall events during the last three decades.Keywords: improved-TRIGRS model, land cover changes, Kelantan river basin, flood event
Procedia PDF Downloads 4122820 The Effect of 8 Weeks Aerobic Training and Nitro-L-Arginine-Methyl Ester (L-NAME) on Plasma apelin in Male’s Rats
Authors: Abbassi Daloii Asieh, Yazdani Hoda
Abstract:
Background and Objective: evidence supports systemic inflammation in obesity and insulin resistance. Apelin that is secreted by adipose tissue plays an important role in the inflammation process and appear act as an anti-inflammatory cytokines. The aim of this study was the effect of eight weeks aerobic training and nitro-L-arginine-methyl ester (L-NAME) on plasma apelin in male’s rats. Materials and Methods: For this purpose, 24 male Wistar rats aged 20 months were randomly assigned into four groups: Control, training, training and L-NAME and L-NAME. Training intervention was eight weeks aerobic exercise (5 time/weekly) at 75-80 (%) of maximal oxygen consumption. All rats were killed 72 hours after lasted exercise session; blood samples collected and plasma were stored. Data was analyzed by one way ANOVA and Tucky Test. A p value less than 0.05 was considered statistically signigcant. Results: The results showed that after eight weeks of endurance training exercise Apelin plasma compared to the control group did not change significantly. Also, the results showed that there was significant difference in plasma Apelin between groups(P > 0/05). Also, the results showed no significant difference between the insulin levels and glucose of four groups (P > 0/05). Conclusion: It seems that aerobic exercise plasma Apelin levels in male rats is not affected. On the other hand, nitric oxide inhibitors can reduce levels of plasma Apelin.Keywords: aerobic training, L-NAME, plasma Apelin, male’s rats
Procedia PDF Downloads 4432819 Cultivation of Stenocereus Spp. as an Option to Reduce Crop Loss Problems in High Marginalization States in Mexico
Authors: Abraham Castro-Alvarez, Luisaldo Sandate-Flores, Roberto Parra-Saldivar
Abstract:
The losing of crops during the whole production process is a problem that is affecting farmers in the whole world, as climate change affects the weather behavior. Stenocereus spp. is a tropical, exotic and endemic columnar cacti, it produces a colored and expensive fruit known how “pitaya”. The quality and value of the fruit, these species represent an attractive option for economical development in arid and semi-arid regions. This fruits are produced in Mexico, mainly in 4 regions, Mixteca Oaxaca-Puebla, Michoacan, Sinaloa-Sonora, Jalisco-Zacatecas. Pitaya can be an option to try mixed crop in this states due to the resistance to hard weather conditions. And also because of the marginalization problems that exist in these townships. As defined by the Population National Council it consists in the absence of development opportunities and the lack of capacity to get them. According to an analysis done in EsriPress ArcGis 10.1 the potential area in the country is almost the half of the territory being the total area of Mexico 1,965,249 km2 and the area with potential to produce pitaya 960,527 km2. This area covers part of the most affected townships that also have a few options of maize varieties making even harder the production of maize and exposing farmers to crop losing if conditions are good enough. Making pitaya a good option for these farmers to have an economic backup in their productions.Keywords: maize, pitaya, rain fed, Stenocereus
Procedia PDF Downloads 3182818 Household Low Temperature MS2 (ATCC15597-B1) Virus Inactivation Using a Hot Bubble Column Evaporator
Authors: Adrian Garrido Sanchis, Richard Pashley
Abstract:
The MS2 (ATCC15597-B1) virus was used as a surrogate to estimate the inactivation rates for enteric viruses when using a hot air bubble column evaporator (HBCE) system in the treatment of household wastewater. In this study, we have combined MS2 virus surface charging properties with thermal inactivation rates, using an improved double layer plaque assay technique, in order to assess the efficiency of the HBCE process for virus removal in water. When bubbling a continuous flow of dry air, at 200°C, only heats the aqueous solution in the bubble column to about 50°C. Viruses are not inactivated by this solution temperature, as confirmed separately from water bath heating experiments. Hence, the efficiency of the HBCE process for virus removal in water appeared to be caused entirely by collisions between the hot air bubbles and the virus organisms. This new energy efficient treatment for water reuse applications can reduce the thermal energy required to only 25% (about 113.7 kJ/L) of that required for boiling (about 450 kJ/L).Keywords: MS2 virus inactivation, water reuse, hot bubble column evaporator, water treatment
Procedia PDF Downloads 2102817 Investigations of Thermo Fluid Characteristics of Copper Alloy Porous Heat Sinks by Forced Air Cooling
Authors: Ashish Mahalle, Kishore Borakhade
Abstract:
High porosity metal foams are excellent for heat dissipation. There use has been widened to include heat removal from high density microelectronics circuits. Other important applications have been found in compact heat exchangers for airborne equipment, regenerative and dissipative air cooled condenser towers, and compact heat sinks for power electronic. The low relative density, open porosity and high thermal conductivity of the cell edges, large accessible surface area per unit volume, and the ability to mix the cooling fluid make metal foam heat exchangers efficient, compact and light weight. This paper reports the thermal performance of metal foam for high heat dissipation. In experimentation metal foam samples of different pore diameters i.e. 35 µ, 20 µ, 12 µ, are analyzed for varying velocities and heat inputs. The study investigate the effect of various dimensionless no. like Re,Nu, Pr and heat transfer characteristics of basic flow configuration.Keywords: pores, foam, effective thermal conductivity, permeability
Procedia PDF Downloads 3112816 Pricing the Risk Associated to Weather of Variable Renewable Energy Generation
Authors: Jorge M. Uribe
Abstract:
We propose a methodology for setting the price of an insurance contract targeted to manage the risk associated with weather conditions that affect variable renewable energy generation. The methodology relies on conditional quantile regressions to estimate the weather risk of a solar panel. It is illustrated using real daily radiation and weather data for three cities in Spain (Valencia, Barcelona and Madrid) from February 2/2004 to January 22/2019. We also adapt the concepts of value at risk and expected short fall from finance to this context, to provide a complete panorama of what we label as weather risk. The methodology is easy to implement and can be used by insurance companies to price a contract with the aforementioned characteristics when data about similar projects and accurate cash flow projections are lacking. Our methodology assigns a higher price to an insurance product with the stated characteristics in Madrid, compared to Valencia and Barcelona. This is consistent with Madrid showing the largest interquartile range of operational deficits and it is unrelated to the average value deficit, which illustrates the importance of our proposal.Keywords: insurance, weather, vre, risk
Procedia PDF Downloads 1482815 Use of Polymeric Materials in the Architectural Preservation
Authors: F. Z. Benabid, F. Zouai, A. Douibi, D. Benachour
Abstract:
These Fluorinated polymers and polyacrylics have known a wide use in the field of historical monuments. PVDF provides a great easiness to processing, a good UV resistance and good chemical inertia. Although the quality of physical characteristics of the PMMA and its low price with a respect to PVDF, its deterioration against UV radiations limits its use as protector agent for the stones. On the other hand, PVDF/PMMA blend is a compromise of a great development in the field of architectural restoration, since it is the best method in term of quality and price to make new polymeric materials having enhanced properties. Films of different compositions based on the two polymers within an adequate solvent (DMF) were obtained to perform an exposition to artificial ageing and to the salted fog, a spectroscopic analysis (FTIR and UV) and optical analysis (refractive index). Based on its great interest in the field of building, a variety of standard tests has been elaborated for the first time at the central laboratory of ENAP (Souk-Ahras) in order to evaluate our blend performance. The obtained results have allowed observing the behavior of the different compositions of the blend under various tests. The addition of PVDF to PMMA enhances the properties of this last to know the exhibition to the natural and artificial ageing and to the saline fog. On the other hand, PMMA enhances the optical properties of the blend. Finally, 70/30 composition of the blend is in concordance with results of previous works and it is the adequate proportion for an eventual application.Keywords: blend, PVDF, PMMA, preservation, historic monuments
Procedia PDF Downloads 3092814 Effect of Catalyst Preparation Method on Dry Reforming of Methane with Supported and Promoted Catalysts
Authors: Sanjay P. Gandhi, Sanjay S. Patel
Abstract:
Dry (CO2) reforming of methane (DRM) is both scientific and industrial importance. In recent decades, CO2 utilization has become increasingly important in view of the escalating global warming phenomenon. This reaction produces syngas that can be used to produce a wide range of products, such as higher alkanes and oxygenates by means of Fischer–Tropsch synthesis. DRM is inevitably accompanied by deactivation due to carbon deposition. DRM is also a highly endothermic reaction and requires operating temperatures of 800–1000 °C to attain high equilibrium conversion of CH4 and CO2 to H2 and CO and to minimize the thermodynamic driving force for carbon deposition. The catalysts used are often composed of transition Methods like Nickel, supported on metallic and non-metallic oxides such as alumina and silica. However, many of these catalysts undergo severe deactivation due to carbon deposition. Noble metals have also been studied and are typically found to be much more resistant to carbon deposition than Ni catalysts, but are generally uneconomical. Noble metals can also be used to promote the Ni catalysts in order to increase their resistance to deactivation. In order to design catalysts that minimize deactivation, it is necessary to understand the elementary steps involved in the activation and conversion of CH4 and CO2. CO2 reforming methane over promoted catalyst was studied. The influence of ZrO2, CeO2 and the behavior of Ni-Al2O3 Catalyst, prepare by wet-impregnation and Co-precipitated method was studied. XRD, BET Analysis for different promoted and unprompted Catalyst was studied.Keywords: CO2 reforming of methane, Ni catalyst, promoted and unprompted catalyst, effect of catalyst preparation
Procedia PDF Downloads 4722813 Comparative Fracture Parameters of Khaya ivorensis and Magnolia obovata: Outlooks for the Development of Sustainable Mobility Materials
Authors: Riccardo Houngbegnon, Loic Chrislin Nguedjio, Valery Doko, José Xavier, Miran Merhar, Rostand Moutou Pitti
Abstract:
Against a backdrop of heightened awareness of environmental impact and the reduction of space debris, the use of sustainable materials for mobility applications is emerging as a promising solution to minimize the environmental footprint of our technologies. Among recent innovative developments in the use of wood, the Japanese species Magnolia obovata attracted particular interest when it was used in the design of the first wooden satellite launched in November 2024. The aim of this project is to explore new species that could replace M. obovata in a mobile context. Khaya ivorensis, a tropical African species, was selected and compared to M. obovata in terms of resistance to cracking, a key criterion in the durability of mobility infrastructures. Prior to the cracking tests, K. ivorensis and M. obovata were characterized to determine their basic mechanical properties. The results presented here relate to this characterization phase, in particular the four-point bending, compression and BING tests, which provided us with strengths and moduli. These results were compared with those found in the literature, which allowed us to observe a number of differences. CHARPY resilience tests were also performed and compare to critical energy release rate in order to estimate the ability of the two species to absorb energy, particularly following impacts and various shocks.Keywords: energy release rate, Khaya ivorensis, magnolia obovata, wood for mobility
Procedia PDF Downloads 82812 Numerical Analysis of the Computational Fluid Dynamics of Co-Digestion in a Large-Scale Continuous Stirred Tank Reactor
Authors: Sylvana A. Vega, Cesar E. Huilinir, Carlos J. Gonzalez
Abstract:
Co-digestion in anaerobic biodigesters is a technology improving hydrolysis by increasing methane generation. In the present study, the dimensional computational fluid dynamics (CFD) is numerically analyzed using Ansys Fluent software for agitation in a full-scale Continuous Stirred Tank Reactor (CSTR) biodigester during the co-digestion process. For this, a rheological study of the substrate is carried out, establishing rotation speeds of the stirrers depending on the microbial activity and energy ranges. The substrate is organic waste from industrial sources of sanitary water, butcher, fishmonger, and dairy. Once the rheological behavior curves have been obtained, it is obtained that it is a non-Newtonian fluid of the pseudoplastic type, with a solids rate of 12%. In the simulation, the rheological results of the fluid are considered, and the full-scale CSTR biodigester is modeled. It was coupling the second-order continuity differential equations, the three-dimensional Navier Stokes, the power-law model for non-Newtonian fluids, and three turbulence models: k-ε RNG, k-ε Realizable, and RMS (Reynolds Stress Model), for a 45° tilt vane impeller. It is simulated for three minutes since it is desired to study an intermittent mixture with a saving benefit of energy consumed. The results show that the absolute errors of the power number associated with the k-ε RNG, k-ε Realizable, and RMS models were 7.62%, 1.85%, and 5.05%, respectively, the numbers of power obtained from the analytical-experimental equation of Nagata. The results of the generalized Reynolds number show that the fluid dynamics have a transition-turbulent flow regime. Concerning the Froude number, the result indicates there is no need to implement baffles in the biodigester design, and the power number provides a steady trend close to 1.5. It is observed that the levels of design speeds within the biodigester are approximately 0.1 m/s, which are speeds suitable for the microbial community, where they can coexist and feed on the substrate in co-digestion. It is concluded that the model that more accurately predicts the behavior of fluid dynamics within the reactor is the k-ε Realizable model. The flow paths obtained are consistent with what is stated in the referenced literature, where the 45° inclination PBT impeller is the right type of agitator to keep particles in suspension and, in turn, increase the dispersion of gas in the liquid phase. If a 24/7 complete mix is considered under stirred agitation, with a plant factor of 80%, 51,840 kWh/year are estimated. On the contrary, if intermittent agitations of 3 min every 15 min are used under the same design conditions, reduce almost 80% of energy costs. It is a feasible solution to predict the energy expenditure of an anaerobic biodigester CSTR. It is recommended to use high mixing intensities, at the beginning and end of the joint phase acetogenesis/methanogenesis. This high intensity of mixing, in the beginning, produces the activation of the bacteria, and once reaching the end of the Hydraulic Retention Time period, it produces another increase in the mixing agitations, favoring the final dispersion of the biogas that may be trapped in the biodigester bottom.Keywords: anaerobic co-digestion, computational fluid dynamics, CFD, net power, organic waste
Procedia PDF Downloads 1152811 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments
Authors: A. Kampker, K. Kreisköther, C. Reinders
Abstract:
Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.Keywords: additive manufacturing, design of experiments, mold making, PolyJet, 3D-Printing
Procedia PDF Downloads 2552810 Production of Nitric Oxide by Thienopyrimidine TP053
Authors: Elena G. Salina, Laurent R. Chiarelli, Maria R. Pasca, Vadim A. Makarov
Abstract:
Tuberculosis is one of the most challenging threats to human health, confronted by the problem of drug resistance. Evidently, new drugs for tuberculosis are urgently needed. Thienopyrimidine TP053 is one of the most promising new antitubercular prodrugs. Mycothiol-dependent reductase Mrx2, encoded by rv2466c, is known to be a TP053 activator; however, the precise mode of action of this compound remained unclear. Being highly active against both replicating and non-replicating tuberculosis bacilli, TP053 also revealed dose-escalating activity for M. tuberculosis-infected murine macrophages. The chemical structure of TP053 is characterized by the presence of NO₂ group which was suggested to be responsible for the toxic effects of the activated compound. Reduction of a nitroaromatic moiety of TP53 by Mrx2 was hypothesized to result in NO release. Analysis of the products of enzymatic activation of TP053 by Mrx2 by the Greiss reagent clearly demonstrated production of nitric oxide in a time-dependent manner. Mass-spectra of cell lysates of TP-treated M. tuberculosis bacilli demonstrated the transformation of TP053 to its non-active metabolite with Mw=261 that corresponds NO release. The mechanism of NO toxicity for bacteria includes DNA damage and degradation of iron-sulfur centers, especially under oxygen depletion. Thus, TP-053 drug-like scaffold is prospective for further development of novel anti-TB drug. This work was financially supported by the Russian Foundation for Basic Research (Grant 17-04-00342).Keywords: drug discovery, M. tuberculosis, nitric oxide, NO donors
Procedia PDF Downloads 1542809 The Influence of Incorporating in the Concrete of Recycled Waste from Shredding Used Tires and Crushed Glass on Their Characteristics and Behavior
Authors: Samiha Ramdani, Abdelhamid Geuttala
Abstract:
There is no doubt that the batteries increasingly used tires create environmental concerns. Algeria generates large amounts of by industrial and household waste, such as used tires and colored glass bottles and dishes, whose valuation in cementitious materials could be an interesting ecological and economical alternative for broadening eliminating cumbersome landfills. This work is a contribution to the promotion of local materials with the use of waste tires and glass bottle in the development of a new cementitious composite having the acceptable compressive strength and a capacity of improved strains. For this purpose, rubber crumb (GC) from shredding used tires were used as partial replacement of quarry sand with 10%, 20%, 40, 60%. In addition, some mixtures also contain glass powder at15% cement replacement by volume. The compressive strength, tensile strength, deformability, the water permeability and penetration Inions chlorides are studied. As results; an acceptable compressive strength was obtained with the substitution rate of 10% and 20% by volume, the deformability of the composite increases with increased replacement rate. The addition of finely ground glass as a partial replacement of cement concrete increases the resistance to penetration of Inions chloride and reduce the water permeability thereof; then increases their durability.Keywords: crumb rubber, deformability, compressive strength, finely ground glass, durability, behavior law
Procedia PDF Downloads 3212808 An Experimental Investigation of Microscopic and Macroscopic Displacement Behaviors of Branched-Preformed Particle Gel in High Temperature Reservoirs
Authors: Weiyao Zhu, Bingbing Li, Yajing Liu, Zhiyong Song
Abstract:
Branched-preformed particle gel (B-PPG) is a newly developed profile control and oil displacement agent for enhanced oil recovery in major oilfields. To provide a better understanding of the performance of B-PPG in high temperature reservoirs, a comprehensive experimental investigation was conducted by utilizing glass micromodel and synthetic core. The microscopic experimental results show that the B-PPG can selectively flow and plug in large pores. In terms of enhanced oil recovery, the decrease of residual oil in the margin regions (24.6%) was higher than that in the main stream (13.7%), which indicates it enlarged the sweep area. In addition, the effects of B-PPG injection concentration and injection rate on enhanced oil recovery were implemented by core flooding. The macroscopic experimental results indicate that the enhanced oil recovery increased with the increasing of injection concentration. However, the injection rate had a peak value. It is significant to get insight into the behaviors of B-PPG in reservoirs.Keywords: branched-preformed particle gel, enhanced oil recovery, micromodel, core flooding
Procedia PDF Downloads 1982807 Development and Efficacy Assessment of an Enteric Coated Porous Tablet Loaded with F4 Fimbriae for Oral Vaccination against Enterotoxigenic Escherichia coli Infections
Authors: Atul Srivastava, D. V. Gowda
Abstract:
Enterotoxigenic Escherichia coli (ETEC) infection is one of the major causes contributing to the development of diarrhoea in adults and children in developing countries. To date, no preventive/treatment strategy showed promising results, which could be due to the lack of potent vaccines, and/or due to the development of resistance of ETEC to antibiotics. Therefore, in the present investigation, a novel porous Sodium Alginate (SA) tablet formulation loaded with F4 fimbriae antigen was developed and tested for efficacy against ETEC infections in piglet models. Pre-compression parameters of the powder mixes and post compression parameters of tablets have been evaluated and results were found to be satisfactory. Loading of F4 fimbrial antigens in to the tablets was achieved by inducing pores in the tablets via the sublimation of camphor followed by incubation with purified F4 fimbriae. The loaded tablets have been coated with Eudragit L100 to protect the F4 fimbriae from (a) highly acidic gastric environment; (b) proteolytic cleavage by pepsin; and (c) to promote subsequent release in the intestine. Evaluation of developed F4 fimbrial tablets in a Pig model demonstrated induction of mucosal immunity, and a significant reduction of F4+ E. coli in faeces. Therefore, F4 fimbriae loaded porous tablets could be a novel oral vaccination candidate to induce mucosal and systemic immunity against ETEC infections.Keywords: porous tablets, sublimation, f4 fimbriae, eudragit l100, vaccination
Procedia PDF Downloads 3412806 Long-Term Exposure Assessments for Cooking Workers Exposed to Polycyclic Aromatic Hydrocarbons and Aldehydes Containing in Cooking Fumes
Authors: Chun-Yu Chen, Kua-Rong Wu, Yu-Cheng Chen, Perng-Jy Tsai
Abstract:
Cooking fumes are known containing polycyclic aromatic hydrocarbons (PAHs) and aldehydes, and some of them have been proven carcinogenic or possibly carcinogenic to humans. Considering their chronic health effects, long-term exposure data is required for assessing cooking workers’ lifetime health risks. Previous exposure assessment studies, due to both time and cost constraints, mostly were based on the cross-sectional data. Therefore, establishing a long-term exposure data has become an important issue for conducting health risk assessment for cooking workers. An approach was proposed in this study. Here, the generation rates of both PAHs and aldehydes from a cooking process were determined by placing a sampling train exactly under the under the exhaust fan under the both the total enclosure condition and normal operating condition, respectively. Subtracting the concentration collected by the former (representing the total emitted concentration) from that of the latter (representing the hood collected concentration), the fugitive emitted concentration was determined. The above data was further converted to determine the generation rates based on the flow rates specified for the exhaust fan. The determinations of the above generation rates were conducted in a testing chamber with a selected cooking process (deep-frying chicken nuggets under 3 L peanut oil at 200°C). The sampling train installed under the exhaust fan consisted respectively an IOM inhalable sampler with a glass fiber filter for collecting particle-phase PAHs, followed by a XAD-2 tube for gas-phase PAHs. The above was also used to sample aldehydes, however, installed with a filter pre-coated with DNPH, and followed by a 2,4-DNPH-cartridge for collecting particle-phase and gas-phase aldehydes, respectively. PAHs and aldehydes samples were analyzed by GC/MS-MS (Agilent 7890B), and HPLC-UV (HITACHI L-7100), respectively. The obtained generation rates of both PAHs and aldehydes were applied to the near-field/ far-field exposure model to estimate the exposures of cooks (the estimated near-field concentration), and helpers (the estimated far-field concentration). For validating purposes, both PAHs and aldehydes samplings were conducted simultaneously using the same sampling train at both near-field and far-field sites of the testing chamber. The sampling results, together with the use of the mixed-effect model, were used to calibrate the estimated near-field/ far-field exposures. In the present study, the obtained emission rates were further converted to emission factor of both PAHs and aldehydes according to the amount of food oil consumed. Applying the long-term food oil consumption records, the emission rates for both PAHs and aldehydes were determined, and the long-term exposure databanks for cooks (the estimated near-field concentration), and helpers (the estimated far-field concentration) were then determined. Results show that the proposed approach was adequate to determine the generation rates of both PAHs and aldehydes under various fan exhaust flow rate conditions. The estimated near-field/ far-field exposures, though were significantly different from that obtained from the field, can be calibrated using the mixed effect model. Finally, the established long-term data bank could provide a useful basis for conducting long-term exposure assessments for cooking workers exposed to PAHs and aldehydes.Keywords: aldehydes, cooking oil fumes, long-term exposure assessment, modeling, polycyclic aromatic hydrocarbons (PAHs)
Procedia PDF Downloads 1422805 Entropy Generation of Natural Convection Heat Transfer in a Square Cavity Using Al2O3-Water Nanofluid
Authors: M. Alipanah, A. Ranjbar, E. Farnad, F. Alipanah
Abstract:
Entropy generation of an Al2O3-water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 to 107 and volume fraction between 0 to 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up.Keywords: entropy generation, natural convection, bejan number, nuselt number, nanofluid
Procedia PDF Downloads 4992804 Using Electro-Biogrouting to Stabilize of Soft Soil
Authors: Hamed A. Keykha, Hadi Miri
Abstract:
This paper describes a new method of soil stabilisation, electro-biogrouting (EBM), for improvement of soft soil with low hydraulic conductivity. This method uses an applied voltage gradient across the soil to induce the ions and bacteria cells through the soil matrix, resulting in CaCO3 precipitation and an increase of the soil shear strength in the process. The EBM were used effectively with two injection methods; bacteria injection and products of bacteria injection. The bacteria cells, calcium ions and urea were moved across the soil by electromigration and electro osmotic flow respectively. The products of bacteria (CO3-2) were moved by electromigration. The results showed that the undrained shear strength of the soil increased from 6 to 65 and 70 kPa for first and second injection method respectively. The injection of carbonate solution and calcium could be effectively flowed in the clay soil compare to injection of bacteria cells. The detection of CaCO3 percentage and its corresponding water content across the specimen showed that the increase of undrained shear strength relates to the deposit of calcite crystals between soil particles.Keywords: Sporosarcina pasteurii, electrophoresis, electromigration, electroosmosis, biocement
Procedia PDF Downloads 5282803 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock
Authors: Hadi Farhadian, Homayoon Katibeh
Abstract:
Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.Keywords: water inflow, tunnel, discontinues rock, numerical simulation
Procedia PDF Downloads 5242802 Comparative Analysis of Turbulent Plane Jets from a Sharp-Edged Orifice, a Beveled-Edge Orifice and a Radially Contoured Nozzle
Authors: Ravinesh C. Deo
Abstract:
This article investigates through experiments the flow characteristics of plane jets from sharp-edged orifice-plate, beveled-edge and radially contoured nozzle. The first two configurations exhibit saddle-backed velocity profiles while the third shows a top-hat. A vena contracta is found for the jet emanating from orifice at x/h = 3 while the contoured case displays a potential core extending to the range x/h = 5. A spurt in jet pressure on the centerline supports vena contracta for the orifice-jet. Momentum thicknesses and integral length scales elongate linearly with x although the growth of the shear-layer and large-scale eddies for the orifice are greater than the contoured case. The near-field spectrum exhibits higher frequency of the primary eddies that concur with enhanced turbulence intensity. Importantly, highly “turbulent” state of the orifice-jet prevails in the far-field where the spectra confirm more energetic secondary eddies associated with greater flapping amplitude of the orifice-jet.Keywords: orifice, beveled-edge-orifice, radially contoured nozzle, plane jets
Procedia PDF Downloads 1542801 Effect of Steel Fibers on M30 Fly Ash Concrete
Authors: Saksham
Abstract:
Concrete's versatility and affordability make it a highly competitive building material capable of meeting diverse requirements. However, the increasing demands placed on structures and the need for enhanced durability and performance have driven the development of distinct cementitious materials and concrete composites. One significant aspect of this advancement is the utilization of waste materials from industries, such as fly ash, to improve concrete's properties. Fly ash, a byproduct of coal combustion can enhance concrete's strength and durability while reducing environmental impact. Additionally, steel fibers can enhance concrete's toughness and crack resistance, contributing to improved structural performance. The experimental study aims to optimize the proportion of ingredients in M30-grade concrete, incorporating fly ash and steel fibers. By varying fly ash content (10% to 30%) and steel fiber dosage (0% to 1.5%), the research seeks to determine the optimal combination for achieving the desired compressive strength. Two sets of experiments are conducted: one focusing on varying fly ash content while keeping steel fiber dosage constant, and the other focusing on varying steel fiber dosage while keeping other parameters fixed. Through systematic testing, molding, curing, and evaluation according to specified standards, the research aims to analyze the impact of fly ash and steel fibers on concrete's compressive strength. The findings have the potential to inform engineers about optimized concrete mix designs that balance performance, cost-effectiveness, and sustainability, advancing toward more resilient and environmentally friendly building practices.Keywords: concrete, sustainability, durability, compressive strength
Procedia PDF Downloads 522800 Effects of Daily Temperature Changes on Transient Heat and Moisture Transport in Unsaturated Soils
Authors: Davood Yazdani Cherati, Ali Pak, Mehrdad Jafarzadeh
Abstract:
This research contains the formulation of a two-dimensional analytical solution to transient heat, and moisture flow in a semi-infinite unsaturated soil environment under the influence of daily temperature changes. For this purpose, coupled energy conservation and mass fluid continuity equations governing hydrothermal behavior of unsaturated soil media are presented in terms of temperature and volumetric moisture content. In consideration of the soil environment as an infinite half-space and by linearization of the governing equations, Laplace–Fourier transformation is conducted to convert differential equations with partial derivatives (PDEs) to ordinary differential equations (ODEs). The obtained ODEs are solved, and the inverse transformations are calculated to determine the solution to the system of equations. Results indicate that heat variation induces moisture transport in both horizontal and vertical directions.Keywords: analytical solution, heat conduction, hydrothermal analysis, laplace–fourier transformation, two-dimensional
Procedia PDF Downloads 2162799 Cell Line Screens Identify Biomarkers of Drug Sensitivity in GLIOMA Cancer
Authors: Noora Al Muftah, Reda Rawi, Richard Thompson, Halima Bensmail
Abstract:
Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers of response to targeted agents. There is an urgent need to identify biomarkers that predict which patients with are most likely to respond to treatment. Systematic efforts to correlate tumor mutational data with biologic dependencies may facilitate the translation of somatic mutation catalogs into meaningful biomarkers for patient stratification. To identify genomic features associated with drug sensitivity and uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we have screened and integrated a panel of several hundred cancer cell lines from different databases, mutation, DNA copy number, and gene expression data for hundreds of cell lines with their responses to targeted and cytotoxic therapies with drugs under clinical and preclinical investigation. We found mutated cancer genes were associated with cellular response to most currently available Glioma cancer drugs and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.Keywords: cancer, gene network, Lasso, penalized regression, P-values, unbiased estimator
Procedia PDF Downloads 4092798 X-Ray Dosimetry by a Low-Cost Current Mode Ion Chamber
Authors: Ava Zarif Sanayei, Mustafa Farjad-Fard, Mohammad-Reza Mohammadian-Behbahani, Leyli Ebrahimi, Sedigheh Sina
Abstract:
The fabrication and testing of a low-cost air-filled ion chamber for X-ray dosimetry is studied. The chamber is made of a metal cylinder, a central wire, a BC517 Darlington transistor, a 9V DC battery, and a voltmeter in order to have a cost-effective means to measure the dose. The output current of the dosimeter is amplified by the transistor and then fed to the large internal resistance of the voltmeter, producing a readable voltage signal. The dose-response linearity of the ion chamber is evaluated for different exposure scenarios by the X-ray tube. kVp values 70, 90, and 120, and mAs up to 20 are considered. In all experiments, a solid-state dosimeter (Solidose 400, Elimpex Medizintechnik) is used as a reference device for chamber calibration. Each case of exposure is repeated three times, the voltmeter and Solidose readings are recorded, and the mean and standard deviation values are calculated. Then, the calibration curve, derived by plotting voltmeter readings against Solidose readings, provided a linear fit result for all tube kVps of 70, 90, and 120. A 99, 98, and 100% linear relationship, respectively, for kVp values 70, 90, and 120 are demonstrated. The study shows the feasibility of achieving acceptable dose measurements with a simplified setup. Further enhancements to the proposed setup include solutions for limiting the leakage current, optimizing chamber dimensions, utilizing electronic microcontrollers for dedicated data readout, and minimizing the impact of stray electromagnetic fields on the system.Keywords: dosimetry, ion chamber, radiation detection, X-ray
Procedia PDF Downloads 782797 Effect of Polymer Concentration on the Rheological Properties of Polyelectrolyte Solutions
Authors: Khaled Benyounes, Abderrahmane Mellak
Abstract:
The rheology of aqueous solutions of polyelectrolyte (polyanionic cellulose, PAC) at high molecular weight was investigated using a controlled stress rheometer. Several rheological measurements; viscosity measurements, creep compliance tests at a constant low shear stress and oscillation experiments have been performed. The concentrations ranged by weight from 0.01 to 2.5% of PAC. It was found that the aqueous solutions of PAC do not exhibit a yield stress, the flow curves of PAC over a wide range of shear rate (0 to 1000 s-1) could be described by the cross model and the Williamson models. The critical concentrations of polymer c* and c** have been estimated. The dynamic moduli, i.e., storage modulus (G’) and loss modulus (G’’) of the polymer have been determined at frequency sweep from 0.01 to 10 Hz. At polymer concentration above 1%, the modulus G’ is superior to G’’. The relationships between the dynamic modulus and concentration of polymer have been established. The creep-recovery experiments demonstrated that polymer solutions show important viscoelastic properties of system water-PAC when the concentration of the polymer increases.Keywords: polyanionic cellulose, viscosity, creep, oscillation, cross model
Procedia PDF Downloads 3262796 Multi-Objective Optimization and Effect of Surface Conditions on Fatigue Performance of Burnished Components Made of AISI 52100 Steel
Authors: Ouahiba Taamallah, Tarek Litim
Abstract:
The study deals with the burnishing effect of AISI 52100 steel and parameters influence (Py, i and f on surface integrity. The results show that the optimal effects are closely related to the treatment parameters. With a 92% improvement in roughness, SB can be defined as a finishing operation within the machining range. Due to 85% gain in consolidation rate, this treatment constitutes an efficient process for work-hardening of material. In addition, a statistical study based on regression and Taguchi's design has made it possible to develop mathematical models to predict output responses according to the studied burnishing parameters. Response Surface Methodology RSM showed a simultaneous influence of the burnishing parameters and to observe the optimal parameters of the treatment. ANOVA Analysis of results led to validate the prediction model with a determination coefficient R2=94.60% and R2=93.41% for surface roughness and micro-hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=20 Kgf, i=5 passes and f=0.08 mm.rev-1, which favors minimum surface roughness and a maximum of micro-hardness. The result was validated by a composite desirability D_i=1 for both surface roughness and microhardness, respectively. Applying optimal parameters, burnishing showed its beneficial effects in fatigue resistance, especially for imposed loading in the low cycle fatigue of the material where the lifespan increased by 90%.Keywords: AISI 52100 steel, burnishing, Taguchi, fatigue
Procedia PDF Downloads 1882795 Numerical Solution of Momentum Equations Using Finite Difference Method for Newtonian Flows in Two-Dimensional Cartesian Coordinate System
Authors: Ali Ateş, Ansar B. Mwimbo, Ali H. Abdulkarim
Abstract:
General transport equation has a wide range of application in Fluid Mechanics and Heat Transfer problems. In this equation, generally when φ variable which represents a flow property is used to represent fluid velocity component, general transport equation turns into momentum equations or with its well known name Navier-Stokes equations. In these non-linear differential equations instead of seeking for analytic solutions, preferring numerical solutions is a more frequently used procedure. Finite difference method is a commonly used numerical solution method. In these equations using velocity and pressure gradients instead of stress tensors decreases the number of unknowns. Also, continuity equation, by integrating the system, number of equations is obtained as number of unknowns. In this situation, velocity and pressure components emerge as two important parameters. In the solution of differential equation system, velocities and pressures must be solved together. However, in the considered grid system, when pressure and velocity values are jointly solved for the same nodal points some problems confront us. To overcome this problem, using staggered grid system is a referred solution method. For the computerized solutions of the staggered grid system various algorithms were developed. From these, two most commonly used are SIMPLE and SIMPLER algorithms. In this study Navier-Stokes equations were numerically solved for Newtonian flow, whose mass or gravitational forces were neglected, for incompressible and laminar fluid, as a hydro dynamically fully developed region and in two dimensional cartesian coordinate system. Finite difference method was chosen as the solution method. This is a parametric study in which varying values of velocity components, pressure and Reynolds numbers were used. Differential equations were discritized using central difference and hybrid scheme. The discritized equation system was solved by Gauss-Siedel iteration method. SIMPLE and SIMPLER were used as solution algorithms. The obtained results, were compared for central difference and hybrid as discritization methods. Also, as solution algorithm, SIMPLE algorithm and SIMPLER algorithm were compared to each other. As a result, it was observed that hybrid discritization method gave better results over a larger area. Furthermore, as computer solution algorithm, besides some disadvantages, it can be said that SIMPLER algorithm is more practical and gave result in short time. For this study, a code was developed in DELPHI programming language. The values obtained in a computer program were converted into graphs and discussed. During sketching, the quality of the graph was increased by adding intermediate values to the obtained result values using Lagrange interpolation formula. For the solution of the system, number of grid and node was found as an estimated. At the same time, to indicate that the obtained results are satisfactory enough, by doing independent analysis from the grid (GCI analysis) for coarse, medium and fine grid system solution domain was obtained. It was observed that when graphs and program outputs were compared with similar studies highly satisfactory results were achieved.Keywords: finite difference method, GCI analysis, numerical solution of the Navier-Stokes equations, SIMPLE and SIMPLER algoritms
Procedia PDF Downloads 391