Search results for: mammals size
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5830

Search results for: mammals size

820 Leadership Effectiveness Compared among Three Cultures Using Voice Pitches

Authors: Asena Biber, Ates Gul Ergun, Seda Bulut

Abstract:

Based on the literature, there are large numbers of studies investigating the relationship between culture and leadership effectiveness. Although giving effective speeches is vital characteristic for a leader to be perceived as effective, to our knowledge, there is no research study the determinants of perceived effective leader speech. The aim of this study is to find the effects of both culture and voice pitch on perceptions of leader's speech effectiveness. Our hypothesis is that people from high power distance countries will perceive leaders' speech effective when the leader's voice pitch is high, comparing with people from relatively low power distance countries. The participants of the study were 36 undergraduate students (12 Pakistanis, 12 Nigerians, and 12 Turks) who are studying in Turkey. National power distance scores of Nigerians ranked as first, Turks ranked as second and Pakistanis ranked as third. There are two independent variables in this study; three nationality groups that representing three levels of power distance and voice pitch of the leader which is manipulated as high and low levels. Researchers prepared an audio to manipulate high and low conditions of voice pitch. A professional whose native language is English read the predetermined speech in high and low voice pitch conditions. Voice pitch was measured using Hertz (Hz) and Decibel (dB). Each nationality group (Pakistan, Nigeria, and Turkey) were divided into groups of six students who listened to either the low or high pitch conditions in the cubicles of the laboratory. It was expected from participants to listen to the audio and fill in the questionnaire which was measuring the leadership effectiveness on a response scale ranging from 1 to 5. To determine the effects of nationality and voice pitch on perceived effectiveness of leader' voice pitch, 3 (Pakistani, Nigerian, and Turk) x 2 (low voice pitch and high voice pitch) two way between subjects analysis of variances was carried out. The results indicated that there was no significant main effect of voice pitch and interaction effect on perceived effectiveness of the leader’s voice pitch. However, there was a significant main effect of nationality on perceived effectiveness of the leader's voice pitch. Based on the results of Turkey’s HSD post-hoc test, only the perceived effectiveness of the leader's speech difference between Pakistanis and Nigerians was statistically significant. The results show that the hypothesis of this study was not supported. As limitations of the study, it is of importance to mention that the sample size should be bigger. Also, the language of the questionnaire and speech should be in the participant’s native language in further studies.

Keywords: culture, leadership effectiveness, power distance, voice pitch

Procedia PDF Downloads 182
819 Bond Strength of Nano Silica Concrete Subjected to Corrosive Environments

Authors: Muhammad S. El-Feky, Mohamed I. Serag, Ahmed M. Yasien, Hala Elkady

Abstract:

Reinforced concrete requires steel bars in order to provide the tensile strength that is needed in structural concrete. However, when steel bars corrode, a loss in bond between the concrete and the steel bars occurs due to the formation of rust on the bars surface. Permeability of concrete is a fundamental property in perspective of the durability of concrete as it represents the ease with which water or other fluids can move through concrete, subsequently transporting corrosive agents. Nanotechnology is a standout amongst active research zones that envelops varies disciplines including construction materials. The application of nanotechnology in the corrosion protection of metal has lately gained momentum as nano scale particles have ultimate physical, chemical and physicochemical properties, which may enhance the corrosion protection in comparison to large size materials. The presented research aims to study the bond performance of concrete containing relatively high volume nano silica (up to 4.5%) exposed to corrosive conditions. This was extensively studied through tensile, bond strengths as well as the permeability of nano silica concrete. In addition micro-structural analysis was performed in order to evaluate the effect of nano silica on the properties of concrete at both; the micro and nano levels. The results revealed that by the addition of nano silica, the permeability of concrete mixes decreased significantly to reach about 50% of the control mix by the addition of 4.5% nano silica. As for the corrosion resistance, the nano silica concrete is comparatively higher resistance than ordinary concrete. Increasing Nano Silica percentage increased significantly the critical time corresponding to a metal loss (equal to 50 ϻm) which usually corresponding to the first concrete cracking due to the corrosion of reinforcement to reach about 49 years instead of 40 years as for the normal concrete. Finally, increasing nano Silica percentage increased significantly the residual bond strength of concrete after being subjected to corrosive environment. After being subjected to corrosive environment, the pullout behavior was observed for the bars embedded in all of the mixes instead of the splitting behavior that was observed before being corroded. Adding 4.5% nano silica in concrete increased the residual bond strength to reach 79% instead of 27% only as compared to control mix (0%W) before the subjection of the corrosive environment. From the conducted study we can conclude that the Nano silica proved to be a significant pore blocker material.

Keywords: bond strength, concrete, corrosion resistance, nano silica, permeability

Procedia PDF Downloads 309
818 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger

Authors: Hany Elsaid Fawaz Abdallah

Abstract:

This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.

Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations

Procedia PDF Downloads 87
817 Alkali Activated Materials Based on Natural Clay from Raciszyn

Authors: Michal Lach, Maria Hebdowska-Krupa, Justyna Stefanek, Artur Stanek, Anna Stefanska, Janusz Mikula, Marek Hebda

Abstract:

Limited resources of raw materials determine the necessity of obtaining materials from other sources. In this area, the most known and widespread are recycling processes, which are mainly focused on the reuse of material. Another possible solution used in various companies to achieve improvement in sustainable development is waste-free production. It involves the production exclusively from such materials, whose waste is included in the group of renewable raw materials. This means that they can: (i) be recycled directly during the manufacturing process of further products or (ii) be raw material obtained by other companies for the production of alternative products. The article presents the possibility of using post-production clay from the Jurassic limestone deposit "Raciszyn II" as a raw material for the production of alkali activated materials (AAM). Such products are currently increasingly used, mostly in various building applications. However, their final properties depend significantly on many factors; the most important of them are: chemical composition of the raw material, particle size, specific surface area, type and concentration of the activator and the temperature range of the heat treatment. Conducted mineralogical and chemical analyzes of clay from the “Raciszyn II” deposit confirmed that this material, due to its high content of aluminosilicates, can be used as raw material for the production of AAM. In order to obtain the product with the best properties, the optimization of the clay calcining process was also carried out. Based on the obtained results, it was found that this process should occur in the range between 750 oC and 800 oC. The use of a lower temperature causes getting a raw material with low metakaolin content which is the main component of materials suitable for alkaline activation processes. On the other hand, higher heat treatment temperatures cause thermal dissociation of large amounts of calcite, which is associated with the release of large amounts of CO2 and the formation of calcium oxide. This compound significantly accelerates the binding process, which consequently often prevents the correct formation of geopolymer mass. The effect of the use of various activators: (i) NaOH, (ii) KOH and (iii) a mixture of KOH to NaOH in a ratio of 10%, 25% and 50% by volume on the compressive strength of the AAM was also analyzed. Obtained results depending on the activator used were in the range from 25 MPa to 40 MPa. These values are comparable with the results obtained for materials produced on the basis of Portland cement, which is one of the most popular building materials.

Keywords: alkaline activation, aluminosilicates, calcination, compressive strength

Procedia PDF Downloads 153
816 The Impact of Demographic Profile on Strategic HRM Practices and its Challenges Faced by HR Managers in IT Firm, India: An Empirical Study

Authors: P. Saravanan, A. Vasumathi

Abstract:

Strategic Human Resource Management (SHRM) plays a vital role in formulating the policies and strategies for the company, in order to fulfill the employee’s requirement and to perform the job efficiently within the organisation. Human Resource Management (HRM) functions helps in attracting and motivating the talented workforce for the organisation and by increasing the performance of an individual, will result in achieving the defined goals and objectives for the company. HRM function plays an important role in managing the workers within organisation through a formal communication channel. Since HR functions acts as a mediatory role in between the employee as well as the employers within the organisation that helps in improving the efficacy and skills of the individuals employed within the company. HR manager acts as a change agent, enabling and driving the change management program with respect to business HR functions and its future requirements of the company. Due to change in the business environment, the focus of HR manager is shifting from administrative/personal functions in to a strategic business HR function. HR managers plays a strategic role in managing various HR functions such as recruitment and selection, human resource information system, manpower planning, performance management, conflict management, employee engagement, compensation management, policy formation and retention strategies followed within the industry. Major challenges faced by HR managers at work place are managing the level of engagement for the talented resources within the organisation, reducing the conflicts at workplace, mapping the talented resources through succession planning process, building the effective appraisal process and performance management system and mapping the compensation based on the skills and experience possed by the employee within the company. The authors conducted a study for the sample size of 75 HR managers from an Indian IT company through systematic sampling method. This study identifies that the female employees are facing lesser conflict than the male employees against their managers within the organisation and also the study determines the impact of demographic profile on strategic HRM practices and its challenges faced by HR managers in IT firm, India.

Keywords: strategic human resource management, change agent, employee engagement, performance management, succession planning and conflict management

Procedia PDF Downloads 298
815 Properties of Sustainable Artificial Lightweight Aggregate

Authors: Wasan Ismail Khalil, Hisham Khalid Ahmed, Zainab Ali

Abstract:

Structural Lightweight Aggregate Concrete (SLWAC) has been developed in recent years because it reduces the dead load, cost, thermal conductivity and coefficient of thermal expansion of the structure. So SLWAC has the advantage of being a relatively green building material. Lightweight Aggregate (LWA) is either occurs as natural material such as pumice, scoria, etc. or as artificial material produced from different raw materials such as expanded shale, clay, slate, etc. The use of SLWAC in Iraq is limited due to the lack in natural LWA. The existence of Iraqi clay deposit with different types and characteristics leads to the idea of producing artificial expanded clay aggregate. The main aim in this work is to present of the properties of artificial LWA produced in the laboratory. Available local bentonite clay which occurs in the Western region of Iraq was used as raw material to produce the LWA. Sodium silicate as liquid industrial waste material from glass plant was mixed with bentonite clay in mix proportion 1:1 by weight. The manufacturing method of the lightweight aggregate including, preparation and mixing of clay and sodium silicate, burning of the mixture in the furnace at the temperature between 750-800˚C for two hours, and finally gradually cooling process. The produced LWA was then crushed to small pieces then screened on standard sieve series and prepared with grading which conforms to the specifications of LWA. The maximum aggregate size used in this investigation is 10 mm. The chemical composition and the physical properties of the produced LWA are investigated. The results indicate that the specific gravity of the produced LWA is 1.5 with the density of 543kg/m3 and water absorption of 20.7% which is in conformity with the international standard of LWA. Many trail mixes were carried out in order to produce LWAC containing the artificial LWA produced in this research. The selected mix proportion is 1:1.5:2 (cement: sand: aggregate) by weight with water to cement ratio of 0.45. The experimental results show that LWAC has oven dry density of 1720 kg/m3, water absorption of 8.5%, the thermal conductivity of 0.723 W/m.K and compressive strength of 23 N/mm2. The SLWAC produced in this research can be used in the construction of different thermal insulated buildings and masonry units. It can be concluded that the SLWA produced in this study contributes to sustainable development by, using industrial waste materials, conserving energy, enhancing the thermal and structural efficiency of concrete.

Keywords: expanded clay, lightweight aggregate, structural lightweight aggregate concrete, sustainable

Procedia PDF Downloads 328
814 A Comparative Analysis on Survival in Patients with Node Positive Cutaneous Head and Neck Squamous Cell Carcinoma as per TNM 7th and Tnm 8th Editions

Authors: Petr Daniel Edward Kovarik, Malcolm Jackson, Charles Kelly, Rahul Patil, Shahid Iqbal

Abstract:

Introduction: Recognition of the presence of extra capsular spread (ECS) has been a major change in the TNM 8th edition published by the American Joint Committee on Cancer in 2018. Irrespective of the size or number of lymph nodes, the presence of ECS makes N3b disease a stage IV disease. The objective of this retrospective observational study was to conduct a comparative analysis of survival outcomes in patients with lymph node-positive cutaneous head and neck squamous cell carcinoma (CHNSCC) based on their TNM 7th and TNM 8th editions classification. Materials and Methods: From January 2010 to December 2020, 71 patients with CHNSCC were identified from our centre’s database who were treated with radical surgery and adjuvant radiotherapy. All histopathological reports were reviewed, and comprehensive nodal mapping was performed. The data were collected retrospectively and survival outcomes were compared using TNM 7th and 8th editions. Results: The median age of the whole group of 71 patients was 78 years, range 54 – 94 years, 63 were male and 8 female. In total, 2246 lymph nodes were analysed; 195 were positive for cancer. ECS was present in 130 lymph nodes, which led to a change in TNM staging. The details on N-stage as per TNM 7th edition was as follows; pN1 = 23, pN2a = 14, pN2b = 32, pN2c = 0, pN3 = 2. After incorporating the TNM 8th edition criterion (presence of ECS), the details on N-stage were as follows; pN1 = 6, pN2a = 5, pN2b = 3, pN2c = 0, pN3a = 0, pN3b = 57. This showed an increase in overall stage. According to TNM 7th edition, there were 23 patients were with stage III and remaining 48 patients, stage IV. As per TNM 8th edition, there were only 6 patients with stage III as compared to 65 patients with stage IV. For all patients, 2-year disease specific survival (DSS) and overall survival (OS) were 70% and 46%. 5-year DSS and OS rates were 66% and 20% respectively. Comparing the survival between stage III and stage IV of the two cohorts using both TNM 7th and 8th editions, there is an obvious greater survival difference between the stages if TNM 8th staging is used. However, meaningful statistics were not possible as the majority of patients (n = 65) were with stage IV and only 6 patients were stage III in the TNM 8th cohort. Conclusion: Our study provides a comprehensive analysis on lymph node data mapping in this specific patient population. It shows a better differentiation between stage III and stage IV in the TNM 8th edition as compared to TNM 7th however meaningful statistics were not possible due to the imbalance of patients in the sub-cohorts of the groups.

Keywords: cutaneous head and neck squamous cell carcinoma, extra capsular spread, neck lymphadenopathy, TNM 7th and 8th editions

Procedia PDF Downloads 107
813 Study of Variation in Linear Growth and Other Parameters of Male Albino Rats on Exposure to Chronic Multiple Stress after Birth

Authors: Potaliya Pushpa, Kataria Sushma, D. S. Chowdhary, Dadhich Abhilasha

Abstract:

Introduction: Stress is a nonspecific response of the body to a stressor or triggering stimulus. Chronic stress exposure contributes to various remarkable alterations o growth and development. Collective effects of stressors lead to several changes which are physical, physiological and behavioral in nature. Objective: To understand on an animal model how various chronic stress affect the somatic body growth as it can be useful for effective stress treatment and prevention of stress related illnesses. Material and Method: By selective fostering only male pup colonies were made and 102 male albino rats were studied. They were divided two groups as Control and Stressed. The experimental groups were exposed to four major types of stress as maternal deprivation, Restraint stress, electric foot shock and noise stress for affecting emotional, physical and physiological activities. Exposure was from birth to 17 week of life. Roentgenographs were taken in two planes as Dorso-ventral and Lateral and then measured for each rat. Various parameters were observed at specific intervals. Parameters recorded were Body weight and for linear growth it was summation of Cranial length, Head rump length and tail length. Behavior changes were also observed. Result: Multiple chronic stresses resulted in loss of approx. 25% of mean body weight. Maximal difference was found on 119th day (i.e. 87.81 gm) between the control and stressed group. Linear growth showed retardation which was found to be significant in stressed group on statistical analysis. Cranial Length and Head-rump Length showed maximum difference after maternal deprivation stress. After maternal deprivation (Day 21) and electric foot shock (Day 101) maximum difference i.e. 0.39 cm and 0.47 cm were found in cranial length of two groups. Electric foot shock had considerable impact on tail length. Noise Stress affected moreover behavior as compact to physical growth. Conclusion: Collective study showed that chronic stress not only resulted in reduced body weight in albino rats but also total linear size of rat thus affecting whole growth and development.

Keywords: stress, microscopic anatomy, macroscopic anatomy, chronic multiple stress, birth

Procedia PDF Downloads 266
812 The Structure and Development of a Wing Tip Vortex under the Effect of Synthetic Jet Actuation

Authors: Marouen Dghim, Mohsen Ferchichi

Abstract:

The effect of synthetic jet actuation on the roll-up and the development of a wing tip vortex downstream a square-tipped rectangular wing was investigated experimentally using hotwire anemometry. The wing is equipped with a hallow cavity designed to generate a high aspect ratio synthetic jets blowing at an angles with respect to the spanwise direction. The structure of the wing tip vortex under the effect of fluidic actuation was examined at a chord Reynolds number Re_c=8×10^4. An extensive qualitative study on the effect of actuation on the spanwise pressure distribution at c⁄4 was achieved using pressure scanner measurements in order to determine the optimal actuation parameters namely, the blowing momentum coefficient, Cμ, and the non-dimensionalized actuation frequency, F^+. A qualitative study on the effect of actuation parameters on the spanwise pressure distribution showed that optimal actuation frequencies of the synthetic jet were found within the range amplified by both long and short wave instabilities where spanwise pressure coefficients exhibited a considerable decrease by up to 60%. The vortex appeared larger and more diffuse than that of the natural vortex case. Operating the synthetic jet seemed to introduce unsteadiness and turbulence into the vortex core. Based on the ‘a priori’ optimal selected parameters, results of the hotwire wake survey indicated that the actuation achieved a reduction and broadening of the axial velocity deficit. A decrease in the peak tangential velocity associated with an increase in the vortex core radius was reported as a result of the accelerated radial transport of angular momentum. Peak vorticity level near the core was also found to be largely diffused as a direct result of the increased turbulent mixing within the vortex. The wing tip vortex a exhibited a reduced strength and a diffused core as a direct result of increased turbulent mixing due to the presence of turbulent small scale vortices within its core. It is believed that the increased turbulence within the vortex due to the synthetic jet control was the main mechanism associated with the decreased strength and increased size of the wing tip vortex as it evolves downstream. A comparison with a ‘non-optimal’ case was included to demonstrate the effectiveness of selecting the appropriate control parameters. The Synthetic Jet will be operated at various actuation configurations and an extensive parametric study is projected to determine the optimal actuation parameters.

Keywords: flow control, hotwire anemometry, synthetic jet, wing tip vortex

Procedia PDF Downloads 436
811 Effects of Nanoencapsulated Echinacea purpurea Ethanol Extract on the Male Reproductive Function in Streptozotocin-Induced Diabetic Rats

Authors: Jia-Ling Ho, Xiu-Ru Zhang, Zwe-Ling Kong

Abstract:

Diabetes mellitus (DM) is a major health problem that affects patients’ life quality throughout the world due to its many complications. It characterized by chronic hyperglycemia with oxidative stress, which impaired male reproductive function. Fibroblast growth factor 21 (FGF21) is a metabolic regulator that is required for normal spermatogenesis and protects against diabetes-induced germ cell apoptosis. Echinacea purpurea ethanol extract (EE), which contain phenolic acid and isobutylamide, had been proven to have antidiabetic property. Silica-chitosan nanoparticles (Nano-CS) has drug delivery and controlled release properties. This study aims to investigate whether silica-chitosan nanoparticles encapsulated EE (Nano-EE) had more ameliorating male infertility by analyzing the effect of testicular FGF21. The Nano-EE was characterized before used to treatment the diabetic rat model. Male Sprague-Dawley (SD) rats were obtained and divided into seven groups. A group was no induced Streptozotocin (STZ), marked as normal group. Diabetic rats were induced into diabetes by STZ (33 mg/kg). A diabetic group was no treatment with sample (diabetic control group), and other groups were treatment by Nano-CS (465 mg/kg), Nano-EE (93, 279, 465 mg/kg), and metformin (Met) (200 mg/kg) used as reference drug for 7 weeks. Our results indicated that the average nanoparticle size and zeta potential of Nano-EE were 2630 nm and -21.3 mV, respectively. The encapsulation ratio of Nano-EE was about 70%. It also confirmed the antioxidative activity was unchanged by comparing the DPPH and ABTS scavenging of Nano-EE and EE. In vivo test, Nano-EE can improve the STZ induced hyperglycemia, insulin resistance, and plasma FGF21 levels. Nano-EE has increased sperm motility, mitochondria membrane potential (MMP), plasma testosterone level, and reduction of abnormal sperm, nitric oxide (NO), superoxide production as well as reactive oxygen species (ROS). In addition, in plasma antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD) was increased whereas pro-inflammatory cytokines TNF-α, and IL-1β were decreased. Further, in testis, protein content of FGF21, PGC-1α, and SIRT1 were improved. Nano-EE might improve diabetes-induced down-regulation of testicular FGF21 and SIRT1/PGC-1α signaling hence maintain spermatogenesis.

Keywords: diabetes mellitus, Echinacea purpurea, reproductive dysfunction, silica-chitosan nanoparticles

Procedia PDF Downloads 192
810 CFD Modeling of Stripper Ash Cooler of Circulating Fluidized Bed

Authors: Ravi Inder Singh

Abstract:

Due to high heat transfer rate, high carbon utilizing efficiency, fuel flexibilities and other advantages numerous circulating fluidized bed boilers have grown up in India in last decade. Many companies like BHEL, ISGEC, Thermax, Cethar Limited, Enmas GB Power Systems Projects Limited are making CFBC and installing the units throughout the India. Due to complexity many problems exists in CFBC units and only few have been reported. Agglomeration i.e clinker formation in riser, loop seal leg and stripper ash coolers is one of problem industry is facing. Proper documentation is rarely found in the literature. Circulating fluidized bed (CFB) boiler bottom ash contains large amounts of physical heat. While the boiler combusts the low-calorie fuel, the ash content is normally more than 40% and the physical heat loss is approximately 3% if the bottom ash is discharged without cooling. In addition, the red-hot bottom ash is bad for mechanized handling and transportation, as the upper limit temperature of the ash handling machinery is 200 °C. Therefore, a bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to have the ash easily handled and transported. As a key auxiliary device of CFB boilers, the BAC has a direct influence on the secure and economic operation of the boiler. There are many kinds of BACs equipped for large-scale CFB boilers with the continuous development and improvement of the CFB boiler. These ash coolers are water cooled ash cooling screw, rolling-cylinder ash cooler (RAC), fluidized bed ash cooler (FBAC).In this study prototype of a novel stripper ash cooler is studied. The Circulating Fluidized bed Ash Coolers (CFBAC) combined the major technical features of spouted bed and bubbling bed, and could achieve the selective discharge on the bottom ash. The novel stripper ash cooler is bubbling bed and it is visible cold test rig. The reason for choosing cold test is that high temperature is difficult to maintain and create in laboratory level. The aim of study to know the flow pattern inside the stripper ash cooler. The cold rig prototype is similar to stripper ash cooler used industry and it was made after scaling down to some parameter. The performance of a fluidized bed ash cooler is studied using a cold experiment bench. The air flow rate, particle size of the solids and air distributor type are considered to be the key parameters of the operation of a fluidized bed ash cooler (FBAC) are studied in this.

Keywords: CFD, Eulerian-Eulerian, Eulerian-Lagraingian model, parallel simulations

Procedia PDF Downloads 510
809 Assessing the Informed Consent Practices during Normal Vaginal Delivery Process and Immediate Postpartum Care in Tertiary Level Hospitals of Bangladesh

Authors: Md. Abdul Karim, Syed Imran Ahmed, Pandora T. Hardtman

Abstract:

Informed consent is one of the basic human and ethical rights for childbearing women. It plays a central role in promoting informed decision making between patients and service providers during the labor process. It gives mothers rights to accept or reject any examination and/or procedure, increases the respect and dignity of the mother during pregnancy, delivery and postpartum care. To assess the practices of this right during normal vaginal delivery and immediate postpartum care in tertiary level hospital setting in Bangladesh, a quantitative study with cross-sectional design was conducted in Dhaka Medical College & Hospital (DMCH) and Sir Salimullah Medical College & Mitford Hospital (SSMCH) in Dhaka in November 2015. A prevalence-based sample size of 190 was calculated where prevalence, confidence interval and level of significance were at 9.7%, 98% and 5% respectively. The respondents were the mothers who gave normal vaginal childbirth within past 24 hours and received postpartum care there. They were selected through systematic random sampling technique and their face-to-face interview of 190 mothers was done using a structured questionnaire. Data were entered into the spreadsheet (MS Excel 2013 version) and descriptive analysis of findings was done. The result shows the complete absence of informed consent practices and mostly absence of consented care such as right to information, respect for choices of preferences for examination and/or procedure of childbearing women. Although 95% of the mothers were informed that they were being proceeded with normal vaginal delivery, their choice of preference was absent during the process. Only consent (not informed consent) was taken from 50%-72% mothers for examination (except breast examination ‘0%’) and 8%-83% for any procedures during postpartum care. Only one-ninth (11%) of the mothers could ask service providers regarding the services they received. No consent was taken from 3% of the mothers- neither in the labor process nor in postpartum care. This current practice doesn’t comply with the Respectful Maternity Care (RMC) Charter 2011. The issue is not even clarified in the current Standard Clinical Management Protocols of the country. So, improvement of the existing protocol and increased awareness are essential to address this right of child-bearing women and to practice it during normal vaginal delivery and postpartum care.

Keywords: informed consent, normal vaginal delivery, respectful maternity care, tertiary level hospital

Procedia PDF Downloads 158
808 Benefits of Monitoring Acid Sulfate Potential of Coffee Rock (Indurated Sand) across Entire Dredge Cycle in South East Queensland

Authors: S. Albert, R. Cossu, A. Grinham, C. Heatherington, C. Wilson

Abstract:

Shipping trends suggest increasing vessel size and draught visiting Australian ports highlighting potential challenges to port infrastructure and requiring optimization of shipping channels to ensure safe passage for vessels. The Port of Brisbane in Queensland, Australia has an 80 km long access shipping channel which vessels must transit 15 km of relatively shallow coffee rock (generic class of indurated sands where sand grains are bound within an organic clay matrix) outcrops towards the northern passage in Moreton Bay. This represents a risk to shipping channel deepening and maintenance programs as the dredgeability of this material is more challenging due to its high cohesive strength compared with the surrounding marine sands and potential higher acid sulfate risk. In situ assessment of acid sulfate sediment for dredge spoil control is an important tool in mitigating ecological harm. The coffee rock in an anoxic undisturbed state does not pose any acid sulfate risk, however when disturbed via dredging it’s vital to ensure that any present iron sulfides are either insignificant or neutralized. To better understand the potential risk we examined the reduction potential of coffee rock across the entire dredge cycle in order to accurately portray the true outcome of disturbed acid sulfate sediment in dredging operations in Moreton Bay. In December 2014 a dredge trial was undertaken with a trailing suction hopper dredger. In situ samples were collected prior to dredging revealed acid sulfate potential above threshold guidelines which could lead to expensive dredge spoil management. However, potential acid sulfate risk was then monitored in the hopper and subsequent discharge, both showing a significant reduction in acid sulfate potential had occurred. Additionally, the acid neutralizing capacity significantly increased due to the inclusion of shell fragments (calcium carbonate) from the dredge target areas. This clearly demonstrates the importance of assessing potential acid sulfate risk across the entire dredging cycle and highlights the need to carefully evaluate sources of acidity.

Keywords: acid sulfate, coffee rock, indurated sand, dredging, maintenance dredging

Procedia PDF Downloads 368
807 Intensive Multidisciplinary Feeding Intervention for a Toddler with In-Utero Drug Exposure

Authors: Leandra Prempeh, Emily Malugen

Abstract:

Prenatal drug exposure can have a molecular impact on the hypothalamic and reward genes that regulate feeding behavior. This can impact feeding regulation, resulting in feeding difficulties and growth failure. This was potentially seen in “McKayla,” a 19- month old girl with a history of in-utero drug exposure, patent ductus arteriosus, and gastroesophageal reflux disease who presented for intensive day treatment feeding therapy. She was diagnosed with Avoidant Restrictive Food Intake Disorder, described as total food refusal and meeting 100% of her caloric needs from a gastrostomy tube. The primary goals during intensive feeding therapy were to increase her oral intake and decrease her reliance on supplementation with formula. Several behavioral antecedent manipulations were implemented to establish consistent responding and make progress towards treatment goals. This included multiple modified bolus placements (using underloaded and Nuk brush), reinforcement contingencies, and variety fading before stability was finally achieved. Following, increasing retention of bites then increasing volume and variety were goals targeted. From treatment onset to the last 3 days of treatment, McKayla's rate of rapid acceptance of bite presentations increased significantly from 33.33% to 93.13%, rapid swallowing went from 0.00% to 92.32%, and her percentage of inappropriate mealtime behavior and expels decreased from 58.33% and 100% to 2.31% and 7.68%, respectively. Overall, the treatment team successfully introduced and increased the bite size of 7 pureed foods, generalize the treatment to caregivers with high integrity, and began facilitating tube weaning. She was receiving about 33.42% of her needs by mouth at the time of discharge. Other nutritional concerns addressed during treatment included drinking a nutritionally complete drink out of an open cup and age appropriate growth. McKayla continued to have emesis almost daily, as was her baseline before starting treatment; however, the frequency during mealtime decreased. Overall, McKayla responded well to treatment. She had a very slow response to treatment and required a lot of antecedent manipulations to establish consistent responding. As the literature suggests, [drug]-exposed neonates, like McKayla, may be at increased risk for nutritional and growth challenges that may persist throughout development. This supports the need for longterm follow-up of infant growth.

Keywords: behavioral intervention, feeding problems, in-utero drug exposure, intensive multidisciplinary intervention

Procedia PDF Downloads 66
806 Identification and Characterization of Antimicrobial Peptides Isolated from Entophytic Bacteria and Their Activity against Multidrug-Resistance Gram-Negative Bacteria in South Korea

Authors: Maryam Beiranvand

Abstract:

Multi-drug resistance in various microorganisms has increased globally in many healthcare facilities. Less effective antimicrobial activity of drug therapies for infection control becomes trouble. Since 1980, no new type of antimicrobial drug has been identified, even though combinations of antibiotic drugs have been discovered almost every decade. Between 1981 and 2006, over 70% of novel pharmaceuticals and chemical agents came from natural sources. Microorganisms have yielded almost 22,000 natural compounds. The identification of antimicrobial components from endophytes bacteria could help overcome the threat posed by multi-drug resistant strains. The project aims to analyze and identify antimicrobial peptides isolated from entophytic bacteria and their activity against multidrug-resistant Gram-negative bacteria in South Korea. Endophytic Paenibacillus polymyxa. 4G3 isolated from the plant, Gynura procumbery exhibited considerable antimicrobial activity against Methicillin-resistant Staphylococcus aureus, and Escherichia coli. The Rapid Annotations using Subsystems Technology showed that the total size of the draft genome was 5,739,603bp, containing 5178 genes with 45.8% G+C content. Genome annotation using antiSMASH version 6.0.0 was performed, which predicted the most common types of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS). In this study, diethyl aminoethyl cellulose (DEAEC) resin was used as the first step in purifying for unknown peptides, and then the target protein was identified using hydrophilic and hydrophobic solutions, optimal pH, and step-by-step tests for antimicrobial activity. This crude was subjected to C18 chromatography and elution with 0, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% methanol, respectively. Only the fraction eluted with 20% -60% methanol demonstrated good antimicrobial activity against MDR E. coli. The concentration of the active fragment was measured by the Brad-ford test, and Protein A280 - Thermo Fisher Scientific at the end by examining the SDS PAGE Resolving Gel, 10% Acrylamide and purity were confirmed. Our study showed that, based on the combined results of the analysis and purification. P polymyxa. 4G3 has a high potential exists for producing novel functions of polymyxin E and bacitracin against bacterial pathogens.

Keywords: endophytic bacteria, antimicrobial activity, antimicrobial peptide, whole genome sequencing analysis, multi -drug resistance gram negative bacteria

Procedia PDF Downloads 77
805 The Mediating Role of Positive Psychological Capital in the Relationship between Self-Leadership and Career Maturity among Korean University Students

Authors: Lihyo Sung

Abstract:

Background: Children and teens in Korea experience extreme levels of academic stress. To perform better on the college entrance exam and gain admission to Korea’s most prestigious universities, they devote a significant portion of their early lives to studying. Because of their excessive preparation for entrance exams, students have become accustomed to passive and involuntary engagement. Any student starting university, however, faces new challenges that require more active involvement and self-regulated practice. As a way to tackle this issue, the study focuses on investigating the mediating effects of positive psychological capital on the relationship between self-leadership and career maturity among Korean university students. Objectives and Hypotheses: The long term goal of this study is to offer insights that promote the use of positive psychological interventions in the development and adaptation of career maturity. The current objective is to assess the role of positive psychological capital as a mediator between self-leadership and career maturity among Korean university students. Based on previous research, the hypotheses are: (a) self-leadership will be positively associated with indices of career maturity, and (b) positive psychological capital will partially or fully mediate the relationship between self-leadership and career maturity. Sample Characteristics and Sample Size: Participants in the current study consisted of undergraduate students enrolled in various courses at 5 large universities in Korea. A total of 181 students participated in the study. Methodology: A quantitative research design was adopted to test the hypotheses proposed in the current study. By using a cross-sectional approach to research, a self-administered questionnaire was used to collect data on indices of positive psychological capital, self-leadership, and career maturity. The data were analyzed by means of Cronbach's alpha, Pierson correlation test, multiple regression, path analysis, and SPSS for Windows version 22.0 using descriptive statistics. Results: Findings showed that positive psychological capital fully mediated the relationship between self-leadership and career maturity. Self-leadership significantly impacted positive psychological capital and career maturity, respectively. Scientific Contribution: The results of the current study provided useful insights into the role of psychological strengths such as positive psychological capital in improving self-leadership and career maturity. Institutions can assist in increasing positive psychological capital through the creation of positive experiences for undergraduate students, such as opportunities for coaching and mentoring.

Keywords: career maturity, mediating role, positive psychological capital, self-leadership

Procedia PDF Downloads 126
804 Unified Coordinate System Approach for Swarm Search Algorithms in Global Information Deficit Environments

Authors: Rohit Dey, Sailendra Karra

Abstract:

This paper aims at solving the problem of multi-target searching in a Global Positioning System (GPS) denied environment using swarm robots with limited sensing and communication abilities. Typically, existing swarm-based search algorithms rely on the presence of a global coordinate system (vis-à-vis, GPS) that is shared by the entire swarm which, in turn, limits its application in a real-world scenario. This can be attributed to the fact that robots in a swarm need to share information among themselves regarding their location and signal from targets to decide their future course of action but this information is only meaningful when they all share the same coordinate frame. The paper addresses this very issue by eliminating any dependency of a search algorithm on the need of a predetermined global coordinate frame by the unification of the relative coordinate of individual robots when within the communication range, therefore, making the system more robust in real scenarios. Our algorithm assumes that all the robots in the swarm are equipped with range and bearing sensors and have limited sensing range and communication abilities. Initially, every robot maintains their relative coordinate frame and follow Levy walk random exploration until they come in range with other robots. When two or more robots are within communication range, they share sensor information and their location w.r.t. their coordinate frames based on which we unify their coordinate frames. Now they can share information about the areas that were already explored, information about the surroundings, and target signal from their location to make decisions about their future movement based on the search algorithm. During the process of exploration, there can be several small groups of robots having their own coordinate systems but eventually, it is expected for all the robots to be under one global coordinate frame where they can communicate information on the exploration area following swarm search techniques. Using the proposed method, swarm-based search algorithms can work in a real-world scenario without GPS and any initial information about the size and shape of the environment. Initial simulation results show that running our modified-Particle Swarm Optimization (PSO) without global information we can still achieve the desired results that are comparable to basic PSO working with GPS. In the full paper, we plan on doing the comparison study between different strategies to unify the coordinate system and to implement them on other bio-inspired algorithms, to work in GPS denied environment.

Keywords: bio-inspired search algorithms, decentralized control, GPS denied environment, swarm robotics, target searching, unifying coordinate systems

Procedia PDF Downloads 137
803 An Analysis of Insulation Defects in TRNC: The Case of Toros Dormitory of Eastern Mediterranean University

Authors: Arash Imani Fooladi

Abstract:

In recent years, with the growing population and decrease in the amount of non-renewable energy supplies, which is caused by the uncontrolled energy use, the world witnesses air pollution and destruction of the natural resources. Most of the buildings which are constructed in order to inhabit this great amount of population have minimum facilities. With the passing time researchers began to feel anxious about increase in the amount of energy which people are continuously using and they tried to find some ways to solve it. One of the methods, which human being has used all during the history, was considering the orientation, size, form and shape of the building during design process and trying to take advantage of the methods which his ancestors used in order to make buildings thermally comfortable. In the last forty years with the development of building materials a new way of conserving energy, called insulation, was invented. In North Cyprus, with its adverse weather condition (hot and dry summers and rainy winters) no method was used to make buildings thermally comfortable. This fact leads to wasting a noticeable amount of energy for heating and cooling the buildings. The main aim of this article is to evaluate the defects of insulation in North Cyprus and to introduce some suggestions to improve the current defects of insulation. Therefore, this paper focuses on the Toros dormitory and the construction firms in TRNC. Toros Dormitory is situated in North Cyprus and it is one of the dormitories of Eastern Mediterranean University. Lots of problems are observed with its insulation. Forty students who inhabit in this dormitory are selected randomly in order to study these defects. Close ended questionnaires are used to find out the level of satisfaction of these students on the subject. Furthermore, eight constructors in North Cyprus are selected to study their level of satisfaction, the most important factors for choosing an insulation type and the material they often use as insulation. The results demonstrated that most of the students in the dormitory are not satisfied with the thermal conditions. Constructors are also unsatisfied with the insulating conditions in TRNC. They claimed that polystyrene which is commonly used is not the proper material for insulation in this area. Finally ICF system is evaluated, it is a new system of construction which also works as an insulation and recently it is being used all over the world. The material is suggested as a proper insulation type for North Cyprus.

Keywords: thermal comfort, insulation, building envelop, hot and humid climate, ICF system

Procedia PDF Downloads 342
802 Optimizing Cell Culture Performance in an Ambr15 Microbioreactor Using Dynamic Flux Balance and Computational Fluid Dynamic Modelling

Authors: William Kelly, Sorelle Veigne, Xianhua Li, Zuyi Huang, Shyamsundar Subramanian, Eugene Schaefer

Abstract:

The ambr15™ bioreactor is a single-use microbioreactor for cell line development and process optimization. The ambr system offers fully automatic liquid handling with the possibility of fed-batch operation and automatic control of pH and oxygen delivery. With operating conditions for large scale biopharmaceutical production properly scaled down, micro bioreactors such as the ambr15™ can potentially be used to predict the effect of process changes such as modified media or different cell lines. In this study, gassing rates and dilution rates were varied for a semi-continuous cell culture system in the ambr15™ bioreactor. The corresponding changes to metabolite production and consumption, as well as cell growth rate and therapeutic protein production were measured. Conditions were identified in the ambr15™ bioreactor that produced metabolic shifts and specific metabolic and protein production rates also seen in the corresponding larger (5 liter) scale perfusion process. A Dynamic Flux Balance model was employed to understand and predict the metabolic changes observed. The DFB model-predicted trends observed experimentally, including lower specific glucose consumption when CO₂ was maintained at higher levels (i.e. 100 mm Hg) in the broth. A Computational Fluid Dynamic (CFD) model of the ambr15™ was also developed, to understand transfer of O₂ and CO₂ to the liquid. This CFD model predicted gas-liquid flow in the bioreactor using the ANSYS software. The two-phase flow equations were solved via an Eulerian method, with population balance equations tracking the size of the gas bubbles resulting from breakage and coalescence. Reasonable results were obtained in that the Carbon Dioxide mass transfer coefficient (kLa) and the air hold up increased with higher gas flow rate. Volume-averaged kLa values at 500 RPM increased as the gas flow rate was doubled and matched experimentally determined values. These results form a solid basis for optimizing the ambr15™, using both CFD and FBA modelling approaches together, for use in microscale simulations of larger scale cell culture processes.

Keywords: cell culture, computational fluid dynamics, dynamic flux balance analysis, microbioreactor

Procedia PDF Downloads 282
801 Laser-Dicing Modeling: Implementation of a High Accuracy Tool for Laser-Grooving and Cutting Application

Authors: Jeff Moussodji, Dominique Drouin

Abstract:

The highly complex technology requirements of today’s integrated circuits (ICs), lead to the increased use of several materials types such as metal structures, brittle and porous low-k materials which are used in both front end of line (FEOL) and back end of line (BEOL) process for wafer manufacturing. In order to singulate chip from wafer, a critical laser-grooving process, prior to blade dicing, is used to remove these layers of materials out of the dicing street. The combination of laser-grooving and blade dicing allows to reduce the potential risk of induced mechanical defects such micro-cracks, chipping, on the wafer top surface where circuitry is located. It seems, therefore, essential to have a fundamental understanding of the physics involving laser-dicing in order to maximize control of these critical process and reduce their undesirable effects on process efficiency, quality, and reliability. In this paper, the study was based on the convergence of two approaches, numerical and experimental studies which allowed us to investigate the interaction of a nanosecond pulsed laser and BEOL wafer materials. To evaluate this interaction, several laser grooved samples were compared with finite element modeling, in which three different aspects; phase change, thermo-mechanical and optic sensitive parameters were considered. The mathematical model makes it possible to highlight a groove profile (depth, width, etc.) of a single pulse or multi-pulses on BEOL wafer material. Moreover, the heat affected zone, and thermo-mechanical stress can be also predicted as a function of laser operating parameters (power, frequency, spot size, defocus, speed, etc.). After modeling validation and calibration, a satisfying correlation between experiment and modeling, results have been observed in terms of groove depth, width and heat affected zone. The study proposed in this work is a first step toward implementing a quick assessment tool for design and debug of multiple laser grooving conditions with limited experiments on hardware in industrial application. More correlations and validation tests are in progress and will be included in the full paper.

Keywords: laser-dicing, nano-second pulsed laser, wafer multi-stack, multiphysics modeling

Procedia PDF Downloads 209
800 Current Concepts of Male Aesthetics: Facial Areas to Be Focused and Prioritized with Botulinum Toxin and Hyaluronic Acid Dermal Fillers Combination Therapies, Recommendations on Asian Patients

Authors: Sadhana Deshmukh

Abstract:

Objective: Men represent only a fraction of the medical aesthetic practice. They are increasingly becoming more cosmetically-inclined. The primary objective is to harmonize facial proportion by prioritizing and focusing on forehead nose, cheek and chin complex. Introduction: Despite tremendous variability, diverse population of the Indian subcontinent, the male skull is unique in its overall larger size, and shape. Men tend to have a large forehead with prominent supraorbital ridges, wide glabella, square orbit, and a prominent protruding mandible. Men have increased skeletal muscle mass, with less facial subcutaneous fat. Facial aesthetics is evolving rapidly. Commonly published canons of facial proportions usually represent feminine standards and are not applicable to males. Strict adherence to these norms is therefore not necessary to obtain satisfying results in male patients. Materials and Methods: Male patients age group 30-60 years have been enrolled. Botulinum toxin and hyaluronic acid fillers were used to update consensus recommendations for facial rejuvenation using these two types of products alone and in combination. Results: There are specific recommendations by facial area, focusing on relaxing musculature, restoring volume, recontouring using toxin and dermal fillers alone and in combination. For upper face, though botulinum toxin remains the cornerstone of treatment, temples and forehead fillers are recommended for optimal results. In Mid face, these fillers are placed more laterally to maintain the masculine look. Botulinum toxin and fillers in combination can improve outcomes in the lower face. Chin augmentation remains the center point for lower face. Conclusions: Males are more likely to have shorter doctor visits, less likely to ask questions, have a lower attention to bodily changes. The physician must patiently gauge male patients’ aging and cosmetic goals. Clinicians can also benefit from ongoing guidance on products, tailoring treatments, treating multiple facial areas, and using combinations of products. An appreciation that rejuvenation is 3-dimensional process involving muscle control, volume restoration and recontouring helps.

Keywords: male aesthetics, botulinum toxin, hyaluronic acid dermal fillers, Asian patients

Procedia PDF Downloads 157
799 Na Doped ZnO UV Filters with Reduced Photocatalytic Activity for Sunscreen Application

Authors: Rafid Mueen, Konstantin Konstantinov, Micheal Lerch, Zhenxiang Cheng

Abstract:

In the past two decades, the concern for skin protection from ultraviolet (UV) radiation has attracted considerable attention due to the increased intensity of UV rays that can reach the Earth’s surface as a result of the breakdown of ozone layer. Recently, UVA has also attracted attention, since, in comparison to UVB, it can penetrate deeply into the skin, which can result in significant health concerns. Sunscreen agents are one of the significant tools to protect the skin from UV irradiation, and it is either organic or in organic. Developing of inorganic UV blockers is essential, which provide efficient UV protection over a wide spectrum rather than organic filters. Furthermore inorganic UV blockers are good comfort, and high safety when applied on human skin. Inorganic materials can absorb, reflect, or scatter the ultraviolet radiation, depending on their particle size, unlike the organic blockers, which absorb the UV irradiation. Nowadays, most inorganic UV-blocking filters are based on (TiO2) and ZnO). ZnO can provide protection in the UVA range. Indeed, ZnO is attractive for in sunscreen formulization, and this relates to many advantages, such as its modest refractive index (2.0), absorption of a small fraction of solar radiation in the UV range which is equal to or less than 385 nm, its high probable recombination of photogenerated carriers (electrons and holes), large direct band gap, high exciton binding energy, non-risky nature, and high tendency towards chemical and physical stability which make it transparent in the visible region with UV protective activity. A significant issue for ZnO use in sunscreens is that it can generate ROS in the presence of UV light because of its photocatalytic activity. Therefore it is essential to make a non-photocatalytic material through modification by other metals. Several efforts have been made to deactivate the photocatalytic activity of ZnO by using inorganic surface modifiers. The doping of ZnO by different metals is another way to modify its photocatalytic activity. Recently, successful doping of ZnO with different metals such as Ce, La, Co, Mn, Al, Li, Na, K, and Cr by various procedures, such as a simple and facile one pot water bath, co-precipitation, hydrothermal, solvothermal, combustion, and sol gel methods has been reported. These materials exhibit greater performance than undoped ZnO towards increasing the photocatalytic activity of ZnO in visible light. Therefore, metal doping can be an effective technique to modify the ZnO photocatalytic activity. However, in the current work, we successfully reduce the photocatalytic activity of ZnO through Na doped ZnO fabricated via sol-gel and hydrothermal methods.

Keywords: photocatalytic, ROS, UVA, ZnO

Procedia PDF Downloads 143
798 Investigating the Impact of Enterprise Resource Planning System and Supply Chain Operations on Competitive Advantage and Corporate Performance (Case Study: Mamot Company)

Authors: Mohammad Mahdi Mozaffari, Mehdi Ajalli, Delaram Jafargholi

Abstract:

The main purpose of this study is to investigate the impact of the system of ERP (Enterprise Resource Planning) and SCM (Supply Chain Management) on the competitive advantage and performance of Mamot Company. The methods for collecting information in this study are library studies and field research. A questionnaire was used to collect the data needed to determine the relationship between the variables of the research. This questionnaire contains 38 questions. The direction of the current research is applied. The statistical population of this study consists of managers and experts who are familiar with the SCM system and ERP. Number of statistical society is 210. The sampling method is simple in this research. The sample size is 136 people. Also, among the distributed questionnaires, Reliability of the Cronbach's Alpha Cronbach's Questionnaire is evaluated and its value is more than 70%. Therefore, it confirms reliability. And formal validity has been used to determine the validity of the questionnaire, and the validity of the questionnaire is confirmed by the fact that the score of the impact is greater than 1.5. In the present study, one variable analysis was used for central indicators, dispersion and deviation from symmetry, and a general picture of the society was obtained. Also, two variables were analyzed to test the hypotheses; measure the correlation coefficient between variables using structural equations, SPSS software was used. Finally, multivariate analysis was used with statistical techniques related to the SPLS structural equations to determine the effects of independent variables on the dependent variables of the research to determine the structural relationships between the variables. The results of the test of research hypotheses indicate that: 1. Supply chain management practices have a positive impact on the competitive advantage of the Mammoth industrial complex. 2. Supply chain management practices have a positive impact on the performance of the Mammoth industrial complex. 3. Planning system Organizational resources have a positive impact on the performance of the Mammoth industrial complex. 4. The system of enterprise resource planning has a positive impact on Mamot's competitive advantage. 5.The competitive advantage has a positive impact on the performance of the Mammoth industrial complex 6.The system of enterprise resource planning Mamot Industrial Complex Supply Chain Management has a positive impact. The above results indicate that the system of enterprise resource planning and supply chain management has an impact on the competitive advantage and corporate performance of Mamot Company.

Keywords: enterprise resource planning, supply chain management, competitive advantage, Mamot company performance

Procedia PDF Downloads 98
797 A Broadband Tri-Cantilever Vibration Energy Harvester with Magnetic Oscillator

Authors: Xiaobo Rui, Zhoumo Zeng, Yibo Li

Abstract:

A novel tri-cantilever energy harvester with magnetic oscillator was presented, which could convert the ambient vibration into electrical energy to power the low-power devices such as wireless sensor networks. The most common way to harvest vibration energy is based on the use of linear resonant devices such as cantilever beam, since this structure creates the highest strain for a given force. The highest efficiency will be achieved when the resonance frequency of the harvester matches the vibration frequency. The limitation of the structure is the narrow effective bandwidth. To overcome this limitation, this article introduces a broadband tri-cantilever harvester with nonlinear stiffness. This energy harvester typically consists of three thin cantilever beams vertically arranged with Neodymium Magnets ( NdFeB)magnetics at its free end and a fixed base at the other end. The three cantilevers have different resonant frequencies by designed in different thicknesses. It is obviously that a similar advantage of multiple resonant frequencies as piezoelectric cantilevers array structure is built. To achieve broadband energy harvesting, magnetic interaction is used to introduce the nonlinear system stiffness to tune the resonant frequency to match the excitation. Since the three cantilever tips are all free and the magnetic force is distance dependent, the resonant frequencies will be complexly changed with the vertical vibration of the free end. Both model and experiment are built. The electromechanically coupled lumped-parameter model is presented. An electromechanical formulation and analytical expressions for the coupled nonlinear vibration response and voltage response are given. The entire structure is fabricated and mechanically attached to a electromagnetic shaker as a vibrating body via the fixed base, in order to couple the vibrations to the cantilever. The cantilevers are bonded with piezoelectric macro-fiber composite (MFC) materials (Model: M8514P2). The size of the cantilevers is 120*20mm2 and the thicknesses are separately 1mm, 0.8mm, 0.6mm. The prototype generator has a measured performance of 160.98 mW effective electrical power and 7.93 DC output voltage via the excitation level of 10m/s2. The 130% increase in the operating bandwidth is achieved. This device is promising to support low-power devices, peer-to-peer wireless nodes, and small-scale wireless sensor networks in ambient vibration environment.

Keywords: tri-cantilever, ambient vibration, energy harvesting, magnetic oscillator

Procedia PDF Downloads 154
796 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor

Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes

Abstract:

In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.

Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data

Procedia PDF Downloads 147
795 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation

Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E.A. Awad

Abstract:

Numerous attempts are being performed in order to formulate suitable packaging materials for meat products. However, to the best of our knowledge, the incorporation of free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for meats is seldom reported. Therefore, this study aims at protection of the aqueous crude extract of hibiscus flowers utilizing spry drying encapsulation technique. Fourier transform infrared (FTIR), scanning electron microscope (SEM), and zetasizer results confirmed the successful formation of assembled capsules via strong interactions, spherical rough microparticles, and ~ 235 nm of particle size, respectively. Also, the obtained microcapsules enjoy high thermal stability, unlike the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to PVA. Application of the prepared films on the real meat samples displayed low bacterial growth with a slight increase in the pH over the storage time up to 10 days at 4 oC which further proved the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of prepared composite films pave the way towards combined active/smart food packaging applications. This would play a vital role in the food hygiene, including also quality control and assurance.

Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage

Procedia PDF Downloads 82
794 A Study of Non-Coplanar Imaging Technique in INER Prototype Tomosynthesis System

Authors: Chia-Yu Lin, Yu-Hsiang Shen, Cing-Ciao Ke, Chia-Hao Chang, Fan-Pin Tseng, Yu-Ching Ni, Sheng-Pin Tseng

Abstract:

Tomosynthesis is an imaging system that generates a 3D image by scanning in a limited angular range. It could provide more depth information than traditional 2D X-ray single projection. Radiation dose in tomosynthesis is less than computed tomography (CT). Because of limited angular range scanning, there are many properties depending on scanning direction. Therefore, non-coplanar imaging technique was developed to improve image quality in traditional tomosynthesis. The purpose of this study was to establish the non-coplanar imaging technique of tomosynthesis system and evaluate this technique by the reconstructed image. INER prototype tomosynthesis system contains an X-ray tube, a flat panel detector, and a motion machine. This system could move X-ray tube in multiple directions during the acquisition. In this study, we investigated three different imaging techniques that were 2D X-ray single projection, traditional tomosynthesis, and non-coplanar tomosynthesis. An anthropopathic chest phantom was used to evaluate the image quality. It contained three different size lesions (3 mm, 5 mm and, 8 mm diameter). The traditional tomosynthesis acquired 61 projections over a 30 degrees angular range in one scanning direction. The non-coplanar tomosynthesis acquired 62 projections over 30 degrees angular range in two scanning directions. A 3D image was reconstructed by iterative image reconstruction algorithm (ML-EM). Our qualitative method was to evaluate artifacts in tomosynthesis reconstructed image. The quantitative method was used to calculate a peak-to-valley ratio (PVR) that means the intensity ratio of the lesion to the background. We used PVRs to evaluate the contrast of lesions. The qualitative results showed that in the reconstructed image of non-coplanar scanning, anatomic structures of chest and lesions could be identified clearly and no significant artifacts of scanning direction dependent could be discovered. In 2D X-ray single projection, anatomic structures overlapped and lesions could not be discovered. In traditional tomosynthesis image, anatomic structures and lesions could be identified clearly, but there were many artifacts of scanning direction dependent. The quantitative results of PVRs show that there were no significant differences between non-coplanar tomosynthesis and traditional tomosynthesis. The PVRs of the non-coplanar technique were slightly higher than traditional technique in 5 mm and 8 mm lesions. In non-coplanar tomosynthesis, artifacts of scanning direction dependent could be reduced and PVRs of lesions were not decreased. The reconstructed image was more isotropic uniformity in non-coplanar tomosynthesis than in traditional tomosynthesis. In the future, scan strategy and scan time will be the challenges of non-coplanar imaging technique.

Keywords: image reconstruction, non-coplanar imaging technique, tomosynthesis, X-ray imaging

Procedia PDF Downloads 366
793 Computational Fluid Dynamics Analysis of Sit-Ski Aerodynamics in Crosswind Conditions

Authors: Lev Chernyshev, Ekaterina Lieshout, Natalia Kabaliuk

Abstract:

Sit-skis enable individuals with limited lower limb or core movement to ski unassisted confidently. The rise in popularity of the Winter Paralympics has seen an influx of engineering innovation, especially for the Downhill and Super-Giant Slalom events, where the athletes achieve speeds as high as 160km/h. The growth in the sport has inspired recent research into sit-ski aerodynamics. Crosswinds are expected in mountain climates and, therefore, can greatly impact a skier's maneuverability and aerodynamics. This research investigates the impact of crosswinds on the drag force of a Paralympic sit-ski using Computational Fluid Dynamics (CFD). A Paralympic sit-ski with a model of a skier, a leg cover, a bucket seat, and a simplified suspension system was used for CFD analysis in ANSYS Fluent. The hybrid initialisation tool and the SST k–ω turbulence model were used with two tetrahedral mesh bodies of influence. The crosswinds (10, 30, and 50 km/h) acting perpendicular to the sit-ski's direction of travel were simulated, corresponding to the straight-line skiing speeds of 60, 80, and 100km/h. Following the initialisation, 150 iterations for both first and second order steady-state solvers were used, before switching to a transient solver with a computational time of 1.5s and a time step of 0.02s, to allow the solution to converge. CFD results were validated against wind tunnel data. The results suggested that for all crosswind and sit-ski speeds, on average, 64% of the total drag on the ski was due to the athlete's torso. The suspension was associated with the second largest overall sit-ski drag force contribution, averaging at 27%, followed by the leg cover at 10%. While the seat contributed a negligible 0.5% of the total drag force, averaging at 1.2N across the conditions studied. The effect of the crosswind increased the total drag force across all skiing speed studies, with the drag on the athlete's torso and suspension being the most sensitive to the changes in the crosswind magnitude. The effect of the crosswind on the ski drag reduced as the simulated skiing speed increased: for skiing at 60km/h, the drag force on the torso increased by 154% with the increase of the crosswind from 10km/h to 50km/h; whereas, at 100km/h the corresponding drag force increase was halved (75%). The analysis of the flow and pressure field characteristics for a sit-ski in crosswind conditions indicated the flow separation localisation and wake size correlated with the magnitude and directionality of the crosswind relative to straight-line skiing. The findings can inform aerodynamic improvements in sit-ski design and increase skiers' medalling chances.

Keywords: sit-ski, aerodynamics, CFD, crosswind effects

Procedia PDF Downloads 66
792 Investigation of Preschool Children's Mathematics Concept Acquisition in Terms of Different Variables

Authors: Hilal Karakuş, Berrin Akman

Abstract:

Preschool years are considered as critical years because of shaping the future lives of individuals. All of the knowledge, skills, and concepts are acquired during this period. Also, basis of academic skills is based on this period. As all of the developmental areas are the fastest in that period, the basis of mathematics education should be given in this period, too. Mathematics is seen as a difficult and abstract course by the most people. Therefore, the enjoyable side of mathematics should be presented in a concrete way in this period to avoid any bias of children for mathematics. This study is conducted to examine mathematics concept acquisition of children in terms of different variables. Screening model is used in this study which is carried out in a quantity way. The study group of this research consists of total 300 children, selected from each class randomly in groups of five, who are from public and private preschools in Çankaya, which is district of Ankara, in 2014-2015 academic year and attending children in the nursery classes and preschool institutions are connected to the Ministry of National Education. The study group of the research was determined by stage sampling method. The schools, which formed study group, are chosen by easy sampling method and the children are chosen by simple random method. Research data were collected with Bracken Basic Concept Scale–Revised Form and Child’s Personal Information Form generated by the researcher in order to get information about children and their families. Bracken Basic Concept Scale-Revised Form consists of 11 sub-dimensions (color, letter, number, size, shape, comparison, direction-location, and quantity, individual and social awareness, building- material) and 307 items. Subtests related to the mathematics were used in this research. In the “Child Individual Information Form” there are items containing demographic information as followings: age of children, gender of children, attending preschools educational intuitions for children, school attendance, mother’s and father’s education levels. At the result of the study, while it was found that children’s mathematics skills differ from age, state of attending any preschool educational intuitions , time of attending any preschool educational intuitions, level of education of their mothers and their fathers; it was found that it does not differ by the gender and type of school they attend.

Keywords: preschool education, preschool period children, mathematics education, mathematics concept acquisitions

Procedia PDF Downloads 350
791 Optimal Capacitors Placement and Sizing Improvement Based on Voltage Reduction for Energy Efficiency

Authors: Zilaila Zakaria, Muhd Azri Abdul Razak, Muhammad Murtadha Othman, Mohd Ainor Yahya, Ismail Musirin, Mat Nasir Kari, Mohd Fazli Osman, Mohd Zaini Hassan, Baihaki Azraee

Abstract:

Energy efficiency can be realized by minimizing the power loss with a sufficient amount of energy used in an electrical distribution system. In this report, a detailed analysis of the energy efficiency of an electric distribution system was carried out with an implementation of the optimal capacitor placement and sizing (OCPS). The particle swarm optimization (PSO) will be used to determine optimal location and sizing for the capacitors whereas energy consumption and power losses minimization will improve the energy efficiency. In addition, a certain number of busbars or locations are identified in advance before the PSO is performed to solve OCPS. In this case study, three techniques are performed for the pre-selection of busbar or locations which are the power-loss-index (PLI). The particle swarm optimization (PSO) is designed to provide a new population with improved sizing and location of capacitors. The total cost of power losses, energy consumption and capacitor installation are the components considered in the objective and fitness functions of the proposed optimization technique. Voltage magnitude limit, total harmonic distortion (THD) limit, power factor limit and capacitor size limit are the parameters considered as the constraints for the proposed of optimization technique. In this research, the proposed methodologies implemented in the MATLAB® software will transfer the information, execute the three-phase unbalanced load flow solution and retrieve then collect the results or data from the three-phase unbalanced electrical distribution systems modeled in the SIMULINK® software. Effectiveness of the proposed methods used to improve the energy efficiency has been verified through several case studies and the results are obtained from the test systems of IEEE 13-bus unbalanced electrical distribution system and also the practical electrical distribution system model of Sultan Salahuddin Abdul Aziz Shah (SSAAS) government building in Shah Alam, Selangor.

Keywords: particle swarm optimization, pre-determine of capacitor locations, optimal capacitors placement and sizing, unbalanced electrical distribution system

Procedia PDF Downloads 434