Search results for: CO₂ storage capacity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5963

Search results for: CO₂ storage capacity

953 Improving Ghana's Oil Industry Through Integrated Operations

Authors: Esther Simpson, Evans Addo Tetteh

Abstract:

One of the most important sectors in Ghana’s economy is the oil and gas sector. Effective supply chain management is required to ensure the timely delivery of these products to the end users, given the rise in nationwide demand for petroleum products. Contrarily, freight forwarding plays a crucial role in facilitating intra- and intra-country trade, particularly the movement of oil goods. Nevertheless, there has not been enough scientific study done on how marketing, supply chain management, and freight forwarding are integrated in the oil business. By highlighting possible areas for development in the supply chain management of petroleum products, this article seeks to close this gap. The study was predominantly qualitative and featured semi-structured interviews with influential figures in the oil and gas sector, such as marketers, distributors, freight forwarders, and regulatory organizations. The purpose of the interviews was to determine the difficulties and possibilities for enhancing the management of the petroleum products supply chain. Thematic analysis was used to examine the data obtained in order to find patterns and themes that arose. The findings from the study revealed that the oil sector faced a number of issues in terms of supply chain management. Inadequate infrastructure, insufficient storage facilities, a lack of cooperation among parties, and an inadequate regulatory framework were among the obstacles. Furthermore, the study indicated significant prospects for enhancing petroleum product supply chain management, such as the integration of more advanced digital technologies, the formation of strategic alliances, and the adoption of sustainable practices in petroleum product supply chain management. The study's conclusions have far-reaching ramifications for the oil and gas sector, freight forwarding, and Ghana’s economy as a whole. Marketing, supply chain management, and freight forwarding has high prospects from being integrated to improve the efficiency of the petroleum product supply chain, resulting in considerable cost savings for the industry. Furthermore, the use of sustainable practices will improve the industry's sustainability and lessen the environmental effect of the petroleum product supply chain. Based on the findings, we propose that stakeholders in Ghana’s oil and gas sector work together and collaborate to enhance petroleum supply chain management. This collaboration should include the use of digital technologies, the formation of strategic alliances, and the implementation of sustainable practices. Moreover, we urge that governments establish suitable rules to guarantee the efficient and sustainable management of petroleum product supply chains. In conclusion, the integration and combination of marketing, supply chain management, and freight forwarding in the oil business gives a tremendous opportunity for enhancing petroleum product supply chain management. The study's conclusions have far-reaching ramifications for the sector, freight forwarding, and the economy as a whole. Using sustainable practices, integrating digital technology, and forming strategic alliances will improve the efficiency and sustainability of the petroleum product supply chain. We expect that this conference paper will encourage more study and collaboration among oil and gas sector stakeholders to improve petroleum supply chain management.

Keywords: collaboration, logistics, sustainability, supply chain management

Procedia PDF Downloads 81
952 Mitigating Self-Regulation Issues in the Online Instruction of Math

Authors: Robert Vanderburg, Michael Cowling, Nicholas Gibson

Abstract:

Mathematics is one of the core subjects taught in the Australian K-12 education system and is considered an important component for future studies in areas such as engineering and technology. In addition to this, Australia has been a world leader in distance education due to the vastness of its geographic landscape. Despite this, research is still needed on distance math instruction. Even though delivery of curriculum has given way to online studies, and there is a resultant push for computer-based (PC, tablet, smartphone) math instruction, much instruction still involves practice problems similar to those original curriculum packs, without the ability for students to self-regulate their learning using the full interactive capabilities of these devices. Given this need, this paper addresses issues students have during online instruction. This study consists of 32 students struggling with mathematics enrolled in a math tutorial conducted in an online setting. The study used a case study design to understand some of the blockades hindering the students’ success. Data was collected by tracking students practice and quizzes, tracking engagement of the site, recording one-on-one tutorials, and collecting data from interviews with the students. Results revealed that when students have cognitively straining tasks in an online instructional setting, the first thing to dissipate was their ability to self-regulate. The results also revealed that instructors could ameliorate the situation and provided useful data on strategies that could be used for designing future online tasks. Specifically, instructors could utilize cognitive dissonance strategies to reduce the cognitive drain of the tasks online. They could segment the instruction process to reduce the cognitive demands of the tasks and provide in-depth self-regulatory training, freeing mental capacity for the mathematics content. Finally, instructors could provide specific scheduling and assignment structure changes to reduce the amount of student centered self-regulatory tasks in the class. These findings will be discussed in more detail and summarized in a framework that can be used for future work.

Keywords: digital education, distance education, mathematics education, self-regulation

Procedia PDF Downloads 136
951 The State of Research on Medicinal Plants in Morocco

Authors: Alami Ilyass, Loubna Kharchoufa, Elachouri Mostafa

Abstract:

The two great realms of living diversity are cultural and biological. Today, both are being lost at an alarming rate. Of all the Earth’s biological diversity, plant kingdom is of high significance, and most essential to human welfare, in fact, medicinal plants are extensively exploited for countless purposes. Among these multiple uses, medicinal plants are the most important source of medicine for humankind healthcare and well being. In recent years there has been a great surge of public interest in the use of herbs and plants. Some scientists have viewed this phenomenon as a modern “herbal renaissance”. The importance of plants as medicines in developed and developing countries has recently been acknowledged by the United Nations (UN). However, to date fewer than 5% of the approximately 250,000 species of higher plants have been exhaustively studied for their potential pharmacological activity. A number of drugs from ethnobotanical leads have provided significant milestones in Western medicine. Despite this success, pharmacognosy research on Moroccan flora needs more studies aimed at the exploration of their therapeutic potential. A major weakness is the absence of strong funding agencies in the country, and a real national drug discovery program. Moreover, the lack of the coordination between different universities and research institutions leads, in most cases, to a waste of time, money and efforts of many researchers. In this work, we focus our attention on research into traditional indigenous medicinal plants in Morocco. Three parts constitute the head lines of this work: In the first one, we take up Moroccan biodiversity matter, the second part is devoted principally to the state of research into medicinal plants by Moroccan scholars and the last one is consecrated to the debate of factors which handicap the progress of research on phytomedicine in Morocco. The objectives of the present study are twofold: first, to highlight the state of the medicinal plants researches in Morocco. Second goal is to assess and correlate the levels of knowledge of the local flora to the research on medicinal plants to attempt to build capacity for research within Moroccan Scientific community at rate of developing country.

Keywords: Morocco, medicinal plants, ethnobotanical, pharmacognosy, phytomedicine

Procedia PDF Downloads 188
950 Primary-Color Emitting Photon Energy Storage Nanophosphors for Developing High Contrast Latent Fingerprints

Authors: G. Swati, D. Haranath

Abstract:

Commercially available long afterglow /persistent phosphors are proprietary materials and hence the exact composition and phase responsible for their luminescent characteristics such as initial intensity and afterglow luminescence time are not known. Further to generate various emission colors, commercially available persistence phosphors are physically blended with fluorescent organic dyes such as rodhamine, kiton and methylene blue etc. Blending phosphors with organic dyes results into complete color coverage in visible spectra, however with time, such phosphors undergo thermal and photo-bleaching. This results in the loss of their true emission color. Hence, the current work is dedicated studies on inorganic based thermally and chemically stable primary color emitting nanophosphors namely SrAl2O4:Eu2+, Dy3+, (CaZn)TiO3:Pr3+, and Sr2MgSi2O7:Eu2+, Dy3+. SrAl2O4: Eu2+, Dy3+ phosphor exhibits a strong excitation in UV and visible region (280-470 nm) with a broad emission peak centered at 514 nm is the characteristic emission of parity allowed 4f65d1→4f7 transitions of Eu2+ (8S7/2→2D5/2). Sunlight excitable Sr2MgSi2O7:Eu2+,Dy3+ nanophosphors emits blue color (464 nm) with Commercial international de I’Eclairage (CIE) coordinates to be (0.15, 0.13) with a color purity of 74 % with afterglow time of > 5 hours for dark adapted human eyes. (CaZn)TiO3:Pr3+ phosphor system possess high color purity (98%) which emits intense, stable and narrow red emission at 612 nm due intra 4f transitions (1D2 → 3H4) with afterglow time of 0.5 hour. Unusual property of persistence luminescence of these nanophoshphors supersedes background effects without losing sensitive information these nanophosphors offer several advantages of visible light excitation, negligible substrate interference, high contrast bifurcation of ridge pattern, non-toxic nature revealing finger ridge details of the fingerprints. Both level 1 and level 2 features from a fingerprint can be studied which are useful for used classification, indexing, comparison and personal identification. facile methodology to extract high contrast fingerprints on non-porous and porous substrates using a chemically inert, visible light excitable, and nanosized phosphorescent label in the dark has been presented. The chemistry of non-covalent physisorption interaction between the long afterglow phosphor powder and sweat residue in fingerprints has been discussed in detail. Real-time fingerprint development on porous and non-porous substrates has also been performed. To conclude, apart from conventional dark vision applications, as prepared primary color emitting afterglow phosphors are potentional candidate for developing high contrast latent fingerprints.

Keywords: fingerprints, luminescence, persistent phosphors, rare earth

Procedia PDF Downloads 221
949 Catalytic Ammonia Decomposition: Cobalt-Molybdenum Molar Ratio Effect on Hydrogen Production

Authors: Elvis Medina, Alejandro Karelovic, Romel Jiménez

Abstract:

Catalytic ammonia decomposition represents an attractive alternative due to its high H₂ content (17.8% w/w), a product stream free of COₓ, among others; however, challenges need to be addressed for its consolidation as an H₂ chemical storage technology, especially, those focused on the synthesis of efficient bimetallic catalytic systems, as an alternative to the price and scarcity of ruthenium, the most active catalyst reported. In this sense, from the perspective of rational catalyst design, adjusting the main catalytic activity descriptor, a screening of supported catalysts with different compositional settings of cobalt-molybdenum metals is presented to evaluate their effect on the catalytic decomposition rate of ammonia. Subsequently, a kinetic study on the supported monometallic Co and Mo catalysts, as well as on the bimetallic CoMo catalyst with the highest activity is shown. The synthesis of catalysts supported on γ-alumina was carried out using the Charge Enhanced Dry Impregnation (CEDI) method, all with a 5% w/w loading metal. Seeking to maintain uniform dispersion, the catalysts were oxidized and activated (In-situ activation) using a flow of anhydrous air and hydrogen, respectively, under the same conditions: 40 ml min⁻¹ and 5 °C min⁻¹ from room temperature to 600 °C. Catalytic tests were carried out in a fixed-bed reactor, confirming the absence of transport limitations, as well as an Approach to equilibrium (< 1 x 10⁻⁴). The reaction rate on all catalysts was measured between 400 and 500 ºC at 53.09 kPa NH3. The synergy theoretically (DFT) reported for bimetallic catalysts was confirmed experimentally. Specifically, it was observed that the catalyst composed mainly of 75 mol% cobalt proved to be the most active in the experiments, followed by the monometallic cobalt and molybdenum catalysts, in this order of activity as referred to in the literature. A kinetic study was performed at 10.13 – 101.32 kPa NH3 and at four equidistant temperatures between 437 and 475 °C the data were adjusted to an LHHW-type model, which considered the desorption of nitrogen atoms from the active phase surface as the rate determining step (RDS). The regression analysis were carried out under an integral regime, using a minimization algorithm based on SLSQP. The physical meaning of the parameters adjusted in the kinetic model, such as the RDS rate constant (k₅) and the lumped adsorption constant of the quasi-equilibrated steps (α) was confirmed through their Arrhenius and Van't Hoff-type behavior (R² > 0.98), respectively. From an energetic perspective, the activation energy for cobalt, cobalt-molybdenum, and molybdenum was 115.2, 106.8, and 177.5 kJ mol⁻¹, respectively. With this evidence and considering the volcano shape described by the ammonia decomposition rate in relation to the metal composition ratio, the synergistic behavior of the system is clearly observed. However, since characterizations by XRD and TEM were inconclusive, the formation of intermetallic compounds should be still verified using HRTEM-EDS. From this point onwards, our objective is to incorporate parameters into the kinetic expressions that consider both compositional and structural elements and explore how these can maximize or influence H₂ production.

Keywords: CEDI, hydrogen carrier, LHHW, RDS

Procedia PDF Downloads 56
948 Technical Evaluation of Upgrading a Simple Gas Turbine Fired by Diesel to a Combined Cycle Power Plant in Kingdom of Suadi Arabistan Using WinSim Design II Software

Authors: Salman Obaidoon, Mohamed Hassan, Omer Bakather

Abstract:

As environmental regulations increase, the need for a clean and inexpensive energy is becoming necessary these days using an available raw material with high efficiency and low emissions of toxic gases. This paper presents a study on modifying a gas turbine power plant fired by diesel, which is located in Saudi Arabia in order to increase the efficiency and capacity of the station as well as decrease the rate of emissions. The studied power plant consists of 30 units with different capacities and total net power is 1470 MW. The study was conducted on unit number 25 (GT-25) which produces 72.3 MW with 29.5% efficiency. In the beginning, the unit was modeled and simulated by using WinSim Design II software. In this step, actual unit data were used in order to test the validity of the model. The net power and efficiency obtained from software were 76.4 MW and 32.2% respectively. A difference of about 6% was found in the simulated power plant compared to the actual station which means that the model is valid. After the validation of the model, the simple gas turbine power plant was converted to a combined cycle power plant (CCPP). In this case, the exhausted gas released from the gas turbine was introduced to a heat recovery steam generator (HRSG), which consists of three heat exchangers: an economizer, an evaporator and a superheater. In this proposed model, many scenarios were conducted in order to get the optimal operating conditions. The net power of CCPP was increased to 116.4 MW while the overall efficiency of the unit was reached to 49.02%, consuming the same amount of fuel for the gas turbine power plant. For the purpose of comparing the rate of emissions of carbon dioxide on each model. It was found that the rate of CO₂ emissions was decreased from 15.94 kg/s to 9.22 kg/s by using the combined cycle power model as a result of reducing of the amount of diesel from 5.08 kg/s to 2.94 kg/s needed to produce 76.5 MW. The results indicate that the rate of emissions of carbon dioxide was decreased by 42.133% in CCPP compared to the simple gas turbine power plant.

Keywords: combined cycle power plant, efficiency, heat recovery steam generator, simulation, validation, WinSim design II software

Procedia PDF Downloads 275
947 Numerical Investigation of Combustion Chamber Geometry on Combustion Performance and Pollutant Emissions in an Ammonia-Diesel Common Rail Dual-Fuel Engine

Authors: Youcef Sehili, Khaled Loubar, Lyes Tarabet, Mahfoudh Cerdoun, Clement Lacroix

Abstract:

As emissions regulations grow more stringent and traditional fuel sources become increasingly scarce, incorporating carbon-free fuels in the transportation sector emerges as a key strategy for mitigating the impact of greenhouse gas emissions. While the utilization of hydrogen (H2) presents significant technological challenges, as evident in the engine limitation known as knocking, ammonia (NH3) provides a viable alternative that overcomes this obstacle and offers convenient transportation, storage, and distribution. Moreover, the implementation of a dual-fuel engine using ammonia as the primary gas is promising, delivering both ecological and economic benefits. However, when employing this combustion mode, the substitution of ammonia at high rates adversely affects combustion performance and leads to elevated emissions of unburnt NH3, especially under high loads, which requires special treatment of this mode of combustion. This study aims to simulate combustion in a common rail direct injection (CRDI) dual-fuel engine, considering the fundamental geometry of the combustion chamber as well as fifteen (15) alternative proposed geometries to determine the configuration that exhibits superior engine performance during high-load conditions. The research presented here focuses on improving the understanding of the equations and mechanisms involved in the combustion of finely atomized jets of liquid fuel and on mastering the CONVERGETM code, which facilitates the simulation of this combustion process. By analyzing the effect of piston bowl shape on the performance and emissions of a diesel engine operating in dual fuel mode, this work combines knowledge of combustion phenomena with proficiency in the calculation code. To select the optimal geometry, an evaluation of the Swirl, Tumble, and Squish flow patterns was conducted for the fifteen (15) studied geometries. Variations in-cylinder pressure, heat release rate, turbulence kinetic energy, turbulence dissipation rate, and emission rates were observed, while thermal efficiency and specific fuel consumption were estimated as functions of crankshaft angle. To maximize thermal efficiency, a synergistic approach involving the enrichment of intake air with oxygen (O2) and the enrichment of primary fuel with hydrogen (H2) was implemented. Based on the results obtained, it is worth noting that the proposed geometry (T8_b8_d0.6/SW_8.0) outperformed the others in terms of flow quality, reduction of pollutants emitted with a reduction of more than 90% in unburnt NH3, and an impressive improvement in engine efficiency of more than 11%.

Keywords: ammonia, hydrogen, combustion, dual-fuel engine, emissions

Procedia PDF Downloads 74
946 Enhancement in Antimicrobial and Antioxidant Activity of Cuminum cyminum L. through Niosome Nanocarries

Authors: Fatemeh Haghiralsadat, Mohadese Hashemi, Elham Akhoundi Kharanaghi, Mojgan Yazdani, Mahboobe Sharafodini, Omid Javani

Abstract:

Niosomes are colloidal particles formed from the self-assembly of non-ionic surfactants in aqueous medium resulting in closed bilayer structures. As a consequence of this hydrophilic and hydrophobic structure, niosomes have the capacity to entrap compounds of different solubilities. Niosomes are promising vehicle for drug delivery which protect sensitive drugs and improve the therapeutic index of drugs by restricting their action to target cells. Essential oils are complex mixtures of volatile compounds such as terpenoids, phenol-derived aromatic components that have been used for many biological properties including bactericidal, fungicidal, insecticidal, antioxidant, anti-tyrosinase and other medicinal properties. Encapsulation of essential oils in niosomes can be an attractive method to overcome their limitation such as volatility, easily decomposition by heat, humidity, light, or oxygen. Cuminum cyminum L. (Cumin) is an aromatic plant included in the Apiaceae family and is used to flavor foods, added to fragrances, and for medical preparations which is indigenous to Egypt, the Mediterranean region, Iran and India. The major components of the Cumin oil were reported as cuminaldehyde, γ -terpinene, β-pinene, p-cymene, p-mentha-1, 3-dien-7-al, and p-mentha-1, 4-dien-7-al which provide the antimicrobial and antioxidant activity. The aim of this work was to formulate Cumin essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Cumin oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.

Keywords: Cuminum cyminum L., Cumin, niosome, essential oil, encapsulation

Procedia PDF Downloads 515
945 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 218
944 Community Involvement and Willingness To Pay for Municipal Solid Waste Management Activities in Rapid Urbanized Region: A Case Study of Mnadani and Madukani Wards-Dodoma Urban

Authors: Isabela Thomas Mkude

Abstract:

This research was done to assess how the community is involved in waste management activities and their willingness to pay for services. Mnadani and Madukani are among the old wards in Dodoma urban. These two areas are similar and face numerous environmental problems, poor solid waste management practices being among them. People realize problems because they live with them daily but the study advice that the only way to stay off problems is to find appropriate measures. The findings recognized some problems that led to poor community involvement solid waste management the study areas. Lack of community education on how to deal with solid wastes, poor responsibility of ward leaders in issues concerning the environment and in active participation of communities in environmental meeting are among other major problems found during the research. The research also revealed that there is low willingness to pay for waste collection among communities and financial problems that make environmental committee inactive; that leading to a poor disposal and unavailable collection facilities in urban area. Although the municipal improves disposal activities by increasing amount of waste to be disposed off by 11% in three years, the amount of waste that collected is also increasing by 41% each day. It is advised that some corrective measures need to be put in place so that the communities are well involved in managing solid wastes as the best way to attain achievement in keeping the urban free from solid waste. Environmental education dissemination to the communities is needed so that they become responsible and dedicated citizen on the environment. There should be some incentives from government to the wards local government and CBOs so that they can practically implement solid waste management programs and to attract formation of more groups and motivate the present groups. Capacity building programs to the ward leaders need to be given priority so that leaders are well organized and able to plan, coordinate and cooperate with various governmental institutions, and NGOs responsible for development and environmental management.

Keywords: solid waste, waste management, public involvement, rapid urbanized region

Procedia PDF Downloads 352
943 Using ePortfolios to Mapping Social Work Graduate Competencies

Authors: Cindy Davis

Abstract:

Higher education is changing globally and there is increasing pressure from professional social work accreditation bodies for academic programs to demonstrate how students have successfully met mandatory graduate competencies. As professional accreditation organizations increase their demand for evidence of graduate competencies, strategies to document and recording learning outcomes becomes increasingly challenging for academics and students. Studies in higher education have found support for the pedagogical value of ePortfolios, a flexible personal learning space that is owned by the student and include opportunity for assessment, feedback and reflection as well as a virtual space to store evidence of demonstration of professional competencies and graduate attributes. Examples of institutional uses of ePortfolios include e-administration of a diverse student population, assessment of student learning, and the demonstration of graduate attributes attained and future student career preparation. The current paper presents a case study on the introduction of ePortfolios for social work graduates in Australia as part of an institutional approach to technology-enhanced learning and e-learning. Social work graduates were required to submit an ePortfolio hosted on PebblePad. The PebblePad platform was selected because it places the student at the center of their learning whilst providing powerful tools for staff to structure, guide and assess that learning. The ePortofolio included documentation and evidence of how the student met each graduate competency as set out by the social work accreditation body in Australia (AASW). This digital resource played a key role in the process of external professional accreditation by clearly documenting and evidencing how students met required graduate competencies. In addition, student feedback revealed a positive outcome on how this resource provided them with a consolidation of their learning experiences and assisted them in obtaining employment post-graduation. There were also significant institutional factors that were key to successful implementation such as investment in the digital technology, capacity building amongst academics, and technical support for staff and students.

Keywords: accreditation, social work, teaching, technology

Procedia PDF Downloads 139
942 Fire Resilient Cities: The Impact of Fire Regulations, Technological and Community Resilience

Authors: Fanny Guay

Abstract:

Building resilience, sustainable buildings, urbanization, climate change, resilient cities, are just a few examples of where the focus of research has been in the last few years. It is obvious that there is a need to rethink how we are building our cities and how we are renovating our existing buildings. However, the question remaining is how can we assure that we are building sustainable yet resilient cities? There are many aspects one can touch upon when discussing resilience in cities, but after the event of Grenfell in June 2017, it has become clear that fire resilience must be a priority. We define resilience as a holistic approach including communities, society and systems, focusing not only on resisting the effects of a disaster, but also how it will cope and recover from it. Cities are an example of such a system, where components such as buildings have an important role to play. A building on fire will have an impact on the community, the economy, the environment, and so the entire system. Therefore, we believe that fire and resilience go hand in hand when we discuss building resilient cities. This article aims at discussing the current state of the concept of fire resilience and suggests actions to support the built of more fire resilient buildings. Using the case of Grenfell and the fire safety regulations in the UK, we will briefly compare the fire regulations in other European countries, more precisely France, Germany and Denmark, to underline the difference and make some suggestions to increase fire resilience via regulation. For this research, we will also include other types of resilience such as technological resilience, discussing the structure of buildings itself, as well as community resilience, considering the role of communities in building resilience. Our findings demonstrate that to increase fire resilience, amending existing regulations might be necessary, for example, how we performed reaction to fire tests and how we classify building products. However, as we are looking at national regulations, we are only able to make general suggestions for improvement. Another finding of this research is that the capacity of the community to recover and adapt after a fire is also an essential factor. Fundamentally, fire resilience, technological resilience and community resilience are closely connected. Building resilient cities is not only about sustainable buildings or energy efficiency; it is about assuring that all the aspects of resilience are included when building or renovating buildings. We must ask ourselves questions as: Who are the users of this building? Where is the building located? What are the components of the building, how was it designed and which construction products have been used? If we want to have resilient cities, we must answer these basic questions and assure that basic factors such as fire resilience are included in our assessment.

Keywords: buildings, cities, fire, resilience

Procedia PDF Downloads 170
941 Industry 4.0 Platforms as 'Cluster' ecosystems for small and medium enterprises (SMEs)

Authors: Vivek Anand, Rainer Naegele

Abstract:

Industry 4.0 is a global mega-trend revolutionizing the world of advanced manufacturing, but also bringing up challenges for SMEs. In response, many regional, as well as digital Industry 4.0 Platforms, have been set up to boost the competencies of established enterprises as well as SMEs. The concept of 'Clusters' is a policy tool that aims to be a starting point to establish sustainable and self-supporting structures in industries of a region by identifying competencies and supporting cluster actors with services that match their growth needs. This paper is motivated by the idea that Clusters have the potential to enable firms, particularly SMEs, to accelerate the innovation process and transition to digital technologies. In this research, the efficacy of Industry 4.0 platforms as Cluster ecosystems is evaluated, especially for SMEs. Focusing on the Baden Wurttemberg region in Germany, an action research method is employed to study how SMEs leverage other actors on Industry 4.0 Platforms to further their Industry 4.0 journeys. The aim is to evaluate how such Industry 4.0 platforms stimulate innovation, cooperation and competitiveness. Additionally, the barriers to these platforms fulfilling their promise to serve as capacity building cluster ecosystems for SMEs in a region will also be identified. The findings will be helpful for academicians and policymakers alike, who can leverage a ‘cluster policy’ to enable Industry 4.0 ecosystems in their regions. Furthermore, relevant management and policy implications stem from the analysis. This will also be of interest to the various players in a cluster ecosystem - like SMEs and service providers - who benefit from the cooperation and competition. The paper will improve the understanding of how a dialogue orientation, a bottom-up approach and active integration of all involved cluster actors enhance the potential of Industry 4.0 Platforms. A strong collaborative culture is a key driver of digital transformation and technology adoption across sectors, value chains and supply chains; and will position Industry 4.0 Platforms at the forefront of the industrial renaissance. Motivated by this argument and based on the results of the qualitative research, a roadmap will be proposed to position Industry 4.0 Platforms as effective clusters ecosystems to support Industry 4.0 adoption in a region.

Keywords: cluster policy, digital transformation, industry 4.0, innovation clusters, innovation policy, SMEs and startups

Procedia PDF Downloads 222
940 Collagen Gel in Hip Cartilage Repair: in vivo Preliminary Study

Authors: A. Bajek, J. Skopinska-Wisniewska, A. Rynkiewicz, A. Jundzill, M. Bodnar, A. Marszalek, T. Drewa

Abstract:

Traumatic injury and age-related degenerative diseases associated with cartilage are major health problems worldwide. The articular cartilage is comprised of a relatively small number of cells, which have a relatively slow rate of turnover. Therefore, damaged articular cartilage has a limited capacity for self-repair. New clinical methods have been designed to achieve better repair of injured cartilage. However, there is no treatment that enables full restoration of it. The aim of this study was to evaluate how collagen gel with bone marrow mesenchymal stem cells (MSCs) and collagen gel alone will influence on the hip cartilage repair after injury. Collagen type I was isolated from rats’ tails and cross-linked with N-hydroxysuccinimide in 24-hour process. MSCs were isolated from rats’ bone marrow. The experiments were conducted according to the guidelines for animal experiments of Ethics Committee. Fifteen 8-week-old Wistar rats were used in this study. All animals received hip joint surgery with a total of 30 created cartilage defects. Then, animals were randomly divided into three groups and filled, respectively, with collagen gel (group 1), collagen gel cultured with MSCs (group II) or left untreated as a control (control group). Immunohistochemy and radiological evaluation was carried out 11 weeks post implantation. It has been proved that the surface of the matrix is non-toxic, and its porosity promotes cell adhesion and growth. However, the in vivo regeneration process was poor. We observed the low integration rate of biomaterial. Immunohistochemical evaluation of cartilage after 11 weeks of treatment showed low II and high X collagen expression in two tested groups in comparison to the control one, in which we observed the high II collagen expression. What is more, after radiological analysis, we observed the best regeneration process in control group. The biomaterial construct and mesenchymal stem cells, as well as the use of the biomaterial itself was not sufficient to regenerate the hip cartilage surfaces. These results suggest that the collagen gel based biomaterials, even with MSCs, are not satisfactory in repar of hip cartilage defect. However, additional evaluation is needed to confirm these results.

Keywords: collafen gel, MSCs, cartilage repair, hip cartilage

Procedia PDF Downloads 456
939 A Study for Effective CO2 Sequestration of Hydrated Cement by Direct Aqueous Carbonation

Authors: Hyomin Lee, Jinhyun Lee, Jinyeon Hwang, Younghoon Choi, Byeongseo Son

Abstract:

Global warming is a world-wide issue. Various carbon capture and storage (CCS) technologies for reducing CO2 concentration in the atmosphere have been increasingly studied. Mineral carbonation is one of promising method for CO2 sequestration. Waste cement generating from aggregate recycling processes of waste concrete is potentially a good raw material containing reactive components for mineral carbonation. The major goal of our long-term project is to developed effective methods for CO2 sequestration using waste cement. In the present study, the carbonation characteristics of hydrated cement were examined by conducting two different direct aqueous carbonation experiments. We also evaluate the influence of NaCl and MgCl2 as additives to increase mineral carbonation efficiency of hydrated cement. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. The prepared cement paste was pulverized to the size less than 0.15 mm. 15 g of pulverized cement paste and 200 ml of solutions containing additives were reacted in ambient temperature and pressure conditions. 1M NaCl and 0.25 M MgCl2 was selected for additives after leaching test. Two different sources of CO2 was applied for direct aqueous carbonation experiment: 0.64 M NaHCO3 was used for CO2 donor in method 1 and pure CO2 gas (99.9%) was bubbling into reacting solution at the flow rate of 20 ml/min in method 2. The pH and Ca ion concentration were continuously measured with pH/ISE Multiparameter to observe carbonation behaviors. Material characterization of reacted solids was performed by TGA, XRD, SEM/EDS analyses. The carbonation characteristics of hydrated cement were significantly different with additives. Calcite was a dominant calcium carbonate mineral after the two carbonation experiments with no additive and NaCl additive. The significant amount of aragonite and vaterite as well as very fine calcite of poorer crystallinity was formed with MgCl2 additive. CSH (calcium silicate hydrate) in hydrated cement were changed to MSH (magnesium silicate hydrate). This transformation contributed to the high carbonation efficiency. Carbonation experiment with method 1 revealed that that the carbonation of hydrated cement took relatively long time in MgCl2 solution compared to that in NaCl solution and the contents of aragonite and vaterite were increased as increasing reaction time. In order to maximize carbonation efficiency in direct aqueous carbonation with CO2 gas injection (method 2), the control of solution pH was important. The solution pH was decreased with injection of CO2 gas. Therefore, the carbonation efficiency in direct aqueous carbonation was closely related to the stability of calcium carbonate minerals with pH changes. With no additive and NaCl additive, the maximum carbonation was achieved when the solution pH was greater than 11. Calcium carbonate form by mineral carbonation seemed to be re-dissolved as pH decreased below 11 with continuous CO2 gas injection. The type of calcium carbonate mineral formed during carbonation in MgCl2 solution was closely related to the variation of solution pH caused by CO2 gas injection. The amount of aragonite significantly increased with decreasing solution pH, whereas the amount of calcite decreased.

Keywords: CO2 sequestration, Mineral carbonation, Cement and concrete, MgCl2 and NaCl

Procedia PDF Downloads 379
938 Leader Self-sacrifice in Sports Organizations

Authors: Stefano Ruggieri, Rubinia C. Bonfanti

Abstract:

Research on leadership in sports organizations has proved extremely fruitful in recent decades, favoring the growing and diffusion of figures such as mental coaches, trainers, etc. Recent scholarly attention on organizations has been directed towards the phenomenon of leader self-sacrifice, wherein leaders who display such behavior are perceived by their followers as more effective, charismatic, and legitimate compared to those who prioritize self-interest. This growing interest reflects the importance of leaders who prioritize the collective welfare over personal gain, as they inspire greater loyalty, trust, and dedication among their followers, ultimately fostering a more cohesive and high-performing team environment. However, there is limited literature on the mechanisms through which self-sacrifice influences both group dynamics (such as cohesion and team identification) and individual factors (such as self-competence). The aim of the study is to analyze the impact of the leader self-sacrifice on cohesion, team identification and self-competence. Team identification is a crucial determinant of individual identity, delineated by the extent to which a team member aligns with a specific organizational team rather than broader social collectives. This association motivates members to synchronize their actions with the collective interests of the group, thereby fostering cohesion among its constituents, and cultivating a shared sense of purpose and unity within the team. In the domain of team sports, particularly soccer and water polo, two studies involving 447 participants (men = 238, women = 209) between 22 and 35 years old (M = 26.36, SD = 5.51) were conducted. The first study employed a correlational methodology to investigate the predictive capacity of self-sacrifice on cohesion, team identification, self-efficacy, and self-competence. The second study utilized an experimental design to explore the relationship between team identification and self-sacrifice. Together, these studies provided comprehensive insights into the multifaceted nature of leader self-sacrifice and its profound implications for group cohesion and individual well-being within organizational settings. The findings underscored the pivotal role of leader self-sacrifice in not only fostering stronger bonds among team members but also in enhancing critical facets of group dynamics, ultimately contributing to the overall effectiveness and success of the team.

Keywords: cohesion, leadership, self-sacrifice, sports organizations, team-identification

Procedia PDF Downloads 46
937 Effects of Kolavironon Liver Oxidative Stress and Beta-Cell Damage in Streptozotocin-Induced Diabetic Rats

Authors: Omolola R. Ayepola, Nicole L. Brooks, Oluwafemi O. Oguntibeju

Abstract:

The liver plays an important role in the regulation of blood glucose and is a target organ of hyperglycaemia. Hyperglycemia plays a crucial role in the onset of various liver diseases and may culminate into hepatopathy if untreated. Alteration in antioxidant defense and increase in oxidative stress that results in tissue injury is characteristic of diabetes. We evaluated the protective effects of kolaviron-a biflavonoid complex, on hepatic antioxidants, lipid peroxidation and apoptosis in the liver of diabetic rats. To induce type I diabetes, rats were injected with streptozotocin intraperitoneally at a single dose of 50 mg/kg. Oral treatment of diabetic rats with kolaviron (100 mg/kg) started on the 6th day after diabetes induction and continued for 6 weeks (5 times weekly). Diabetic rats exhibited a significant increase in the peroxidation of hepatic lipids as observed from the elevated level of malondialdehyde (MDA) estimated by High-Performance Liquid Chromatography. In addition, Oxygen Radical Absorbance Capacity (ORAC), ratio of reduced to oxidized glutathione (GSH/GSSG) and catalase (CAT) activity was decreased in the liver of diabetic rats. TUNEL assay revealed increased apoptotic cell death in the liver of diabetic rats. Examination of Pancreatic beta-cells by immunohistochemical methods revealed beta cell degeneration and reduction in beta cell/ islet area in the diabetic controls. Kolaviron-treatment increased the area of insulin immunoreactive beta-cells significantly. Kolaviron attenuated lipid peroxidation and apoptosis in the liver of diabetic rats, increased CAT activity GSH levels and the resultant GSH: GSSG. The ORAC of kolaviron-treated diabetic liver was restored to near-normal values. Kolaviron protects the liver against oxidative and apoptotic damage induced by hyperglycemia. The antidiabetic effect of kolaviron may also be related to its beneficial effects on beta-cell function.

Keywords: diabetes mellitus, kolaviron, oxidative stress, liver, apoptosis

Procedia PDF Downloads 385
936 Effect of Sulphur Concentration on Microbial Population and Performance of a Methane Biofilter

Authors: Sonya Barzgar, J. Patrick, A. Hettiaratchi

Abstract:

Methane (CH4) is reputed as the second largest contributor to greenhouse effect with a global warming potential (GWP) of 34 related to carbon dioxide (CO2) over the 100-year horizon, so there is a growing interest in reducing the emissions of this gas. Methane biofiltration (MBF) is a cost effective technology for reducing low volume point source emissions of methane. In this technique, microbial oxidation of methane is carried out by methane-oxidizing bacteria (methanotrophs) which use methane as carbon and energy source. MBF uses a granular medium, such as soil or compost, to support the growth of methanotrophic bacteria responsible for converting methane to carbon dioxide (CO₂) and water (H₂O). Even though the biofiltration technique has been shown to be an efficient, practical and viable technology, the design and operational parameters, as well as the relevant microbial processes have not been investigated in depth. In particular, limited research has been done on the effects of sulphur on methane bio-oxidation. Since bacteria require a variety of nutrients for growth, to improve the performance of methane biofiltration, it is important to establish the input quantities of nutrients to be provided to the biofilter to ensure that nutrients are available to sustain the process. The study described in this paper was conducted with the aim of determining the influence of sulphur on methane elimination in a biofilter. In this study, a set of experimental measurements has been carried out to explore how the conversion of elemental sulphur could affect methane oxidation in terms of methanotrophs growth and system pH. Batch experiments with different concentrations of sulphur were performed while keeping the other parameters i.e. moisture content, methane concentration, oxygen level and also compost at their optimum level. The study revealed the tolerable limit of sulphur without any interference to the methane oxidation as well as the particular sulphur concentration leading to the greatest methane elimination capacity. Due to the sulphur oxidation, pH varies in a transient way which affects the microbial growth behavior. All methanotrophs are incapable of growth at pH values below 5.0 and thus apparently are unable to oxidize methane. Herein, the certain pH for the optimal growth of methanotrophic bacteria is obtained. Finally, monitoring methane concentration over time in the presence of sulphur is also presented for laboratory scale biofilters.

Keywords: global warming, methane biofiltration (MBF), methane oxidation, methanotrophs, pH, sulphur

Procedia PDF Downloads 236
935 Human Values and Morality of Adolescents Who Have Broken the Law: A Multi-Method Study in a Socioeducational Institutional Environment

Authors: Luiz Nolasco Jr. Rezende, Antonio Villar M. Sá, Claudia Marcia L. Pato

Abstract:

The increasing urban violence in Brazil involves more and more infractions committed by children and youths. The challenges faced by the institutional environments responsible for the education and resocialization of adolescents in conflict with the law are enormous, especially of those deprived of their liberty. These institutions have an inadequate educational structure. They are characterized by a dirty and unhealthy environment without the minimum basic conditions for their activities, by frequent practices of degradation, humiliation, and the physical and psychological punishment of inmates. This mixed-method study investigated the personal values of adolescents with restriction of freedom in a socio-educational institutional environment aiming to contribute to the development of their morality through an educational process. For that, we used a survey and transdisciplinary play workshops involving thirty-two boys aged between 15 and 19 years old and at least two years out of school. To evaluate the survey the reduced version of the Portrait Questionnaire—PQ21—was used. The workshops happened once a week, lasting 80 minutes each, totaling twelve meetings. By using the game of chess and its metaphors, participants produced texts and engaged in critical brainstorming about their lives. The survey results pointed out that these young people showed a predominance of values of openness to change and self-transcendence, dissatisfaction with one's own reality and surroundings, not considering the consequences of their actions on themselves and others, difficulties in speaking and writing, and desire for changes in their lives. After the pedagogical interventions, these adolescents demonstrated an understanding of the implications of their actions for themselves, for their families, especially for the mothers, with whom they demonstrated stronger bonds. It was possible to observe evidence of improvement in the capacity of linguistic expression, more autonomy and critical vision, including about themselves and their respective contexts. These results demonstrated the educational potential of lively, symbolic, dynamic and playful activities that favor the mediation and identification of these adolescents with their lives, and contribute to the projection of dreams.

Keywords: adolescents arrested, human values, moral development, playful workshops

Procedia PDF Downloads 265
934 Effect of Climate Change and Water Sources: Sustainability of Rural Water Sanitation and Hygiene of Tanahun District

Authors: Bharat Sapkota

Abstract:

Nepal is the one of the victim country of climate change. Decreasing snow line, sometimes higher and sometime non-rain fall are common phenomena in hill area. Natural flood disaster and drought is also common every year in certain place of the country. So this paper analyze the effect of climate and natural water sources for sustainability of water sanitation and hygiene of Tanahun district. It is one of the Rural Water Supply and Sanitation Project Western Nepal Phase-II (RWSSP-WN Phase-II) project district out of 14 project districts of western and mid-western Nepal. RWSSP-WN II is a bilateral development cooperation of governments of Nepal and Finland. Big investment is still going on in water sanitation and hygiene sector but sustainability is still a challenge throughout the country. So RWSSP-WN has started the strengthen of the capacity of local Governments to deliver services in water supply, sanitation and hygiene and its sustainability through the implementation of cross cutting approach of climate change and disaster risk reduction. The study shows that the average yield in 685 natural point sources were around 0.045 l/s in 2014 but it was twice as high in 2004 i.e. 0.09 l/s. The maximum measured yield in 2014 was 1.87 l/s, whereas, the maximum yield was 3 l/s in 2004. Likewise, spring source mean and maximum yield measured in 2014 were 0.16 l/s and 3.33 l/s respectively, whereas, mean and maximum yields in 2004 were 0.204 l/s and 3 l/s respectively. Small streams average yield measured in 2014 was 0.32 l/s with the maximum of around 4.99 l/s. In 2004, mean and maximum yields of streams were 0.485 l/s and 5 l/s respectively. The overall climate between years 2002 to 2013 and measured yield data between 2004 and 2014 shows climate as one of the causes of water source decline. The temperature is rising with pace of 0.041°C per year and rainfall is decreased by 16.8 mm/year. The Khosla’s empirical formula shows decrease of 1.7 cm/year in runoff. At present sustainability of water, sanitation and hygiene is more challenge due to sources decreasing in the district. Sanitation and hygiene total behavior change and watershed conservation as well as design and implementation of recharge pound construction are the way forward of sustainability of water, sanitation and hygiene.

Keywords: water sanitation, hygiene, sustainability, climate change

Procedia PDF Downloads 337
933 The Effect of Tax Evasion and Avoidance on Somalia’s Economy

Authors: Mohamed Salad Ahmed

Abstract:

This study explores the impact of tax evasion and avoidance on the economy of Somalia. Somalia's economy is largely informal and cash-based, making it challenging to accurately assess the extent of tax evasion and avoidance. However, it is widely recognized that these practices have significant negative effects on the economy, including reduced government revenue, an uneven playing field for businesses, corruption, and a lack of access to international aid and investment. The study focuses on identifying strategies and solutions to reduce tax evasion and avoidance and increase revenue collection. This includes improving the government's capacity to enforce tax laws and regulations, creating a more transparent and accountable tax system, and increasing public awareness of the importance of paying taxes. By addressing these issues, Somalia can improve its economic stability and enhance its ability to provide essential public services, reduce poverty, and promote growth and development. Tax evasion and avoidance have a significant negative impact on the economy of Somalia. The informal nature of the country's economy and the difficulty in accurately assessing the extent of tax evasion and avoidance make it challenging to address these issues effectively. The lack of government revenue resulting from tax evasion and avoidance makes it difficult for the government to fund essential services, leading to a decline in the quality of public services and hindering economic growth. Tax evasion and avoidance also create an uneven playing field for businesses, discourage investment, contribute to corruption, and undermine the rule of law. Additionally, tax evasion and avoidance can make it more difficult for Somalia to access international aid and investment. Addressing these issues will require a concerted effort by the government to strengthen tax collection and enforcement, as well as by the international community to provide technical assistance and support. This abstract highlights the importance of addressing tax evasion and avoidance in Somalia and the potential benefits of doing so.

Keywords: tax evasion, tax avoidance, Somalia economy, revenue collection, informal economy, corruption economic growth, investment, tax policy, tax administration, governance, private sector

Procedia PDF Downloads 12
932 Efficacy of Crystalline Admixtures in Self-Healing Capacity of Fibre Reinforced Concrete

Authors: Evangelia Tsampali, Evangelos Yfantidis, Andreas Ioakim, Maria Stefanidou

Abstract:

The purpose of this paper is the characterization of the effects of crystalline admixtures on concrete. Crystallites, aided by the presence of humidity, form idiomorphic crystals that block cracks and pores resulting in reduced porosity. In this project, two types of crystallines have been employed. The hydrophilic nature of crystalline admixtures helps the components to react with water and cement particles in the concrete to form calcium silicate hydrates and pore-blocking precipitates in the existing micro-cracks and capillaries. The underlying mechanism relies on the formation of calcium silicate hydrates and the resulting deposits of these crystals become integrally bound with the hydrated cement paste. The crystalline admixtures continue to activate throughout the life of the composite material when in the presence of moisture entering the concrete through hairline cracks, sealing additional gaps. The resulting concrete exhibits significantly increased resistance to water penetration under stress. Admixtures of calcium aluminates can also contribute to this healing mechanism in the same manner. However, this contribution is negligible compared to the calcium silicate hydrates due to the abundance of the latter. These crystalline deposits occur throughout the concrete volume and are a permanent part of the concrete mass. High-performance fibre reinforced cementitious composite (HPFRCC) were produced in the laboratory. The specimens were exposed in three healing conditions: water immersion until testing at 15 °C, sea water immersion until testing at 15 °C, and wet/dry cycles (immersion in tap water for 3 days and drying for 4 days). Specimens were pre-cracked at 28 days, and the achieved cracks width were in the range of 0.10–0.50 mm. Furthermore, microstructure observations and Ultrasonic Pulse Velocity tests have been conducted. Based on the outcomes, self-healing related indicators have also been defined. The results show almost perfect healing capability for specimens healed under seawater, better than for specimens healed in water while inadequate for the wet/dry exposure in both of the crystalline types.

Keywords: autogenous self-healing, concrete, crystalline admixtures, ultrasonic pulse velocity test

Procedia PDF Downloads 127
931 Analysis of Road Network Vulnerability Due to Merapi Volcano Eruption

Authors: Imam Muthohar, Budi Hartono, Sigit Priyanto, Hardiansyah Hardiansyah

Abstract:

The eruption of Merapi Volcano in Yogyakarta, Indonesia in 2010 caused many casualties due to minimum preparedness in facing disaster. Increasing population capacity and evacuating to safe places become very important to minimize casualties. Regional government through the Regional Disaster Management Agency has divided disaster-prone areas into three parts, namely ring 1 at a distance of 10 km, ring 2 at a distance of 15 km and ring 3 at a distance of 20 km from the center of Mount Merapi. The success of the evacuation is fully supported by road network infrastructure as a way to rescue in an emergency. This research attempts to model evacuation process based on the rise of refugees in ring 1, expanded to ring 2 and finally expanded to ring 3. The model was developed using SATURN (Simulation and Assignment of Traffic to Urban Road Networks) program version 11.3. 12W, involving 140 centroid, 449 buffer nodes, and 851 links across Yogyakarta Special Region, which was aimed at making a preliminary identification of road networks considered vulnerable to disaster. An assumption made to identify vulnerability was the improvement of road network performance in the form of flow and travel times on the coverage of ring 1, ring 2, ring 3, Sleman outside the ring, Yogyakarta City, Bantul, Kulon Progo, and Gunung Kidul. The research results indicated that the performance increase in the road networks existing in the area of ring 2, ring 3, and Sleman outside the ring. The road network in ring 1 started to increase when the evacuation was expanded to ring 2 and ring 3. Meanwhile, the performance of road networks in Yogyakarta City, Bantul, Kulon Progo, and Gunung Kidul during the evacuation period simultaneously decreased in when the evacuation areas were expanded. The results of preliminary identification of the vulnerability have determined that the road networks existing in ring 1, ring 2, ring 3 and Sleman outside the ring were considered vulnerable to the evacuation of Mount Merapi eruption. Therefore, it is necessary to pay a great deal of attention in order to face the disasters that potentially occur at anytime.

Keywords: model, evacuation, SATURN, vulnerability

Procedia PDF Downloads 170
930 Ficus Microcarpa Fruit Derived Iron Oxide Nanomaterials and Its Anti-bacterial, Antioxidant and Anticancer Efficacy

Authors: Fuad Abdullah Alatawi

Abstract:

Microbial infections-based diseases are a significant public health issue around the world, mainly when antibiotic-resistant bacterium types evolve. In this research, we explored the anti-bacterial and anti-cancer potency of iron-oxide (Fe₂O₃) nanoparticles prepared from F. macrocarpa fruit extract. The chemical composition of F. macrocarpa fruit extract was used as a reducing and capping agent for nanoparticles’ synthesis was examined by GC-MS/MS analysis. Then, the prepared nanoparticles were confirmed by various biophysical techniques, including X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-Vis Spectroscopy, and Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDAX), and Dynamic Light Scattering (DLS). Also, the antioxidant capacity of fruit extract was determined through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Fluorescence Recovery After Photobleaching (FRAP), Superoxide Dismutase (SOD) assays. Furthermore, the cytotoxicity activities of Fe₂O₃ NPs were determined using the (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (MTT) test on MCF-7 cells. In the antibacterial assay, lethal doses of the Fe₂O₃NPs effectively inhibited the growth of gram-negative and gram-positive bacteria. The surface damage, ROS production, and protein leakage are the antibacterial mechanisms of Fe₂O₃NPs. Concerning antioxidant activity, the fruit extracts of F. macrocarpa had strong antioxidant properties, which were confirmed by DPPH, ABTS, FRAP, and SOD assays. In addition, the F. microcarpa-derived iron oxide nanomaterials greatly reduced the cell viability of (MCF-7). The GC-MS/MS analysis revealed the presence of 25 main bioactive compounds in the F. microcarpa extract. Overall, the finding of this research revealed that F. microcarpa-derived Fe₂O₃ nanoparticles could be employed as an alternative therapeutic agent to cure microbial infection and breast cancer in humans.

Keywords: ficus microcarpa, iron oxide, antibacterial activity, cytotoxicity

Procedia PDF Downloads 121
929 Family and Community Care for the Elderly: An Implementation Research in Local Community, Thailand

Authors: Sumattana Glangkarn, Vorapoj Promasatayaprot

Abstract:

Background: Proportion of population ageing in Thailand has been increased rapidly in the past decades according to living longer and the fertility rates have decreased. The most important challenge related to this situation is to consider how to improve quality and years of healthy of life. This study aimed to implement the older persons’ long term care (LTC) system for elderly care by family and community. Method: The Consolidated Framework for Implementation Research (CFIR) was employed for guiding and evaluating an implementation process in ageing care. The CFIR composed of five major domains: intervention characteristics, outer setting, inner setting, characteristics of the individuals involved, and the process of implementation. Results: most elderly participants were couples, educating primary school and living with children and grandchildren. More than half of them had chronic diseases such as diabetes mellitus and hypertension. Factor analysis revealed factors related to health care of older participants which consisted of exercise, diet, accidental prevention, relaxation, self-care capacity, joyfulness, family relationship, and personal hygiene. A pre-implementation phase showed intervention characteristics included facilities and services of the LTC policy from the Ministry of Public Health. The complexities of the LTC and relative advantages were explained. Community leaders, public health volunteers, care givers and health professionals had participated in the LTC activities. Outer and inner settings consisted of context of community, culture, and readiness. Characteristics of the individuals related to knowledge, self-efficacy, perceptions, and believes. The process consisted of planning, acting, observing, and reflecting. The implementation outcomes and service outcomes had been evaluated during-implementation phase. Conclusion: the participation of caregivers, community leaders, public health volunteers, and health professionals had supported the LTC services. Thus, family and community care could improve quality of life of the ageing.

Keywords: ageing, CFIR, long term care, implementation

Procedia PDF Downloads 176
928 Two-Level Separation of High Air Conditioner Consumers and Demand Response Potential Estimation Based on Set Point Change

Authors: Mehdi Naserian, Mohammad Jooshaki, Mahmud Fotuhi-Firuzabad, Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee

Abstract:

In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a recent solution is presented to uncover consumers with high air conditioner demand among large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.

Keywords: communication infrastructure, smart meters, power systems, HVAC system, residential HVAC systems

Procedia PDF Downloads 68
927 Effect of Neem (Aziradicta Indica) Leaf Meal on Growth Performance, Haematology and Serum Biochemistry Indices of Broilers Not Administered Vaccines and Antibiotics

Authors: Ugwuowo Leonard Chidi, Oparaji Chetachukwu Jecinta., Ogidi Chibuzor Agafenachukwu, Onuoha Rebecca Obianuju

Abstract:

This experiment was conducted to investigate the growth performance, haematology and serum biochemistry indices of broiler birds fed diets containing Neem leaf meal. A total of 96 unsexed day-old broiler birds were allocated to four treatments of T1, T2, T3 and T4 and replicated three times with eight birds per replicate in a Completely Randomized Design. The treatments were diets containing 2.0, 4.0, 6.0 and 8.0% Neem leaf meal respectively. Growth performances, packed cell volume, red blood cell count, haemoglobin, white blood cell count, lymphocytes, mean corpuscular volume, mean corpuscular haemoglobin concentration, platelet count, aspartate amino transaminase, alanine amino transaminase, alkaline phosphate, cholesterol, albumin, globulin, urea, glucose, total protein and creatinine were evaluated. Results showed that there were no significant differences (P>0.05) in all the growth performance parameters among the treatments. The results of the experiment showed that there were significant differences (P<0.05) in all the heamatological and serum biochemistry parameters at finisher phases. Mean corpuscular volume, white blood cell count, lymphocytes, red blood cell count, haemoglobin, platelet count, creatinine and triglyceride increased and were highest in treatment two while treatment four had the least values in mean corpuscular volume, urea, white blood cell, haemoglobin and triglyceride. This implies that the levels of inclusion of Neem leaf meal in this experiment did not affect the growth performance of the broiler chicks but the haematological and serum biochemistry indices were affected. Treatment two with a 4% inclusion level of Neem leaf meal has shown the capacity to replace vaccines and antibiotics in broilers due to the positive effects it had on both the haematological and serum biochemistry.

Keywords: leaf meal, broiler, Aziradicta indica, serum biochemistry, haematology

Procedia PDF Downloads 76
926 Ownership and Shareholder Schemes Effects on Airport Corporate Strategy in Europe

Authors: Dimitrios Dimitriou, Maria Sartzetaki

Abstract:

In the early days of the of civil aviation, airports are totally state-owned companies under the control of national authorities or regional governmental bodies. From that time the picture has totally changed and airports privatisation and airport business commercialisation are key success factors to stimulate air transport demand, generate revenues and attract investors, linked to reliable and resilience of air transport system. Nowadays, airport's corporate strategy deals with policies and actions, affecting essential the business plans, the financial targets and the economic footprint in a regional economy they serving. Therefore, exploring airport corporate strategy is essential to support the decision in business planning, management efficiency, sustainable development and investment attractiveness on one hand; and define policies towards traffic development, revenues generation, capacity expansion, cost efficiency and corporate social responsibility. This paper explores key outputs in airport corporate strategy for different ownership schemes. The airport corporations are grouped in three major schemes: (a) Public, in which the public airport operator acts as part of the government administration or as a corporised public operator; (b) Mixed scheme, in which the majority of the shares and the corporate strategy is driven by the private or the public sector; and (c) Private, in which the airport strategy is driven by the key aspects of globalisation and liberalisation of the aviation sector. By a systemic approach, the key drivers in corporate strategy for modern airport business structures are defined. Key objectives are to define the key strategic opportunities and challenges and assess the corporate goals and risks towards sustainable business development for each scheme. The analysis based on an extensive cross-sectional dataset for a sample of busy European airports providing results on corporate strategy key priorities, risks and business models. The conventional wisdom is to highlight key messages to authorities, institutes and professionals on airport corporate strategy trends and directions.

Keywords: airport corporate strategy, airport ownership, airports business models, corporate risks

Procedia PDF Downloads 304
925 Soil Liquefaction Hazard Evaluation for Infrastructure in the New Bejaia Quai, Algeria

Authors: Mohamed Khiatine, Amal Medjnoun, Ramdane Bahar

Abstract:

The North Algeria is a highly seismic zone, as evidenced by the historical seismicity. During the past two decades, it has experienced several moderate to strong earthquakes. Therefore, the geotechnical engineering problems that involve dynamic loading of soils and soil-structure interaction system requires, in the presence of saturated loose sand formations, liquefaction studies. Bejaia city, located in North-East of Algiers, Algeria, is a part of the alluvial plain which covers an area of approximately 750 hectares. According to the Algerian seismic code, it is classified as moderate seismicity zone. This area had not experienced in the past urban development because of the different hazards identified by hydraulic and geotechnical studies conducted in the region. The low bearing capacity of the soil, its high compressibility and the risk of liquefaction and flooding are among these risks and are a constraint on urbanization. In this area, several cases of structures founded on shallow foundations have suffered damages. Hence, the soils need treatment to reduce the risk. Many field and laboratory investigations, core drilling, pressuremeter test, standard penetration test (SPT), cone penetrometer test (CPT) and geophysical down hole test, were performed in different locations of the area. The major part of the area consists of silty fine sand , sometimes heterogeneous, has not yet reached a sufficient degree of consolidation. The ground water depth changes between 1.5 and 4 m. These investigations show that the liquefaction phenomenon is one of the critical problems for geotechnical engineers and one of the obstacles found in design phase of projects. This paper presents an analysis to evaluate the liquefaction potential, using the empirical methods based on Standard Penetration Test (SPT), Cone Penetration Test (CPT) and shear wave velocity and numerical analysis. These liquefaction assessment procedures indicate that liquefaction can occur to considerable depths in silty sand of harbor zone of Bejaia.

Keywords: earthquake, modeling, liquefaction potential, laboratory investigations

Procedia PDF Downloads 353
924 Distribution of Antioxidants between Sour Cherry Juice and Pomace

Authors: Sonja Djilas, Gordana Ćetković, Jasna Čanadanović-Brunet, Vesna Tumbas Šaponjac, Slađana Stajčić, Jelena Vulić, Milica Vinčić

Abstract:

In recent years, interest in food rich in bioactive compounds, such as polyphenols, increased the advantages of the functional food products. Bioactive components help to maintain health and prevention of diseases such as cancer, cardiovascular and many other degenerative diseases. Recent research has shown that the fruit pomace, a byproduct generated from the production of juice, can be a potential source of valuable bioactive compounds. The use of fruit industrial waste in the processing of functional foods represents an important new step for the food industry. Sour cherries have considerable nutritional, medicinal, dietetic and technological value. According to the production volume of cherries, Serbia ranks seventh in the world, with a share of 7% of the total production. The use of sour cherry pomace has so far been limited to animal feed, even though it can be potentially a good source of polyphenols. For this study, local variety of sour cherry cv. ‘Feketićka’ was chosen for its more intensive taste and deeper red color, indicating high anthocyanin content. The contents of total polyphenols, flavonoids and anthocyanins, as well as radical scavenging activity on DPPH radicals and reducing power of sour cherry juice and pomace were compared using spectrophotometrical assays. According to the results obtained, 66.91% of total polyphenols, 46.77% of flavonoids, 46.77% of total anthocyanins and 47.88% of anthocyanin monomers from sour cherry fruits have been transferred to juice. On the other hand, 29.85% of total polyphenols, 33.09% of flavonoids, 53.23% of total anthocyanins and 52.12% of anthocyanin monomers remained in pomace. Regarding radical scavenging activity, 65.51% of Trolox equivalents from sour cherries were exported to juice, while 34.49% was left in pomace. However, reducing power of sour cherry juice was much stronger than pomace (91.28% and 8.72% of Trolox equivalents from sour cherry fruits, respectively). Based on our results it can be concluded that sour cherry pomace is still a rich source of natural antioxidants, especially anthocyanins with coloring capacity, therefore it can be used for dietary supplements development and food fortification.

Keywords: antioxidants, polyphenols, pomace, sour cherry

Procedia PDF Downloads 325