Search results for: good faith
1642 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm
Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou
Abstract:
Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and WOB are used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036m3/h and -2.374m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. Quantitatively calculate the best combination of funnel viscosity, final shear force and drilling time. The minimum loss rate of lost circulation wells in Shunbei area is 10m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.Keywords: drilling and completion, drilling fluid, lost circulation, loss rate, main controlling factors, unmanned intervention algorithm
Procedia PDF Downloads 1121641 A Survey to Determine the Incidence of Piglets' Mortality in Outdoor Farms in New Zealand
Authors: Patrick C. H. Morel, Ian W. Barugh, Kirsty L. Chidgey
Abstract:
The aim of this study was to quantify the level of piglet deaths in outdoor farrowing systems in New Zealand. A total of 14 farms were visited, the farmers interviewed, and data collected. A total of 10,154 sows were kept on those farms representing an estimated 33% of the NZ sow herd or 80% of the outdoor sow herd in 2016. Data from 25,911 litters was available for the different analyses. The characteristics and reproductive performance for the years 2015-2016 from the 14 farms surveyed in this study were analysed, and the following results were obtained. The average percentage of stillbirths was 7.1% ranging between 3.5 and 10.7%, and the average pre-weaning live-born mortality was 16.7% ranging between 3.7% and 23.6%. The majority of piglet deaths (89%) occurred during the first week after birth, with 81% of deaths occurring up to day three. The number of piglets born alive was 12.3 (8.0 to 14.0), and average number of piglets weaned per sow per year was 22.4, range 10.5-27.3. The average stocking rate per ha (number of sows and mated gilts) was 15.3 and ranged from 2.8 to 28.6. The sow to boar ratio average was 20.9:1 and the range was 7.1: 1 to 63:1. The sow replacement rate ranged between 37% and 78%. There was a large variation in the piglet live-born mortality both between months within a farm and between farms within a given month. The monthly recorded piglet mortality ranged between 7.7% and 31.5%, and there was no statistically significant difference between months on the number of piglets born, born alive, weaned or on pre-weaning piglet mortality. Twelve different types of hut/farrowing systems were used on the 14 farms. No difference in piglet mortality was observed between A-Frame, A-Frame Modified and for Box-shape huts. There was a positive relationship between the average number of piglets born per litter and the number of piglets born alive (r=0.975) or the number weaned per litter (r=0.845). Moreover, as the average number of piglets born-alive increases, both pre-weaning live-born mortality rate and the number of piglets weaned increased. An increase of 1 piglet in the number born alive corresponds to an increase of 2.9% in live-born mortality and an increase of 0.56 piglets weaned. Farmers reported that staff are the key to success with the key attributes being: good and reliable with attention to detail and skills with the stock.Keywords: mortality, piglets, outdoor, pig farm
Procedia PDF Downloads 1151640 Intrinsic Motivational Factor of Students in Learning Mathematics and Science Based on Electroencephalogram Signals
Authors: Norzaliza Md. Nor, Sh-Hussain Salleh, Mahyar Hamedi, Hadrina Hussain, Wahab Abdul Rahman
Abstract:
Motivational factor is mainly the students’ desire to involve in learning process. However, it also depends on the goal towards their involvement or non-involvement in academic activity. Even though, the students’ motivation might be in the same level, but the basis of their motivation may differ. In this study, it focuses on the intrinsic motivational factor which student enjoy learning or feeling of accomplishment the activity or study for its own sake. The intrinsic motivational factor of students in learning mathematics and science has found as difficult to be achieved because it depends on students’ interest. In the Program for International Student Assessment (PISA) for mathematics and science, Malaysia is ranked as third lowest. The main problem in Malaysian educational system, students tend to have extrinsic motivation which they have to score in exam in order to achieve a good result and enrolled as university students. The use of electroencephalogram (EEG) signals has found to be scarce especially to identify the students’ intrinsic motivational factor in learning science and mathematics. In this research study, we are identifying the correlation between precursor emotion and its dynamic emotion to verify the intrinsic motivational factor of students in learning mathematics and science. The 2-D Affective Space Model (ASM) was used in this research in order to identify the relationship of precursor emotion and its dynamic emotion based on the four basic emotions, happy, calm, fear and sad. These four basic emotions are required to be used as reference stimuli. Then, in order to capture the brain waves, EEG device was used, while Mel Frequency Cepstral Coefficient (MFCC) was adopted to be used for extracting the features before it will be feed to Multilayer Perceptron (MLP) to classify the valence and arousal axes for the ASM. The results show that the precursor emotion had an influence the dynamic emotions and it identifies that most students have no interest in mathematics and science according to the negative emotion (sad and fear) appear in the EEG signals. We hope that these results can help us further relate the behavior and intrinsic motivational factor of students towards learning of mathematics and science.Keywords: EEG, MLP, MFCC, intrinsic motivational factor
Procedia PDF Downloads 3671639 Liquefaction Potential Assessment Using Screw Driving Testing and Microtremor Data: A Case Study in the Philippines
Authors: Arturo Daag
Abstract:
The Philippine Institute of Volcanology and Seismology (PHIVOLCS) is enhancing its liquefaction hazard map towards a detailed probabilistic approach using SDS and geophysical data. Target sites for liquefaction assessment are public schools in Metro Manila. Since target sites are in highly urbanized-setting, the objective of the project is to conduct both non-destructive geotechnical studies using Screw Driving Testing (SDFS) combined with geophysical data such as refraction microtremor array (ReMi), 3 component microtremor Horizontal to Vertical Spectral Ratio (HVSR), and ground penetrating RADAR (GPR). Initial test data was conducted in liquefaction impacted areas from the Mw 6.1 earthquake in Central Luzon last April 22, 2019 Province of Pampanga. Numerous accounts of liquefaction events were documented areas underlain by quaternary alluvium and mostly covered by recent lahar deposits. SDS estimated values showed a good correlation to actual SPT values obtained from available borehole data. Thus, confirming that SDS can be an alternative tool for liquefaction assessment and more efficient in terms of cost and time compared to SPT and CPT. Conducting borehole may limit its access in highly urbanized areas. In order to extend or extrapolate the SPT borehole data, non-destructive geophysical equipment was used. A 3-component microtremor obtains a subsurface velocity model in 1-D seismic shear wave velocity of the upper 30 meters of the profile (Vs30). For the ReMi, 12 geophone array with 6 to 8-meter spacing surveys were conducted. Microtremor data were computed through the Factor of Safety, which is the quotient of Cyclic Resistance Ratio (CRR) and Cyclic Stress Ratio (CSR). Complementary GPR was used to study the subsurface structure and used to inferred subsurface structures and groundwater conditions.Keywords: screw drive testing, microtremor, ground penetrating RADAR, liquefaction
Procedia PDF Downloads 2021638 Civic Participation as a Promoter of Active Ageing in Europe
Authors: Andrea Vega-Tinoco, Ana I. Gil-Lacruz, Marta Gil-Lacruz
Abstract:
The main objective of this research is to acknowledge whether civic participation affects the well-being of the elderly, thus being a key activity of active aging. It is also of interest to recognize any differences among genders, generational cohorts or country of residence. If a positive relationship is found between civic participation and well-being, the actions that promote this participation will benefit the quality of life of senior citizens. Otherwise, independent action must be taken in the improvement of social and human capital. The sample consists of approximately 50.000 individuals from the European Social Survey (2002-2016). Only individuals born before 1965 in 15 European countries were considered. The sample was distributed according to gender, year of birth, country, level of studies and ESS wave to form pseudo-panel data cohorts, leaving a total of 1.318 observations. The data were analyzed through a Cross-Lagged Model using Fixed-Effects. A bidirectional association is observed between the civic participation and well-being variables. However, participating in the past seems to have a higher impact on today’s health, happiness and life satisfaction than the other way around. Furthermore, 26% of the respondents expressed to be satisfied with their life, 27% to be happy and 57% to have good health. On the other hand, 49% have participated civically in the last year, being the most common activities: signing petitions, boycotting products and volunteer work in non-political organizations. A slight trend of BabyBoomers and men towards greater participation can be observed, as well as a higher impact of this participation on their well-being. In addition, international differences exhibit a stronger relation for Nordic, East European and Mediterranean countries. The given results support the hypothesis that civic participation is a promoter of well-being for the elderly. This paper positively highlights the activity of involving in political and non-political organizations, as well as wearing badges. At any rate, almost all forms of civic participation show a positive relationship with well-being and should therefore be promoted, although differences between countries must be taken into consideration.Keywords: active aging, civic participation, Europe, well-being
Procedia PDF Downloads 831637 Preparation and Characterization of CuFe2O4/TiO2 Photocatalyst for the Conversion of CO2 into Methanol under Visible Light
Authors: Md. Maksudur Rahman Khan, M. Rahim Uddin, Hamidah Abdullah, Kaykobad Md. Rezaul Karim, Abu Yousuf, Chin Kui Cheng, Huei Ruey Ong
Abstract:
A systematic study was conducted to explore the photocatalytic reduction of carbon dioxide (CO2) into methanol on TiO2 loaded copper ferrite (CuFe2O4) photocatalyst under visible light irradiation. The phases and crystallite size of the photocatalysts were characterized by X-ray diffraction (XRD) and it indicates CuFe2O4 as tetragonal phase incorporation with anatase TiO2 in CuFe2O4/TiO2 hetero-structure. The XRD results confirmed the formation of spinel type tetragonal CuFe2O4 phases along with predominantly anatase phase of TiO2 in the CuFe2O4/TiO2 hetero-structure. UV-Vis absorption spectrum suggested the formation of the hetero-junction with relatively lower band gap than that of TiO2. Photoluminescence (PL) technique was used to study the electron–hole (e−/h+) recombination process. PL spectra analysis confirmed the slow-down of the recombination of electron–hole (e−/h+) pairs in the CuFe2O4/TiO2 hetero-structure. The photocatalytic performance of CuFe2O4/TiO2 was evaluated based on the methanol yield with varying amount of TiO2 over CuFe2O4 (0.5:1, 1:1, and 2:1) and changing light intensity. The mechanism of the photocatalysis was proposed based on the fact that the predominant species of CO2 in aqueous phase were dissolved CO2 and HCO3- at pH ~5.9. It was evident that the CuFe2O4 could harvest the electrons under visible light irradiation, which could further be injected to the conduction band of TiO2 to increase the life time of the electron and facilitating the reactions of CO2 to methanol. The developed catalyst showed good recycle ability up to four cycles where the loss of activity was ~25%. Methanol was observed as the main product over CuFe2O4, but loading with TiO2 remarkably increased the methanol yield. Methanol yield over CuFe2O4/TiO2 was found to be about three times higher (651 μmol/gcat L) than that of CuFe2O4 photocatalyst. This occurs because the energy of the band excited electrons lies above the redox potentials of the reaction products CO2/CH3OH.Keywords: photocatalysis, CuFe2O4/TiO2, band-gap energy, methanol
Procedia PDF Downloads 2441636 Transitioning Classroom Students to Working Learners: Lived Experiences of Senior High School Work Immersion Students
Authors: Rico Herrero
Abstract:
The study looked into the different lived experiences of senior high school to work immersion and how they were able to cope up in the transition stage from being classroom students into immersion students in work immersion site. The participants of the study were the ten senior high school students from Punta Integrated School. Using interview guide questions, the researchers motivated the participants to reveal their thoughts, feelings, and experiences in the interviews via video recording. The researchers utilized the qualitative research design, but the approach used was grounded theory. The findings revealed the participants’ lived experiences on how to cope or overcome the transition stage during the work immersion program. They unanimously responded to the interview questions. And based on the themes that emerged from the testimonies of the Senior High School students, the classroom learners benefited a lot from authentic learning opportunity of immersion program. Work immersion provides the students the opportunity to learn and develop their skills/ competencies related to the field of specialization. The hands-on training provides them simulation of work. They realized that theoretical learning in school is not enough to be equipped to work. Immersion program also provides venue for values and standard transformation. Senior High School students felt a high demand of self-confidence at the beginning of their race. Good thing, self-esteem of an individual helps bring out one’s potential at its best. Students find it challenging to get along with people in all ages. But, the endeavour absolutely helps them to grow maturely. Participants also realized that it’s not easy to deal with time pressure. Hence, the immersion program taught them to learn about time management. Part of the best training is to expose the learners to the harsh reality. Despite of the things that the school had taught them, still, students realized that they are not yet ready to deal with the demands of work. Furthermore, they also found out that they need to develop an interpersonal skill to improve their human relationships.Keywords: grounded theory, lived experiences, senior high school, work immersion
Procedia PDF Downloads 1411635 Sulfanilamide/Epoxy Resin and Its Application as Tackifier in Epoxy Adhesives
Authors: Oiane Ruiz de Azua, Salvador Borros, Nuria Agullo, Jordi Arbusa
Abstract:
Tackiness is described as the ability to spontaneously form a bond to another material under light pressures within a short application time. During the first few minutes of the adhesive's curing, it is necessary to have enough tack to keep the substrates together while cohesion is increasing within the adhesive. This property plays a key role in the manufacturing process of pieces. Epoxy adhesives, unlike other adhesives, usually present low tackiness before curing; however, there is very little literature about the use of tackifiers in epoxy adhesives, except for the high molecular weight epoxy additives. In the present work, a tetrafunctional epoxy resin based on Bisphenol-A and Sulfanilamide has been synthesized in order to be used as a tackifier. This additive offers improved specific adhesion to two-component (2K) epoxy adhesives. The dosage of the tackifier has to be done carefully not to alter the mechanical and rheological properties of the adhesive. The synthetized product has been analyzed by FTIR and ¹H-NMR analysis, and the effect of the addition of 1 wt % of the tackifier on rheological properties, viscoelastic behavior, and mechanical properties has been studied. On one hand, the addition of the product in the epoxy resin part showed a significant increase in tackiness regarding the neat epoxy resin. On the other hand, tackiness of the whole formulation was also increased. Curing time of the adhesive has not undergone any relevant changes with the tackifier addition. Regarding viscoelastic properties, Storage Modulus (G') and Loss Modulus (G'') remain also unchanged at ambient temperature. Probably, in case higher tackifier concentration would be added, differences in viscoelastic properties would be observed. The study of mechanical properties shows that hardness and tensile strength also keep their values unchanged regarding neat two component adhesive. In conclusion, the addition of 1 wt % of sulfanilamide/epoxy enhanced the tackiness of the epoxy resin part, improves tack without modifying significantly either the rheological, the mechanical, or the viscoelastic properties of the product. Thus, the sulfanilamide presented could be a good candidate to be used as an additive to the 2k epoxy formulation for the manufacturing process of pieces.Keywords: epoxy adhesive, manufacturing process of pieces, sulfanilamide, tackifiers
Procedia PDF Downloads 1841634 Numerical Modelling of Shear Zone and Its Implications on Slope Instability at Letšeng Diamond Open Pit Mine, Lesotho
Authors: M. Ntšolo, D. Kalumba, N. Lefu, G. Letlatsa
Abstract:
Rock mass damage due to shear tectonic activity has been investigated largely in geoscience where fluid transport is of major interest. However, little has been studied on the effect of shear zones on rock mass behavior and its impact on stability of rock slopes. At Letšeng Diamonds open pit mine in Lesotho, the shear zone composed of sheared kimberlite material, calcite and altered basalt is forming part of the haul ramp into the main pit cut 3. The alarming rate at which the shear zone is deteriorating has triggered concerns about both local and global stability of pit the walls. This study presents the numerical modelling of the open pit slope affected by shear zone at Letšeng Diamond Mine (LDM). Analysis of the slope involved development of the slope model by using a two-dimensional finite element code RS2. Interfaces between shear zone and host rock were represented by special joint elements incorporated in the finite element code. The analysis of structural geological mapping data provided a good platform to understand the joint network. Major joints including shear zone were incorporated into the model for simulation. This approach proved successful by demonstrating that continuum modelling can be used to evaluate evolution of stresses, strain, plastic yielding and failure mechanisms that are consistent with field observations. Structural control due to geological shear zone structure proved to be important in its location, size and orientation. Furthermore, the model analyzed slope deformation and sliding possibility along shear zone interfaces. This type of approach can predict shear zone deformation and failure mechanism, hence mitigation strategies can be deployed for safety of human lives and property within mine pits.Keywords: numerical modeling, open pit mine, shear zone, slope stability
Procedia PDF Downloads 2991633 Displacement Based Design of a Dual Structural System
Authors: Romel Cordova Shedan
Abstract:
The traditional seismic design is the methodology of Forced Based Design (FBD). The Displacement Based Design (DBD) is a seismic design that considers structural damage to achieve a failure mechanism of the structure before the collapse. It is easier to quantify damage of a structure with displacements rather than forces. Therefore, a structure to achieve an inelastic displacement design with good ductility, it is necessary to be damaged. The first part of this investigation is about differences between the methodologies of DBD and FBD with some DBD advantages. In the second part, there is a study case about a dual building 5-story, which is regular in plan and elevation. The building is located in a seismic zone, which acceleration in firm soil is 45% of the acceleration of gravity. Then it is applied both methodologies into the study case to compare its displacements, shear forces and overturning moments. In the third part, the Dynamic Time History Analysis (DTHA) is done, to compare displacements with DBD and FBD methodologies. Three accelerograms were used and the magnitude of the acceleration scaled to be spectrum compatible with design spectrum. Then, using ASCE 41-13 guidelines, the hinge plastics were assigned to structure. Finally, both methodologies results about study case are compared. It is important to take into account that the seismic performance level of the building for DBD is greater than FBD method. This is due to drifts of DBD are in the order of 2.0% and 2.5% comparing with FBD drifts of 0.7%. Therefore, displacements of DBD is greater than the FBD method. Shear forces of DBD result greater than FBD methodology. These strengths of DBD method ensures that structure achieves design inelastic displacements, because those strengths were obtained due to a displacement spectrum reduction factor which depends on damping and ductility of the dual system. Also, the displacements for the study case for DBD results to be greater than FBD and DTHA. In that way, it proves that the seismic performance level of the building for DBD is greater than FBD method. Due to drifts of DBD which are in the order of 2.0% and 2.5% compared with little FBD drifts of 0.7%.Keywords: displacement-based design, displacement spectrum reduction factor, dynamic time history analysis, forced based design
Procedia PDF Downloads 2291632 Corn Flakes Produced from Different Cultivars of Zea Mays as a Functional Product
Authors: Milenko Košutić, Jelena Filipović, Zvonko Nježić
Abstract:
Extrusion technology is thermal processing that is applied to improve the nutritional, hygienic, and physical-chemical characteristics of the raw material. Overall, the extrusion process is an efficient method for the production of a wide range of food products. It combines heat, pressure, and shear to transform raw materials into finished goods with desired textures, shapes, and nutritional profiles. The extruded products’ quality is remarkably dependent upon feed material composition, barrel temperature profile, feed moisture content, screw speed, and other extrusion system parameters. Given consumer expectations for snack foods, a high expansion index and low bulk density, in addition to crunchy texture and uniform microstructure, are desired. This paper investigates the effects of simultaneous different types of corn (white corn, yellow corn, red corn, and black corn) addition and different screw speed (350, 500, 650 rpm) on the physical, technological, and functional properties of flakes products. Black corn flour and screw speed at 350 rpm positively influenced physical, technological characteristics, mineral composition, and antioxidant properties of flake products with the best total score analysis of 0,59. Overall, the combination of Tukey's HSD test and PCA enables a comprehensive analysis of the observed corn products, allowing researchers to identify them. This research aims to analyze the influence of different types of corn flour (white corn, yellow corn, red corn, and black corn) on the nutritive and sensory properties of the product (quality, texture, and color), as well as the acceptance of the new product by consumers on the territory of Novi Sad. The presented data point that investigated corn flakes from black corn flour at 350 rpm is a product with good physical-technological and functional properties due to a higher level of antioxidant activity.Keywords: corn types, flakes product, nutritive quality, acceptability
Procedia PDF Downloads 571631 Fertilizer Value of Nitrogen Captured from Poultry Facilities Using Ammonia Scrubbers
Authors: Philip A. Moore Jr., Jerry Martin, Hong Li
Abstract:
Research has shown that over half of the nitrogen (N) excreted from broiler chickens is emitted to the atmosphere before the manure is removed from the barns, resulting in air and water pollution, as well as the loss of a valuable fertilizer resource. The objective of this study was to determine the fertilizer efficiency of N captured from the exhaust air from poultry houses using acid scrubbers. This research was conducted using 24 plots located on a Captina silt loam soil. There were six treatments: (1) unfertilized control, (2) aluminum sulfate (alum) scrubber solution, (3) potassium bisulfate scrubber solution, (4) sodium bisulfate scrubber solution, (5) sulfuric acid scrubber solution and (6) ammonium nitrate fertilizer dissolved in water. There were four replications per treatment in a randomized block design. The scrubber solutions were obtained from acid scrubbers attached to exhaust fans on commercial broiler houses. All N sources were applied at an application rate equivalent to 112 kg N ha⁻¹. Forage yields were measured five times throughout the growing season. Five months after the fertilizer sources were applied, a rainfall simulation study was conducted to determine the potential effects on phosphorus (P) runoff. Forage yields were significantly higher in plots fertilized with scrubber solutions from potassium bisulfate and sodium bisulfate than plots fertilized with scrubber solutions made from alum or sulfuric acid or ammonium nitrate, which were higher than the controls (7.61, 7.46, 6.87, 6.72, 6.45, and 5.12 Mg ha ⁻¹, respectively). Forage N uptake followed similar trends as yields. Phosphorus runoff and water soluble P was significantly lower in plots fertilized with the scrubber solutions made from aluminum sulfate. This study demonstrates that N captured using ammonia scrubbers is as good or possibly better than commercial ammonium nitrate fertilizer.Keywords: air quality, ammonia emissions, nitrogen fertilizer, poultry
Procedia PDF Downloads 2001630 Combine Resection of Talocalcaneal Tarsal Coalition and Calcaneal Lengthening Osteotomy. Short-to-Intermediate Term Results
Authors: Naum Simanovsky, Vladimir Goldman, Michael Zaidman
Abstract:
Background: The optimal algorithm for the management of symptomatic tarsal coalition is still under discussion in pediatric literature. It's debatable what surgical steps are essential to achieve the best outcome. Method: The investigators retrospectively reviewed the records of twelve patients with symptomatic tarsal coalition that were treated operatively between 2017 and 2019. Only painful flat feet were operated. Two patients were excluded from the study due to lack of sufficient follow-up. Ten of eleven feet were treated with the combination of calcaneal lengthening osteotomy (CLO) and resection of coalition (RC). Only one foot was operated with CLO alone. In half of our patients, Achilles lengthening was performed. For two children, medial plication was added. Short leg cast was applied to all children for 6-8 weeks, and soft shoe insoles for medial arch support were prescribed after. Demographic, clinical, and radiographic records were reviewed. The outcome was evaluated using American Orthopedic Foot and Ankle Society (AOFAS) Ankle Hindfoot Score. Results: There were seven boys and three girls. The mean age at the time of surgery was 13.9 (range 12 to 17) years, and the mean follow-up was 18 (range 8 to 34) months. The early complications included one superficial wound infection and dehiscence. Late complication includes two children with residual forefoot supination. None of our patients required additional operations during the follow-up period. All feet achieved complete deformity correction or dramatic improvement. In the last follow-up, seven feet were painless, and four children had some mild pain after intensive activities. All feet achieved excellent and good scoring on AOFAS. Conclusions: Many patients with talocalcaneal coalition also have rigid or stiff, painful, flat feet. For these patients, the resection of coalition with concomitant CLO can be safely recommended.Keywords: Tarsal coalition, calcaneal lengthening osteotomy., flat foot, coalition resection
Procedia PDF Downloads 651629 Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS) for the Elemental Analysis Medicinal Plants from India Used in the Treatment of Heart Diseases
Authors: B. M. Pardeshi
Abstract:
Introduction: Minerals and trace elements are chemical elements required by our bodies for numerous biological and physiological processes that are necessary for the maintenance of health. Medicinal plants are highly beneficial for the maintenance of good health and prevention of diseases. They are known as potential sources of minerals and vitamins. 30 to 40% of today’s conventional drugs used in the medicinal and curative properties of various plants are employed in herbal supplement botanicals, nutraceuticals and drug. Aim: The authors explored the mineral element content of some herbs, because mineral elements may have significant role in the development and treatment of gastrointestinal diseases, and a close connection between the presence or absence of mineral elements and inflammatory mediators was noted. Methods: Present study deals with the elemental analysis of medicinal plants by Instrumental Neutron activation Analysis and Atomic Absorption Spectroscopy. Medicinal herbals prescribed for skin diseases were purchased from markets and were analyzed by Instrumental Neutron Activation Analysis (INAA) using 252Cf Californium spontaneous fission neutron source (flux* 109 n s-1) and the induced activities were counted by γ-ray spectrometry and Atomic Absorption Spectroscopy (AAS) techniques (Perkin Elmer 3100 Model) available at Department of Chemistry University of Pune, India, was used for the measurement of major, minor and trace elements. Results: 15 elements viz. Al, K, Cl, Na, Mn by INAA and Cu, Co, Pb Ni, Cr, Ca, Fe, Zn, Hg and Cd by AAS were analyzed from different medicinal plants from India. A critical examination of the data shows that the elements Ca , K, Cl, Al, and Fe are found to be present at major levels in most of the samples while the other elements Na, Mn, Cu, Co, Pb, Ni, Cr, Ca, Zn, Hg and Cd are present in minor or trace levels. Conclusion: The beneficial therapeutic effect of the studied herbs may be related to their mineral element content. The elemental concentration in different medicinal plants is discussed.Keywords: instrumental neutron activation analysis, atomic absorption spectroscopy, medicinal plants, trace elemental analysis, mineral contents
Procedia PDF Downloads 3331628 Investigation of the Growth Kinetics of Phases in Ni–Sn System
Authors: Varun A Baheti, Sanjay Kashyap, Kamanio Chattopadhyay, Praveen Kumar, Aloke Paul
Abstract:
Ni–Sn system finds applications in the microelectronics industry, especially with respect to flip–chip or direct chip, attach technology. Here the region of interest is under bump metallization (UBM), and solder bump (Sn) interface due to the formation of brittle intermetallic phases there. Understanding the growth of these phases at UBM/Sn interface is important, as in many cases it controls the electro–mechanical properties of the product. Cu and Ni are the commonly used UBM materials. Cu is used for good bonding because of fast reaction with solder and Ni often acts as a diffusion barrier layer due to its inherently slower reaction kinetics with Sn–based solders. Investigation on the growth kinetics of phases in Ni–Sn system is reported in this study. Just for simplicity, Sn being major solder constituent is chosen. Ni–Sn electroplated diffusion couples are prepared by electroplating pure Sn on Ni substrate. Bulk diffusion couples prepared by the conventional method are also studied along with Ni–Sn electroplated diffusion couples. Diffusion couples are annealed for 25–1000 h at 50–215°C to study the phase evolutions and growth kinetics of various phases. The interdiffusion zone was analysed using field emission gun equipped scanning electron microscope (FE–SEM) for imaging. Indexing of selected area diffraction (SAD) patterns obtained from transmission electron microscope (TEM) and composition measurements done in electron probe micro−analyser (FE–EPMA) confirms the presence of various product phases grown across the interdiffusion zone. Time-dependent experiments indicate diffusion controlled growth of the product phase. The estimated activation energy in the temperature range 125–215°C for parabolic growth constants (and hence integrated interdiffusion coefficients) of the Ni₃Sn₄ phase shed light on the growth mechanism of the phase; whether its grain boundary controlled or lattice controlled diffusion. The location of the Kirkendall marker plane indicates that the Ni₃Sn₄ phase grows mainly by diffusion of Sn in the binary Ni–Sn system.Keywords: diffusion, equilibrium phase, metastable phase, the Ni-Sn system
Procedia PDF Downloads 3071627 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna
Abstract:
Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network
Procedia PDF Downloads 1601626 Comparison Of Virtual Non-Contrast To True Non-Contrast Images Using Dual Layer Spectral Computed Tomography
Authors: O’Day Luke
Abstract:
Purpose: To validate virtual non-contrast reconstructions generated from dual-layer spectral computed tomography (DL-CT) data as an alternative for the acquisition of a dedicated true non-contrast dataset during multiphase contrast studies. Material and methods: Thirty-three patients underwent a routine multiphase clinical CT examination, using Dual-Layer Spectral CT, from March to August 2021. True non-contrast (TNC) and virtual non-contrast (VNC) datasets, generated from both portal venous and arterial phase imaging were evaluated. For every patient in both true and virtual non-contrast datasets, a region-of-interest (ROI) was defined in aorta, liver, fluid (i.e. gallbladder, urinary bladder), kidney, muscle, fat and spongious bone, resulting in 693 ROIs. Differences in attenuation for VNC and TNV images were compared, both separately and combined. Consistency between VNC reconstructions obtained from the arterial and portal venous phase was evaluated. Results: Comparison of CT density (HU) on the VNC and TNC images showed a high correlation. The mean difference between TNC and VNC images (excluding bone results) was 5.5 ± 9.1 HU and > 90% of all comparisons showed a difference of less than 15 HU. For all tissues but spongious bone, the mean absolute difference between TNC and VNC images was below 10 HU. VNC images derived from the arterial and the portal venous phase showed a good correlation in most tissue types. The aortic attenuation was somewhat dependent however on which dataset was used for reconstruction. Bone evaluation with VNC datasets continues to be a problem, as spectral CT algorithms are currently poor in differentiating bone and iodine. Conclusion: Given the increasing availability of DL-CT and proven accuracy of virtual non-contrast processing, VNC is a promising tool for generating additional data during routine contrast-enhanced studies. This study shows the utility of virtual non-contrast scans as an alternative for true non-contrast studies during multiphase CT, with potential for dose reduction, without loss of diagnostic information.Keywords: dual-layer spectral computed tomography, virtual non-contrast, true non-contrast, clinical comparison
Procedia PDF Downloads 1411625 A Review: Role of Chromium in Broiler
Authors: Naveed Zahra, Zahid Kamran, Shakeel Ahmad
Abstract:
Heat stress is one of the most important environmental stressors challenging poultry production worldwide. The detrimental effect of heat stress results in reduction in the productive performance of poultry with high incidences of mortality. Researchers have made efforts to prevent such damage to poultry production through dietary manipulation. Supplementation with Chromium (Cr) might have some positive effects on some aspect of blood parameters and broilers performance. Chromium (Cr) the element whose trivalent Cr (III) organic state is present in trace amounts in animal feed and water is found to be a key element in evading heat stress and thus cutting down the heavy expenditure on air conditioning in broiler sheds. Chromium, along with other essential minerals is lost due to increased excretion during heat stress and thus its inclusion in broiler diet is kind of mandatory in areas of hot climate. Chromium picolinate in broiler diet has shown a hike in growth rate including muscle gain with body fat reduction under environmental stress. Fat reduction is probably linked to the ability of chromium to increase the sensitivity of the insulin receptors on tissues and thus the uptake of sugar from blood increases which decreases the amount of glucose to be converted to amino acids and stored in adipose tissue as triglycerides. Organic chromium has also shown to increase lymphocyte proliferation rate and antioxidant levels. So, the immune competency, muscle gain and fat reduction along with evasion of heat stress are good enough signs that indicate the fruitful inclusion of dietary chromium for broiler. This promising element may bring the much needed break in the local poultry industry. The task is now to set the exact dose of the element in the diet that would be useful enough and still not toxic to broiler. In conclusion there is a growing body of evidence which suggest that chromium may be an essential trace element for livestock and poultry. The nutritional requirement for chromium may vary with different species and physiological state within a species.Keywords: broiler, chromium, heat stress, performance
Procedia PDF Downloads 2851624 Attitude and Knowledge of Primary Health Care Physicians and Local Inhabitants about Leishmaniasis and Sandfly in West Alexandria, Egypt
Authors: Randa M. Ali, Naguiba F. Loutfy, Osama M. Awad
Abstract:
Background: Leishmaniasis is a worldwide disease, affecting 88 countries, it is estimated that about 350 million people are at risk of leishmaniasis. Overall prevalence is 12 million people with annual mortality of about 60,000. Annual incidence is 1,500,000 cases of cutaneous leishmaniasis (CL) worldwide and half million cases of visceral Leishmaniasis (VL). Objectives: The objective of this study was to assess primary health care physicians knowledge (PHP) and attitude about leishmaniasis and to assess awareness of local inhabitants about the disease and its vector in four areas in west Alexandria, Egypt. Methods: This study was a cross sectional survey that was conducted in four PHC units in west Alexandria. All physicians currently working in these units during the study period were invited to participate in the study, only 20 PHP completed the questionnaire. 60 local inhabitant were selected randomly from the four areas of the study, 15 from each area; Data was collected through two different specially designed questionnaires. Results: 11(55%) percent of the physicians had satisfactory knowledge, they answered more than 9 (60%) questions out of a total 14 questions about leishmaniasis and sandfly. The second part of the questionnaire is concerned with attitude of the primary health care physicians about leishmaniasis, 17 (85%) had good attitude and 3 (15%) had poor attitude. The second questionnaire showed that the awareness of local inhabitants about leishmaniasis and sandly as a vector of the disease is poor and needs to be corrected. Most of the respondents (90%) had not heard about leishmaniasis, Only 3 (5%) of the interviewed inhabitants said they know sandfly and its role in transmission of leishmaniasis. Conclusions: knowledge and attitudes of physicians are acceptable. However, there is, room for improvement and could be done through formal training courses and distribution of guidelines. In addition to raising the awareness of primary health care physicians about the importance of early detection and notification of cases of lesihmaniasis. Moreover, health education for raising awareness of the public regarding the vector and the disease is necessary because related studies have demonstrated that if the inhabitants do not perceive mosquitoes to be responsible for diseases such as malaria they do not take enough measures to protect themselves against the vector.Keywords: leishmaniasis, PHP, knowledge, attitude, local inhabitants
Procedia PDF Downloads 4491623 Cannabis Sativa L as Natural Source of Promising Anti-Alzheimer Drug Candidates: A Comprehensive Computational Approach Including Molecular Docking, Molecular Dynamics, Admet and MM-PBSA Studies
Authors: Hassan Nour, Nouh Mounadi, Oussama Abchir, Belaidi Salah, Samir Chtita
Abstract:
Cholinesterase enzymes are biological catalysts essential for the transformation of acetylcholine, which is a neurotransmitter implicated in memory and learning, into acetic acid and choline, altering the neurotransmission process in Alzheimer’s disease patients. Therefore, inhibition of cholinesterase enzymes is a relevant strategy for the symptomatic treatment of Alzheimer’s disease. The current investigation aims to explore potential Cholinesterase (ChE) inhibitors through a comprehensive computational approach. Forty-nine phytoconstituents extracted from Cannabis sativa L were in-silico screened using molecular docking, pharmacokinetic and toxicological analysis to evaluate their possible inhibitory effect towards the cholinesterase enzymes. Two phytoconstituents belonging to cannabinoid derivatives were revealed to be promising candidates for Alzheimer therapy by acting as cholinesterase inhibitors. They have exhibited high binding affinities towards the cholinesterase enzymes and showed their ability to interact with key residues involved in cholinesterase enzymatic activity. In addition, they presented good ADMET profiles allowing them to be promising oral drug candidates. Furthermore, molecular dynamics (MD) simulations were executed to explore their interactions stability under mimetic biological conditions and thus support our findings. To corroborate the docking results, the binding free energy corresponding to the more stable ligand-ChE complexes was re-estimated by applying the MM-PBSA method. MD and MM-PBSA studies affirmed that the ligand-ChE recognition is spontaneous reaction leading to stable complexes. The conducted investigations have led to great findings that would strongly guide the pharmaceutical industries towards the rational development of potent anti-Alzheimer agents.Keywords: alzheimer’s disease, molecular docking, cannabis sativa l, cholinesterase inhibitors
Procedia PDF Downloads 731622 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification
Authors: Hung-Sheng Lin, Cheng-Hsuan Li
Abstract:
Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction
Procedia PDF Downloads 3441621 Controlled Growth of Au Hierarchically Ordered Crystals Architectures for Electrochemical Detection of Traces of Molecules
Authors: P. Bauer, K. Mougin, V. Vignal, A. Buch, P. Ponthiaux, D. Faye
Abstract:
Nowadays, noble metallic nanostructures with unique morphology are widely used as new sensors due to their fascinating optical, electronic and catalytic properties. Among various shapes, dendritic nanostructures have attracted much attention because of their large surface-to-volume ratio, high sensitivity and special texture with sharp tips and nanoscale junctions. Several methods have been developed to fabricate those specific structures such as electrodeposition, photochemical way, seed-mediated growth or wet chemical method. The present study deals with a novel approach for a controlled growth pattern-directed organisation of Au flower-like crystals (NFs) deposited onto stainless steel plates to achieve large-scale functional surfaces. This technique consists in the deposition of a soft nanoporous template on which Au NFs are grown by electroplating and seed-mediated method. Size, morphology, and interstructure distance have been controlled by a site selective nucleation process. Dendritic Au nanostructures have appeared as excellent Raman-active candidates due to the presence of very sharp tips of multi-branched Au nanoparticles that leads to a large local field enhancement and a good SERS sensitivity. In addition, these structures have also been used as electrochemical sensors to detect traces of molecules present in a solution. A correlation of the number of active sites on the surface and the current charge by both colorimetric method and cyclic voltammetry of gold structures have allowed a calibration of the system. This device represents a first step for the fabrication of MEMs platform that could ultimately be integrated into a lab-on-chip system. It also opens pathways to several technologically large-scale nanomaterials fabrication such as hierarchically ordered crystal architectures for sensor applications.Keywords: dendritic, electroplating, gold, template
Procedia PDF Downloads 1861620 Vehicles Analysis, Assessment and Redesign Related to Ergonomics and Human Factors
Authors: Susana Aragoneses Garrido
Abstract:
Every day, the roads are scenery of numerous accidents involving vehicles, producing thousands of deaths and serious injuries all over the world. Investigations have revealed that Human Factors (HF) are one of the main causes of road accidents in modern societies. Distracted driving (including external or internal aspects of the vehicle), which is considered as a human factor, is a serious and emergent risk to road safety. Consequently, a further analysis regarding this issue is essential due to its transcendence on today’s society. The objectives of this investigation are the detection and assessment of the HF in order to provide solutions (including a better vehicle design), which might mitigate road accidents. The methodology of the project is divided in different phases. First, a statistical analysis of public databases is provided between Spain and The UK. Second, data is classified in order to analyse the major causes involved in road accidents. Third, a simulation between different paths and vehicles is presented. The causes related to the HF are assessed by Failure Mode and Effects Analysis (FMEA). Fourth, different car models are evaluated using the Rapid Upper Body Assessment (RULA). Additionally, the JACK SIEMENS PLM tool is used with the intention of evaluating the Human Factor causes and providing the redesign of the vehicles. Finally, improvements in the car design are proposed with the intention of reducing the implication of HF in traffic accidents. The results from the statistical analysis, the simulations and the evaluations confirm that accidents are an important issue in today’s society, especially the accidents caused by HF resembling distractions. The results explore the reduction of external and internal HF through the global analysis risk of vehicle accidents. Moreover, the evaluation of the different car models using RULA method and the JACK SIEMENS PLM prove the importance of having a good regulation of the driver’s seat in order to avoid harmful postures and therefore distractions. For this reason, a car redesign is proposed for the driver to acquire the optimum position and consequently reducing the human factors in road accidents.Keywords: analysis vehicles, asssesment, ergonomics, car redesign
Procedia PDF Downloads 3351619 Effects of Sintering Temperature on Microstructure and Mechanical Properties of Nanostructured Ni-17Cr Alloy
Authors: B. J. Babalola, M. B. Shongwe
Abstract:
Spark Plasma Sintering technique is a novel processing method that produces limited grain growth and highly dense variety of materials; alloys, superalloys, and carbides just to mention a few. However, initial particle size and spark plasma sintering parameters are factors which influence the grain growth and mechanical properties of sintered materials. Ni-Cr alloys are regarded as the most promising alloys for aerospace turbine blades, owing to the fact that they meet the basic requirements of desirable mechanical strength at high temperatures and good resistance to oxidation. The conventional method of producing this alloy often results in excessive grain growth and porosity levels that are detrimental to its mechanical properties. The effect of sintering temperature was evaluated on the microstructure and mechanical properties of the nanostructured Ni-17Cr alloy. Nickel and chromium powder were milled using high energy ball milling independently for 30 hours, milling speed of 400 revs/min and ball to powder ratio (BPR) of 10:1. The milled powders were mixed in the composition of Nickel having 83 wt % and chromium, 17 wt %. This was sintered at varied temperatures from 800°C, 900°C, 1000°C, 1100°C and 1200°C. The structural characteristics such as porosity, grain size, fracture surface and hardness were analyzed by scan electron microscopy and X-ray diffraction, Archimedes densitometry, micro-hardness tester. The corresponding results indicated an increase in the densification and hardness property of the alloy as the temperature increases. The residual porosity of the alloy reduces with respect to the sintering temperature and in contrast, the grain size was enhanced. The study of the mechanical properties, including hardness, densification shows that optimum properties were obtained for the sintering temperature of 1100°C. The advantages of high sinterability of Ni-17Cr alloy using milled powders and microstructural details were discussed.Keywords: densification, grain growth, milling, nanostructured materials, sintering temperature
Procedia PDF Downloads 4021618 Carbon-Based Electrodes for Parabens Detection
Authors: Aniela Pop, Ianina Birsan, Corina Orha, Rodica Pode, Florica Manea
Abstract:
Carbon nanofiber-epoxy composite electrode has been investigated through voltammetric and amperometric techniques in order to detect parabens from aqueous solutions. The occurrence into environment as emerging pollutants of these preservative compounds has been extensively studied in the last decades, and consequently, a rapid and reliable method for their quantitative quantification is required. In this study, methylparaben (MP) and propylparaben (PP) were chosen as representatives for paraben class. The individual electrochemical detection of each paraben has been successfully performed. Their electrochemical oxidation occurred at the same potential value. Their simultaneous quantification should be assessed electrochemically only as general index of paraben class as a cumulative signal corresponding to both MP and PP from solution. The influence of pH on the electrochemical signal was studied. pH ranged between 1.3 and 9.0 allowed shifting the detection potential value to smaller value, which is very desired for the electroanalysis. Also, the signal is better-defined and higher sensitivity is achieved. Differential-pulsed voltammetry and square-wave voltammetry were exploited under the optimum pH conditions to improve the electroanalytical performance for the paraben detection. Also, the operation conditions were selected, i.e., the step potential, modulation amplitude and the frequency. Chronomaprometry application as the easiest electrochemical detection method led to worse sensitivity, probably due to a possible fouling effect of the electrode surface. The best electroanalytical performance was achieved by pulsed voltammetric technique but the selection of the electrochemical technique is related to the concrete practical application. A good reproducibility of the voltammetric-based method using carbon nanofiber-epoxy composite electrode was determined and no interference effect was found for the cation and anion species that are common in the water matrix. Besides these characteristics, the long life-time of the electrode give to carbon nanofiber-epoxy composite electrode a great potential for practical applications.Keywords: carbon nanofiber-epoxy composite electrode, electroanalysis, methylparaben, propylparaben
Procedia PDF Downloads 2251617 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1271616 Diversity and Quality of Food Consumption Compared to Nutritional Status in Ages 15–17 Years Old in Jakarta
Authors: Andra Vidyarini
Abstract:
Adolescence is a transition period in which various changes occur, both biologically, intellectually and psychosocially. Changes in adolescents, one of which is a change in food consumption patterns that make adolescents vulnerable to nutritional problems that can affect their growth and health in the future. Nutritional problems in adolescents have increased from year to year and one of the causes is the low diversity and quality of consumption. The diversity and quality of consumption can be seen through the Individual Dietary Diversity Score and the Healthy Eating Index. Currently, in Indonesia, data on the diversity and quality of food consumption, especially among adolescents, are still scarce. In general, the purpose of this study is to describe the diversity and quality of adolescent food consumption and the relationship between the diversity and quality of food consumption with nutritional status. This study is a cross-sectional study by looking at the diversity and quality of consumption of adolescents aged 15-17 years. The total number of subjects in this study amounted to 70 teenagers. This research was conducted online via a google form. Data analysis in this study was univariate and bivariate. The results showed that the diversity of the subject's food consumption was in the diverse and very diverse category with an average of 6. However, the quality was still not good, whereas it was still in the bad and moderate categories with an average of 12.93. The nutritional status of the majority of the subjects was in the normal category and overweight to obese. The implementation of blended learning where there are still limited face-to-face meetings at school can be the reason why teenagers' food consumption is more diverse than when they are face-to-face schools. In addition, changes in people's diet during the pandemic also influenced the results of the study. The change in pattern is a change in eating habits to three times a day with menu choices ranging from rice, meat, fish, bean and vegetables. Analysis of the relationship between the diversity and quality of food consumption shows that the diversity of consumption has a significant relationship with the quality of food consumption with a p-value of 0.002 (p<0.05). Meanwhile, the diversity and quality of food consumption have no significant relationship with nutritional status, with p values 0.777 and 0.251 (>0.05), respectively. This shows that the diversity of food consumption is directly proportional to the quality of consumption, where if you have a variety of food consumption, the quality or in terms of portions and weight are also sufficient in accordance with the recommendations of PGRS.Keywords: healthy eating index (HEI), food diversity, quality of consumption, adolescent
Procedia PDF Downloads 1751615 The Influences of Nurses’ Satisfaction on the Patient Satisfaction with and Loyalty to Korean University Hospitals
Authors: Sung Hee Ahn, Ju Rang Han
Abstract:
Background: With increasing importance in healthcare organization on patient satisfaction and nurses’ job satisfaction, many studies have been conducted. But no research has been administered how nurses’ satisfaction with healthcare organization influence patient satisfaction and loyalty. Purpose: This study aims to conceptualize nurses‘ satisfaction, patient satisfaction with and patient loyalty to hospitals using a hypothetical linear structural equation model, and to identify the significance of path coefficients and goodness of fit index of the structural equation model as well. Method: A total of 2,079 nurses and 6,776 patients recruited from 5 university hospitals in South Korea participated in this study. The data on nurses, including ward nurses and outpatient nurses, were collected from June 24th to July 12th, at the 204 departments of the 5 hospitals through an on-line survey. The data on the patients, including both inpatients and outpatients, were collected from September 30th to October 24th, 2013 at the 5 hospitals using a structured questionnaire. The variable of nurses’ satisfaction was measured using a scale evaluating internal client satisfaction, which is used in SSM Health Care System in the US. Patient satisfaction with the hospital and nurses and patient loyalty were measured by assessing the patient’s intention to revisit and to recommending the hospital to others using a visual analogue scale. The data were analyzed using SPSS version 21.0 and AMOS version 21.0. Result: The hypothetical model was fairly good in terms of goodness of fit (χ2= 64.897 (df=24, p <. 001), GFI=. 906, AGFI=.823, CFI=.921, NFI=.951, NNFI=.952. RMSEA=.114). The significance of path coefficients includes followings 1)The nurses’ satisfaction has significant influence on the patient satisfaction with nurses. 2)The patient satisfaction with nurses has significant influence on the patient satisfaction with the hospital. 3)The patient satisfaction with the hospital has significant influence on the patients’ revisit intention. 4)The patient satisfaction with the hospital has significant influence on the patients’ intention to the recommendations of the hospital. Conclusion: These results provide several practical implications to hospital administrators, who should incorporate ways of improving nurses' and patients' satisfaction with the hospital into their health care marketing strategies.Keywords: linear structural equation model, loyalty, nurse, patient satisfaction
Procedia PDF Downloads 4411614 Examining Statistical Monitoring Approach against Traditional Monitoring Techniques in Detecting Data Anomalies during Conduct of Clinical Trials
Authors: Sheikh Omar Sillah
Abstract:
Introduction: Monitoring is an important means of ensuring the smooth implementation and quality of clinical trials. For many years, traditional site monitoring approaches have been critical in detecting data errors but not optimal in identifying fabricated and implanted data as well as non-random data distributions that may significantly invalidate study results. The objective of this paper was to provide recommendations based on best statistical monitoring practices for detecting data-integrity issues suggestive of fabrication and implantation early in the study conduct to allow implementation of meaningful corrective and preventive actions. Methodology: Electronic bibliographic databases (Medline, Embase, PubMed, Scopus, and Web of Science) were used for the literature search, and both qualitative and quantitative studies were sought. Search results were uploaded into Eppi-Reviewer Software, and only publications written in the English language from 2012 were included in the review. Gray literature not considered to present reproducible methods was excluded. Results: A total of 18 peer-reviewed publications were included in the review. The publications demonstrated that traditional site monitoring techniques are not efficient in detecting data anomalies. By specifying project-specific parameters such as laboratory reference range values, visit schedules, etc., with appropriate interactive data monitoring, statistical monitoring can offer early signals of data anomalies to study teams. The review further revealed that statistical monitoring is useful to identify unusual data patterns that might be revealing issues that could impact data integrity or may potentially impact study participants' safety. However, subjective measures may not be good candidates for statistical monitoring. Conclusion: The statistical monitoring approach requires a combination of education, training, and experience sufficient to implement its principles in detecting data anomalies for the statistical aspects of a clinical trial.Keywords: statistical monitoring, data anomalies, clinical trials, traditional monitoring
Procedia PDF Downloads 771613 Development of Interaction Diagram for Eccentrically Loaded Reinforced Concrete Sandwich Walls with Different Design Parameters
Authors: May Haggag, Ezzat Fahmy, Mohamed Abdel-Mooty, Sherif Safar
Abstract:
Sandwich sections have a very complex nature due to variability of behavior of different materials within the section. Cracking, crushing and yielding capacity of constituent materials enforces high complexity of the section. Furthermore, slippage between the different layers adds to the section complex behavior. Conventional methods implemented in current industrial guidelines do not account for the above complexities. Thus, a throughout study is needed to understand the true behavior of the sandwich panels thus, increase the ability to use them effectively and efficiently. The purpose of this paper is to conduct numerical investigation using ANSYS software for the structural behavior of sandwich wall section under eccentric loading. Sandwich walls studied herein are composed of two RC faces, a foam core and linking shear connectors. Faces are modeled using solid elements and reinforcement together with connectors are modeled using link elements. The analysis conducted herein is nonlinear static analysis incorporating material nonlinearity, crashing and crushing of concrete and yielding of steel. The model is validated by comparing it to test results in literature. After validation, the model is used to establish extensive parametric analysis to investigate the effect of three key parameters on the axial force bending moment interaction diagram of the walls. These parameters are the concrete compressive strength, face thickness and number of shear connectors. Furthermore, the results of the parametric study are used to predict a coefficient that links the interaction diagram of a solid wall to that of a sandwich wall. The equation is predicted using the parametric study data and regression analysis. The predicted α was used to construct the interaction diagram of the investigated wall and the results were compared with ANSYS results and showed good agreement.Keywords: sandwich walls, interaction diagrams, numerical modeling, eccentricity, reinforced concrete
Procedia PDF Downloads 403