Search results for: low operating pressure
1187 A Case of Iatrogenic Esophageal Perforation in an Extremely Low Birth Weight Neonate
Authors: Ya-Ching Fu, An-Kuo Chou, Boon-Fatt Tan, Chi-Nien Chen, Wen-Chien Yang, Pou-Leng Cheong
Abstract:
Blind oro-/naso-pharyngeal suction and feeding tube placement are very common practices in neonatal intensive care unit. Though esophageal perforation is a rare complication of these instrumentations, its prevalence is highest in extremely premature neonates. Due to its association with significant morbidity (including respiratory deterioration, pneumothorax, and sepsis) and even mortality, it is an important issue to prevent this iatrogenic complication in the field of premature care. We demonstrate an esophageal perforation in an extreme-low-birth-weight neonate after oro-gastric tube placement. This female baby weighing 680 grams was delivered by caesarean section at 25 weeks of gestational age. She initially received oro-tracheal intubation with mechanical ventilation which was smoothly weaned to non-invasive positive-pressure ventilation at 7-day-old. However, after insertion of a 5-French oro-gastric tube, the baby’s condition suddenly worsened with apnea requiring mechanical ventilation. Her chest radiogram showed the oro-gastric tube in right pleural space, and thus another oro-gastric tube was replaced, and its position was radiographically confirmed. The malpositioned tube was then removed. The baby received 2-week course of intravenous antibiotics for her esophageal perforation. Feeding was then reintroduced and increased to full feeds in a smooth course. She was discharged at 107-day-old. Esophageal perforation in newborn is very rare. Sudden respiratory deterioration in a neonate after naso-/oro-gastric tube placement should alarm us to consider esophageal perforation, and further radiological investigation is required for the diagnosis. Tube materials, patient condition, and age are major risk factors of esophageal perforation. The use of softer tube material, such as silicone, in extreme premature baby might prevent this fetal complication.Keywords: esophageal perforation, preterm, newborn, feeding tube
Procedia PDF Downloads 2711186 Impacts of Urbanization on Forest and Agriculture Areas in Savannakhet Province, Lao People's Democratic Republic
Authors: Chittana Phompila
Abstract:
The current increased population pushes increasing demands for natural resources and living space. In Laos, urban areas have been expanding rapidly in recent years. The rapid urbanization can have negative impacts on landscapes, including forest and agriculture lands. The primary objective of this research were to map current urban areas in a large city in Savannakhet province, in Laos, 2) to compare changes in urbanization between 1990 and 2018, and 3) to estimate forest and agriculture areas lost due to expansions of urban areas during the last over twenty years within study area. Landsat 8 data was used and existing GIS data was collected including spatial data on rivers, lakes, roads, vegetated areas and other land use/land covers). GIS data was obtained from the government sectors. Object based classification (OBC) approach was applied in ECognition for image processing and analysis of urban area using. Historical data from other Landsat instruments (Landsat 5 and 7) were used to allow us comparing changes in urbanization in 1990, 2000, 2010 and 2018 in this study area. Only three main land cover classes were focused and classified, namely forest, agriculture and urban areas. Change detection approach was applied to illustrate changes in built-up areas in these periods. Our study shows that the overall accuracy of map was 95% assessed, kappa~ 0.8. It is found that that there is an ineffective control over forest and land-use conversions from forests and agriculture to urban areas in many main cities across the province. A large area of agriculture and forest has been decreased due to this conversion. Uncontrolled urban expansion and inappropriate land use planning can lead to creating a pressure in our resource utilisation. As consequence, it can lead to food insecurity and national economic downturn in a long term.Keywords: urbanisation, forest cover, agriculture areas, Landsat 8 imagery
Procedia PDF Downloads 1581185 Exploring the Correlation between Body Constitution of an Individual as Per Ayurveda and Gut Microbiome in Healthy, Multi Ethnic Urban Population in Bangalore, India
Authors: Shalini TV, Gangadharan GG, Sriranjini S Jaideep, ASN Seshasayee, Awadhesh Pandit
Abstract:
Introduction: Prakriti (body-mind constitution of an individual) is a conventional, customized and unique understanding of which is essential for the personalized medicine described in Ayurveda, Indian System of Medicine. Based on the Doshas( functional, bio humoral unit in the body), individuals are categorized into three major Prakriti- Vata, Pitta, and Kapha. The human gut microbiome hosts plenty of highly diverse and metabolically active microorganisms, mainly dominated by the bacteria, which are known to influence the physiology of an individual. Few researches have shown the correlation between the Prakriti and the biochemical parameters. In this study, an attempt was made to explore any correlation between the Prakriti (phenotype of an individual) with the Genetic makeup of the gut microbiome in healthy individuals. Materials and methods: 270 multi-ethnic, healthy volunteers of both sex with the age group between 18 to 40 years, with no history of antibiotics in the last 6 months were recruited into three groups of Vata, Pitta, and Kapha. The Prakriti of the individual was determined using Ayusoft, a software designed by CDAC, Pune, India. The volunteers were subjected to initial screening for the assessment of their height, weight, Body Mass Index, Vital signs and Blood investigations to ensure they are healthy. The stool and saliva samples of the recruited volunteers were collected as per the standard operating procedure developed, and the bacterial DNA was isolated using Qiagen kits. The extracted DNA was subjected to 16s rRNA sequencing using the Illumina kits. The sequencing libraries are targeting the variable V3 and V4 regions of the 16s rRNA gene. Paired sequencing was done on the MiSeq system and data were analyzed using the CLC Genomics workbench 11. Results: The 16s rRNA sequencing of the V3 and V4 regions showed a diverse pattern in both the oral and stool microbial DNA. The study did not reveal any specific pattern of bacterial flora amongst the Prakriti. All the p-values were more than the effective alpha values for all OTUs in both the buccal cavity and stool samples. Therefore, there was no observed significant enrichment of an OTU in the patient samples from either the buccal cavity or stool samples. Conclusion: In healthy volunteers of multi-ethnicity, due to the influence of the various factors, the correlation between the Prakriti and the gut microbiome was not seen.Keywords: gut microbiome, ayurveda Prakriti, sequencing, multi-ethnic urban population
Procedia PDF Downloads 1351184 Study on the Integration Schemes and Performance Comparisons of Different Integrated Solar Combined Cycle-Direct Steam Generation Systems
Authors: Liqiang Duan, Ma Jingkai, Lv Zhipeng, Haifan Cai
Abstract:
The integrated solar combined cycle (ISCC) system has a series of advantages such as increasing the system power generation, reducing the cost of solar power generation, less pollutant and CO2 emission. In this paper, the parabolic trough collectors with direct steam generation (DSG) technology are considered to replace the heat load of heating surfaces in heat regenerator steam generation (HRSG) of a conventional natural gas combined cycle (NGCC) system containing a PG9351FA gas turbine and a triple pressure HRSG with reheat. The detailed model of the NGCC system is built in ASPEN PLUS software and the parabolic trough collectors with DSG technology is modeled in EBSILON software. ISCC-DSG systems with the replacement of single, two, three and four heating surfaces are studied in this paper. Results show that: (1) the ISCC-DSG systems with the replacement heat load of HPB, HPB+LPE, HPE2+HPB+HPS, HPE1+HPE2+ HPB+HPS are the best integration schemes when single, two, three and four stages of heating surfaces are partly replaced by the parabolic trough solar energy collectors with DSG technology. (2) Both the changes of feed water flow and the heat load of the heating surfaces in ISCC-DSG systems with the replacement of multi-stage heating surfaces are smaller than those in ISCC-DSG systems with the replacement of single heating surface. (3) ISCC-DSG systems with the replacement of HPB+LPE heating surfaces can increase the solar power output significantly. (4) The ISCC-DSG systems with the replacement of HPB heating surfaces has the highest solar-thermal-to-electricity efficiency (47.45%) and the solar radiation energy-to-electricity efficiency (30.37%), as well as the highest exergy efficiency of solar field (33.61%).Keywords: HRSG, integration scheme, parabolic trough collectors with DSG technology, solar power generation
Procedia PDF Downloads 2531183 Research on Localized Operations of Multinational Companies in China
Authors: Zheng Ruoyuan
Abstract:
With the rapid development of economic globalization and increasingly fierce international competition, multinational companies have carried out investment strategy shifts and innovations, and actively promoted localization strategies. Localization strategies have become the main trend in the development of multinational companies. Large-scale entry of multinational companies China has a history of more than 20 years. With the sustained and steady growth of China's economy and the optimization of the investment environment, multinational companies' investment in China has expanded rapidly, which has also had an important impact on the Chinese economy: promoting employment, foreign exchange reserves, and improving the system. etc., has brought a lot of high-tech and advanced management experience; but it has also brought challenges and survival pressure to China's local enterprises. In recent years, multinational companies have gradually regarded China as an important part of their global strategies and began to invest in China. Actively promote localization strategies, including production, marketing, scientific research and development, etc. Many multinational companies have achieved good results in localized operations in China. Not only have their benefits continued to improve, but they have also established a good corporate image and brand in China. image, which has greatly improved their competitiveness in the international market. However, there are also some multinational companies that have difficulties in localized operations in China. This article will closely follow the background of economic globalization and comprehensively use the theory of multinational companies and strategic management theory and business management theory, using data and facts as the entry point, combined with typical cases of representative significance for analysis, to conduct a systematic study of the localized operations of multinational companies in China. At the same time, for each specific link of the operation of multinational companies, we provide multinational enterprises with some inspirations and references.Keywords: localization, business management, multinational, marketing
Procedia PDF Downloads 491182 Assessment of Chromium Concentration and Human Health Risk in the Steelpoort River Sub-Catchment of the Olifants River Basin, South Africa
Authors: Abraham Addo-Bediako
Abstract:
Many freshwater ecosystems are facing immense pressure from anthropogenic activities, such as agricultural, industrial and mining. Trace metal pollution in freshwater ecosystems has become an issue of public health concern due to its toxicity and persistence in the environment. Trace elements pose a serious risk not only to the environment and aquatic biota but also humans. Chromium is one of such trace elements and its pollution in surface waters and groundwaters represents a serious environmental problem. In South Africa, agriculture, mining, industrial and domestic wastes are the main contributors to chromium discharge in rivers. The common forms of chromium are chromium (III) and chromium (VI). The latter is the most toxic because it can cause damage to human health. The aim of the study was to assess the contamination of chromium in the water and sediments of two rivers in the Steelpoort River sub-catchment of the Olifants River Basin, South Africa and human health risk. The concentration of Cr was analyzed using inductively coupled plasma–optical emission spectrometry (ICP-OES). The concentration of the metal was found to exceed the threshold limit, mainly in areas of high human activities. The hazard quotient through ingestion exposure did not exceed the threshold limit of 1 for adults and children and cancer risk for adults and children computed did not exceed the threshold limit of 10-4. Thus, there is no potential health risk from chromium through ingestion of drinking water for now. However, with increasing human activities, especially mining, the concentration could increase and become harmful to humans who depend on rivers for drinking water. It is recommended that proper management strategies should be taken to minimize the impact of chromium on the rivers and water from the rivers should properly be treated before domestic use.Keywords: land use, health risk, metal pollution, water quality
Procedia PDF Downloads 871181 AI Peer Review Challenge: Standard Model of Physics vs 4D GEM EOS
Authors: David A. Harness
Abstract:
Natural evolution of ATP cognitive systems is to meet AI peer review standards. ATP process of axiom selection from Mizar to prove a conjecture would be further refined, as in all human and machine learning, by solving the real world problem of the proposed AI peer review challenge: Determine which conjecture forms the higher confidence level constructive proof between Standard Model of Physics SU(n) lattice gauge group operation vs. present non-standard 4D GEM EOS SU(n) lattice gauge group spatially extended operation in which the photon and electron are the first two trace angular momentum invariants of a gravitoelectromagnetic (GEM) energy momentum density tensor wavetrain integration spin-stress pressure-volume equation of state (EOS), initiated via 32 lines of Mathematica code. Resulting gravitoelectromagnetic spectrum ranges from compressive through rarefactive of the central cosmological constant vacuum energy density in units of pascals. Said self-adjoint group operation exclusively operates on the stress energy momentum tensor of the Einstein field equations, introducing quantization directly on the 4D spacetime level, essentially reformulating the Yang-Mills virtual superpositioned particle compounded lattice gauge groups quantization of the vacuum—into a single hyper-complex multi-valued GEM U(1) × SU(1,3) lattice gauge group Planck spacetime mesh quantization of the vacuum. Thus the Mizar corpus already contains all of the axioms required for relevant DeepMath premise selection and unambiguous formal natural language parsing in context deep learning.Keywords: automated theorem proving, constructive quantum field theory, information theory, neural networks
Procedia PDF Downloads 1791180 Epidemiological and Clinical Characteristics of Five Rare Pathological Subtypes of Hepatocellular Carcinoma
Authors: Xiaoyuan Chen
Abstract:
Background: This study aimed to characterize the epidemiological and clinical features of five rare subtypes of hepatocellular carcinoma (HCC) and to create a competing risk nomogram for predicting cancer-specific survival. Methods: This study used the Surveillance, Epidemiology, and End Results database to analyze the clinicopathological data of 50,218 patients with classic HCC and five rare subtypes (ICD-O-3 Histology Code=8170/3-8175/3) between 2004 and 2018. The annual percent change (APC) was calculated using Joinpoint regression, and a nomogram was developed based on multivariable competing risk survival analyses. The prognostic performance of the nomogram was evaluated using the Akaike information criterion, Bayesian information criterion, C-index, calibration curve, and area under the receiver operating characteristic curve. Decision curve analysis was used to assess the clinical value of the models. Results: The incidence of scirrhous carcinoma showed a decreasing trend (APC=-6.8%, P=0.025), while the morbidity of other rare subtypes remained stable from 2004 to 2018. The incidence-based mortality plateau in all subtypes during the period. Clear cell carcinoma was the most common subtype (n=551, 1.1%), followed by fibrolamellar (n=241, 0.5%), scirrhous (n=82, 0.2%), spindle cell (n=61, 0.1%), and pleomorphic (n=17, ~0%) carcinomas. Patients with fibrolamellar carcinoma were younger and more likely to have non-cirrhotic liver and better prognoses. Scirrhous carcinoma shared almost the same macro clinical characteristics and outcomes as classic HCC. Clear cell carcinoma tended to occur in the Asia-Pacific elderly male population, and more than half of them were large HCC (Size>5cm). Sarcomatoid (including spindle cell and pleomorphic) carcinoma was associated with larger tumor size, poorer differentiation, and more dismal prognoses. The pathological subtype, T stage, M stage, surgery, alpha-fetoprotein, and cancer history were identified as independent predictors in patients with rare subtypes. The nomogram showed good calibration, discrimination, and net benefits in clinical practice. Conclusion: The rare subtypes of HCC had distinct clinicopathological features and biological behaviors compared with classic HCC. Our findings could provide a valuable reference for clinicians. The constructed nomogram could accurately predict prognoses, which is beneficial for individualized management.Keywords: hepatocellular carcinoma, pathological subtype, fibrolamellar carcinoma, scirrhous carcinoma, clear cell carcinoma, spindle cell carcinoma, pleomorphic carcinoma
Procedia PDF Downloads 751179 Recent Progress in the Uncooled Mid-Infrared Lead Selenide Polycrystalline Photodetector
Authors: Hao Yang, Lei Chen, Ting Mei, Jianbang Zheng
Abstract:
Currently, the uncooled PbSe photodetectors in the mid-infrared range (2-5μm) with sensitization technology extract more photoelectric response than traditional ones, and enable the room temperature (300K) photo-detection with high detectivity, which have attracted wide attentions in many fields. This technology generally contains the film fabrication with vapor phase deposition (VPD) and a sensitizing process with doping of oxygen and iodine. Many works presented in the recent years almost provide and high temperature activation method with oxygen/iodine vapor diffusion, which reveals that oxygen or iodine plays an important role in the sensitization of PbSe material. In this paper, we provide our latest experimental results and discussions in the stoichiometry of oxygen and iodine and its influence on the polycrystalline structure and photo-response. The experimental results revealed that crystal orientation was transformed from (200) to (420) by sensitization, and the responsivity of 5.42 A/W was gained by the optimal stoichiometry of oxygen and iodine with molecular density of I2 of ~1.51×1012 mm-3 and oxygen pressure of ~1Mpa. We verified that I2 plays a role in transporting oxygen into the lattice of crystal, which is actually not its major role. It is revealed that samples sensitized with iodine transform atomic proportion of Pb from 34.5% to 25.0% compared with samples without iodine from XPS data, which result in the proportion of about 1:1 between Pb and Se atoms by sublimation of PbI2 during sensitization process, and Pb/Se atomic proportion is controlled by I/O atomic proportion in the polycrystalline grains, which is very an important factor for improving responsivity of uncooled PbSe photodetector. Moreover, a novel sensitization and dopant activation method is proposed using oxygen ion implantation with low ion energy of < 500eV and beam current of ~120μA/cm2. These results may be helpful to understanding the sensitization mechanism of polycrystalline lead salt materials.Keywords: polycrystalline PbSe, sensitization, transport, stoichiometry
Procedia PDF Downloads 3491178 Optimization of Adsorptive Removal of Common Used Pesticides Water Wastewater Using Golden Activated Charcoal
Authors: Saad Mohamed Elsaid, Nabil Anwar, Mahmoud Rushdi
Abstract:
One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use traded activated charcoal with gold nitrate solution; for removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption, forming a complex with the gold metal immobilized on activated carbon surfaces. In addition, the gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups, were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.Keywords: waste water, pesticides pollution, adsorption, activated carbon
Procedia PDF Downloads 731177 Airborne Pollutants and Lung Surfactant: Biophysical Impacts of Surface Oxidation Reactions
Authors: Sahana Selladurai, Christine DeWolf
Abstract:
Lung surfactant comprises a lipid-protein film that coats the alveolar surface and serves to prevent alveolar collapse upon repeated breathing cycles. Exposure of lung surfactant to high concentrations of airborne pollutants, for example tropospheric ozone in smog, can chemically modify the lipid and protein components. These chemical changes can impact the film functionality by decreasing the film’s collapse pressure (minimum surface tension attainable), altering it is mechanical and flow properties and modifying lipid reservoir formation essential for re-spreading of the film during the inhalation process. In this study, we use Langmuir monolayers spread at the air-water interface as model membranes where the compression and expansion of the film mimics the breathing cycle. The impact of ozone exposure on model lung surfactant films is measured using a Langmuir film balance, Brewster angle microscopy and a pendant drop tensiometer as a function of film and sub-phase composition. The oxidized films are analyzed using mass spectrometry where lipid and protein oxidation products are observed. Oxidation is shown to reduce surface activity, alter line tension (and film morphology) and in some cases visibly reduce the viscoelastic properties of the film when compared to controls. These reductions in functionality of the films are highly dependent on film and sub-phase composition, where for example, the effect of oxidation is more pronounced when using a physiologically relevant buffer as opposed to water as the sub-phase. These findings can lead to a better understanding on the impact of continuous exposure to high levels of ozone on the mechanical process of breathing, as well as understanding the roles of certain lung surfactant components in this process.Keywords: lung surfactant, oxidation, ozone, viscoelasticity
Procedia PDF Downloads 3111176 Energy-Efficient Storage of Methane Using Biosurfactant in the Form of Clathrate Hydrate
Authors: Abdolreza Farhadian, Anh Phan, Zahra Taheri Rizi, Elaheh Sadeh
Abstract:
The utilization of solidified gas technology based on hydrates exhibits considerable promise for carbon capture, storage, and natural gas transportation applications. The pivotal factor impeding the industrial implementation of hydrates lies in the need for efficient and non-foaming promoters. In this study, a biosurfactant with sulfonate, amide, and carboxyl groups (BS) was synthesized as a methane hydrate formation promoter, replicating the chemical characteristics of amino acids and sodium dodecyl sulfate (SDS). The synthesis of BS was achieved using an eco-friendly and three-step process. The first two steps were solvent-free, while a water-isopropanol mixture was utilized in the final step. High-pressure autoclave experiments demonstrated a significant enhancement in methane hydrate formation kinetics with low BS concentrations. 50 ppm of BS yielded a maximum water-to-hydrate conversion of 66.9%, equivalent to a storage capacity of 119.9 v/v in distilled water. With increasing BS concentration to 500 ppm, the conversion degree and storage capacity reached 97% and 162.6 v/v, respectively. Molecular dynamic simulation revealed that BS molecules acted as collectors for methane molecules, augmenting hydrate growth rate and increasing the number of hydrate cavities. Additionally, BS demonstrated a biodegradability exceeding 60% within 28 days. Toxicity assessments confirmed BS's biocompatibility, with cell viability above 70% for skin and lung cells at concentrations up to 160 and 80 µg/mL, respectively. BS showed significant potential as an environmentally friendly alternative to synthetic surfactants like SDS for methane storage. These findings suggest that the synthesis of effective, such as BS, holds promise for diverse applications, including seawater desalination, carbon capture, and gas storage.Keywords: solidified methane, gas storage, gas hydrates, green surfactant, gas hydrate promoter, computational simulation, sustainability
Procedia PDF Downloads 11175 Optimising Participation in Physical Activity Research for Adults with Intellectual Disabilities
Authors: Yetunde M. Dairo, Johnny Collett, Helen Dawes
Abstract:
Background and Aim: Engagement with physical activity (PA) research is poor among adults with intellectual disabilities (ID), particularly in those from residential homes. This study explored why, by asking managers of residential homes, adults with ID and their carers. Methods: Participants: A convenient sample of 23 individuals from two UK local authorities, including a group of ID residential home managers, adults with ID and their support staff. Procedures: A) Residential home managers (n=6) were asked questions about their willingness to allow their residents to participate in PA research; B) eleven adults with ID and their support workers (n=6) were asked questions about their willingness to accept 7-day accelerometer monitoring and/or the International Physical Activity Questionnaire-short version (IPAQ-s) as PA measures. The IPAQ-s was administered by the researcher and they were each provided with samples of accelerometers to try on. Results: A) Five out of six managers said that the burden of wearing the accelerometer for seven days would be too high for the people they support, the majority of whom might be unable to express their wishes. They also said they would be unwilling to act as proxy respondents for the same reason. Additionally, they cited time pressure, understaffing, and reluctance to spend time on the research paperwork as further reasons for non-participation. B) All 11 individuals with ID completed the IPAQ-s while only three accepted the accelerometer, one of whom was deemed inappropriate to wear it. Reasons for rejecting accelerometers included statements from participants of: ‘too expensive’, ‘too heavy’, ‘uncomfortable’, and two people said they would not want to wear it for more than one day. All adults with ID (11) and their support workers (6) provided information about their physical activity levels through the IPAQ-s. Conclusions: Care home managers are a barrier to research participation. However, adults with ID would be happy for the IPAQ-s as a PA measure, but less so for the 7-day accelerometer monitoring. In order to improve participation in this population, the choice of PA measure is considered important. Moreover, there is a need for studies exploring how best to engage ID residential home managers in PA research.Keywords: intellectual disability, physical activity measurement, research engagement, research participation
Procedia PDF Downloads 3061174 Reduction of Cooling Demands in a Subtropical Humid Climate Zone: A Study on Roofs of Existing Residential Building Using Passive
Authors: Megha Jain, K. K. Pathak
Abstract:
In sub-tropical humid climates, it is estimated most of the urban peak load of energy consumption is used to satisfy air-conditioning or air-coolers cooling demand in summer time. As the urbanization rate in developing nation – like the case in India is rising rapidly, the pressure placed on energy resources to satisfy inhabitants’ indoor comfort requirements is consequently increasing too. This paper introduces passive cooling through roof as a means of reducing energy cooling loads for satisfying human comfort requirements in a sub-tropical climate. Experiments were performed by applying different insulators which are locally available solar reflective materials to insulate the roofs of five rooms of 4 case buildings; three rooms having RCC (Reinforced Cement Concrete) roof and two having Asbestos sheet roof of existing buildings. The results are verified by computer simulation using Computational Fluid Dynamics tools with FLUENT software. The result of using solar reflective paint with high albedo coating shows a fall of 4.8⁰C in peak hours and saves 303 kWh considering energy load with air conditioner during the summer season in comparison to non insulated flat roof energy load of residential buildings in Bhopal. An optimum solution of insulator for both types of roofs is presented. It is recommended that the selected cool roof solution be combined with insulation on other elements of envelope, to increase the indoor thermal comfort. The application is intended for low cost residential buildings in composite and warm climate like Bhopal.Keywords: cool roof, computational fluid dynamics, energy loads, insulators, passive cooling, subtropical climate, thermal performance
Procedia PDF Downloads 1701173 Occupational Stress and Lipid Profile among Drivers in Ismailia City, Egypt
Authors: Amani Waheed, Adel Mishriky, Rasha Farouk, Essam Abdallah, Sarah Hussein
Abstract:
Background: Occupational stress plays a crucial role in professional drivers' health. They are exposed to high workloads, low physical activity, high demand and low decisions as well as poor lifestyle factors including poor diet, sedentary work, and smoking. Dyslipidemia is a well-established modifiable cardiovascular risk factor. Occupational stress and other forms of chronic stress have been associated with raised levels of atherogenic lipids. Although stress management has some evidence in improving lipid profile, the association between occupational stress and dyslipidemia is not clear. Objectives: To assess the relational between occupational stress and lipid profile among professional drivers. Methodology: A cross-sectional study conducted at a large company in Ismailia City, Egypt, where, 131 professional drivers divided into 44 car drivers, 43 bus drivers, and 44 truck drivers were eligible after applying exclusion criteria. Occupational stress index (OSI), non-occupational risk factors of dyslipidemia were assessed using interview structured questionnaire. Blood pressure, body mass index (BMI) and lipid profile were measured. Results: The mean of total OSI score was 79.98 ± 6.14. The total OSI score is highest among truck drivers (82.16 ± 4.62), then bus drivers (80.26 ± 6.02) and lowest among car drivers (77.55 ± 6.79) with statistically significant. Eighty percent had Dyslipidemia. The duration of driving hours per day, exposure to passive smoking and increased BMI were the risk factors. No statistical significance between Total OSI score and dyslipidemia. Using, logistic regression analysis, occupational stress, duration of driving hours per day, and BMI were positive significant predictors for dyslipidemia. Conclusion: Professional drivers are exposed to occupational stress. A high proportion of drivers have dyslipidemia. Total OSI score doesn't have statistically significant relation with dyslipidemia.Keywords: body mass index, dyslipidaemia, occupational stress, professional drivers
Procedia PDF Downloads 1661172 Underground Coal Gasification Technology in Türkiye: A Techno-Economic Assessment
Authors: Fatma Ünal, Hasancan Okutan
Abstract:
Increasing worldwide population and technological requirements lead to an increase in energy demand every year. The demand has been mainly supplied from fossil fuels such as coal and petroleum due to insufficient natural gas resources. In recent years, the amount of coal reserves has reached almost 21 billion tons in Türkiye. These are mostly lignite (%92,7), that contains high levels of moisture and sulfur components. Underground coal gasification technology is one of the most suitable methods in comparison with direct combustion techniques for the evaluation of such coal types. In this study, the applicability of the underground coal gasification process is investigated in the Eskişehir-Alpu lignite reserve as a pilot region, both technologically and economically. It is assumed that the electricity is produced from the obtained synthesis gas in an integrated gasification combined cycle (IGCC). Firstly, an equilibrium model has been developed by using the thermodynamic properties of the gasification reactions. The effect of the type of oxidizing gas, the sulfur content of coal, the rate of water vapor/air, and the pressure of the system have been investigated to find optimum process conditions. Secondly, the parallel and linear controlled recreation and injection point (CRIP) models were implemented as drilling methods, and costs were calculated under the different oxidizing agents (air and high-purity O2). In Parallel CRIP (P-CRIP), drilling cost is found to be lower than the linear CRIP (L-CRIP) since two coal beds simultaneously are gasified. It is seen that CO2 Capture and Storage (CCS) technology was the most effective unit on the total cost in both models. The cost of the synthesis gas produced varies between 0,02 $/Mcal and 0,09 $/Mcal. This is the promising result when considering the selling price of Türkiye natural gas for Q1-2023 (0.103 $ /Mcal).Keywords: energy, lignite reserve, techno-economic analysis, underground coal gasification.
Procedia PDF Downloads 671171 DC Bus Voltage Ripple Control of Photo Voltaic Inverter in Low Voltage Ride-Trough Operation
Authors: Afshin Kadri
Abstract:
Using Renewable Energy Resources (RES) as a type of DG unit is developing in distribution systems. The connection of these generation units to existing AC distribution systems changes the structure and some of the operational aspects of these grids. Most of the RES requires to power electronic-based interfaces for connection to AC systems. These interfaces consist of at least one DC/AC conversion unit. Nowadays, grid-connected inverters must have the required feature to support the grid under sag voltage conditions. There are two curves in these conditions that show the magnitude of the reactive component of current as a function of voltage drop value and the required minimum time value, which must be connected to the grid. This feature is named low voltage ride-through (LVRT). Implementing this feature causes problems in the operation of the inverter that increases the amplitude of high-frequency components of the injected current and working out of maximum power point in the photovoltaic panel connected inverters are some of them. The important phenomenon in these conditions is ripples in the DC bus voltage that affects the operation of the inverter directly and indirectly. The losses of DC bus capacitors which are electrolytic capacitors, cause increasing their temperature and decreasing its lifespan. In addition, if the inverter is connected to the photovoltaic panels directly and has the duty of maximum power point tracking, these ripples cause oscillations around the operating point and decrease the generating energy. Using a bidirectional converter in the DC bus, which works as a buck and boost converter and transfers the ripples to its DC bus, is the traditional method to eliminate these ripples. In spite of eliminating the ripples in the DC bus, this method cannot solve the problem of reliability because it uses an electrolytic capacitor in its DC bus. In this work, a control method is proposed which uses the bidirectional converter as the fourth leg of the inverter and eliminates the DC bus ripples using an injection of unbalanced currents into the grid. Moreover, the proposed method works based on constant power control. In this way, in addition, to supporting the amplitude of grid voltage, it stabilizes its frequency by injecting active power. Also, the proposed method can eliminate the DC bus ripples in deep voltage drops, which cause increasing the amplitude of the reference current more than the nominal current of the inverter. The amplitude of the injected current for the faulty phases in these conditions is kept at the nominal value and its phase, together with the phase and amplitude of the other phases, are adjusted, which at the end, the ripples in the DC bus are eliminated, however, the generated power decreases.Keywords: renewable energy resources, voltage drop value, DC bus ripples, bidirectional converter
Procedia PDF Downloads 761170 A Comparison of Direct Water Injection with Membrane Humidifier for Proton Exchange Membrane Fuel Cells Humification
Authors: Flavien Marteau, Pedro Affonso Nóbrega, Pascal Biwole, Nicolas Autrusson, Iona De Bievre, Christian Beauger
Abstract:
Effective water management is essential for the optimal performance of fuel cells. For this reason, many vehicle systems use a membrane humidifier, a passive device that humidifies the air before the cathode inlet. Although they offer good performance, humidifiers are voluminous, costly, and fragile, hence the desire to find an alternative. Direct water injection could be an option, although this method lacks maturity. It consists of injecting liquid water as a spray in the dry heated air coming out from the compressor. This work focuses on the evaluation of direct water injection and its performance compared to the membrane humidifier selected as a reference. Two architectures were experimentally tested to humidify an industrial 2 kW short stack made up of 20 cells of 150 cm² each. For the reference architecture, the inlet air is humidified with a commercial membrane humidifier. For the direct water injection architecture, a pneumatic nozzle was selected to generate a fine spray in the air flow with a Sauter mean diameter of about 20 μm. Initial performance was compared over the entire range of current based on polarisation curves. Then, the influence of various parameters impacting water management was studied, such as the temperature, the gas stoichiometry, and the water injection flow rate. The experimental results obtained confirm the possibility of humidifying the fuel cell using direct water injection. This study, however shows the limits of this humidification method, the mean cell voltage being significantly lower in some operating conditions with direct water injection than with the membrane humidifier. The voltage drop reaches 30 mV per cell (4 %) at 1 A/cm² (1,8 bara, 80 °C) and increases in more demanding humidification conditions. It is noteworthy that the heat of compression available is not enough to evaporate all the injected liquid water in the case of DWI, resulting in a mix of liquid and vapour water entering the fuel cell, whereas only vapour is present with the humidifier. Variation of the injection flow rate shows that part of the injected water is useless for humidification and seems to cross channels without reaching the membrane. The stack was successfully humidified thanks to direct water injection. Nevertheless, our work shows that its implementation requires substantial adaptations and may reduce the fuel cell stack performance when compared to conventional membrane humidifiers, but opportunities for optimisation have been identified.Keywords: cathode humidification, direct water injection, membrane humidifier, proton exchange membrane fuel cell
Procedia PDF Downloads 431169 In-Cylinder Exhaust Heat Recovery of an I. C. Engine Using Water Injection
Authors: Jayakrishnan U.
Abstract:
A concept of adding two strokes to a four stroke Otto or Diesel engine cycle presented here for the waste heat recovery in a four stroke internal combustion engine. Four stroke Diesel cycle and Otto cycle engines have very low thermal efficiency due to high amount of energy loss in exhaust and also on the cooling of the engine. It is estimated about 35 percent of fuel energy is lost in exhaust of engine and 30 percent in cooling of engine. So by modifying a four-stroke Otto or Diesel engine by adding two-stroke heat recovery steam cycle is presented here. Water injection is used to get an additional power stroke by partial compression of the exhaust gases at the end of third stroke in a four stroke I.C.Engine. It is the conversion of a four-stroke cycle to a six-stroke cycle. By taking a four stroke petrol engine of known dimensions, an ideal thermodynamic model is used to analyse and calculate the events of exhaust gas compression and following two strokes of water injection. By changing the exhaust valve closing timing during exhaust stroke and analysing it on various points, an optimum amount of exhaust gas re-compression and amount of water injection can be found for maximizing efficiency and fuel economy. It is achieved by changing the exhaust valve timing and finding an optimum amount of exhaust re-compression, maximizing the net mean effective pressure of the steam expansion stroke (MEPsteam). Specific fuel consumption of the engine also decreases increasing the fuel economy. The valve closing timings for maximum MEPsteam is limited by either 1 bar or dew point temperature of expansion gas or moisture mixture to avoid moisture formation. By modifying the four-stroke Otto or Diesel cycle by adding two water injection stroke has the potential to significantly increase the engine efficiency and fuel economy.Keywords: internal combustion engine, engine efficiency, six-stroke cycle, water injection, specific fuel consumption
Procedia PDF Downloads 3041168 Accurately Measuring Stress Using Latest Breathing Technology and Its Relationship with Academic Performance
Authors: Farshid Marbouti, Jale Ulas, Julia Thompson
Abstract:
The main sources of stress among college students are: changes in sleeping and eating habits, undertaking new responsibilities, and financial difficulties as the most common sources of stress, exams, meeting new people, career decisions, fear of failure, and pressure from parents, transition to university especially if it requires leaving home, working with people that they do not know, trouble with parents, and relationship with the opposite sex. The students use a variety of stress coping strategies, including talking to family and friends, leisure activities and exercising. The Yerkes–Dodson law indicates while a moderate amount of stress may be beneficial for performance, too high stress will result in weak performance. In other words, if students are too stressed, they are likely to have low academic performance. In a preliminary study conducted in 2017 with engineering students enrolled in three high failure rate classes, the majority of the students stated that they have high levels of stress mainly for academic, financial, or family-related reasons. As the second stage of the study, the main purpose of this research is to investigate the students’ level of stress, sources of stress, their relationship with student demographic background, students’ coping strategies, and academic performance. A device is being developed to gather data from students breathing patterns and measure their stress levels. In addition, all participants are asked to fill out a survey. The survey under development has the following categories: exam stressor, study-related stressors, financial pressures, transition to university, family-related stress, student response to stress, and stress management. After the data collection, Structural Equation Modeling (SEM) analysis will be conducted in order to identify the relationship among students’ level of stress, coping strategies, and academic performance.Keywords: college student stress, coping strategies, academic performance, measuring stress
Procedia PDF Downloads 1041167 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method
Authors: Mohamad R. Moshtagh, Ahmad Bagheri
Abstract:
Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.Keywords: fault detection, gearbox, machine learning, wiener method
Procedia PDF Downloads 801166 Migration Law in Republic of Panama
Authors: Ronel Solis, Leonardo Collado
Abstract:
Migration law in the Republic of Panama has been regulated mainly by the executive branch. This has created a crisis not only institutional but also social because the evolution of these norms has rested greatly from the discretion of the government in office. This has created instability in immigration regulation and more now, with the migration crisis of which Panama is also part. Different migration policies have been established. The most recent is that of the controlled migration flow, in which, for humanitarian reasons, migrants move from the border with Colombia to the border with Costa Rica. Unfortunately, such control is not enough, and in some cases, unprotected migrants have been confined for months, their passports have been withheld, and no recognition of their rights is offered. The Inter-American Court of Human Rights has condemned Panama for the unfair detention of an irregular migrant, who was detained for two years in Panamanian prisons, without having committed a crime and without accessing a just defense. This is the case Vélez Loor vs. the Republic of Panama. Uncontrollable migration has been putting pressure on Panamanian public health services. The recent denunciation of HIV-related NGOs that warns that there are hundreds of foreigners who receive expensive antiretroviral therapy in Panama is serious, and several of them are irregular migrants. On the other hand, there are no border control posts with the Republic of Colombia, because it is a jungle area and migrants are exposed to arms and drug trafficking, and unfortunately, also to prostitution. Government entities such as the border police service have provided humanitarian support to migrants on the border with Colombia, although it is not their administrative function, and various entities discuss who should address this crisis. However, few economic resources are allocated by the government to solve this problem, especially with the recent mass migration of Venezuelans who have fled their country. The establishment of a migratory normative code is necessary to establish uniformity in the recognition and application of migratory rights. In this way, dependence on the changing migration policies of the different Panamanian governments would be eliminated, and the rights of migrants and nationals would be guaranteed.Keywords: executive branch, irregular migration, migration code, Republic of Panama
Procedia PDF Downloads 1231165 Exploring the Link between Intangible Capital and Urban Economic Development: The Case of Three UK Core Cities
Authors: Melissa Dickinson
Abstract:
In the context of intense global competitiveness and urban transformations, today’s cities are faced with enormous challenges. There is increasing pressure among cities and regions to respond promptly and efficiently to fierce market progressions, to offer a competitive advantage, higher flexibility, and to be pro-active in creating future markets. Consequently, competition among cities and regions within the dynamics of a worldwide spatial economic system is growing fiercer, amplifying the importance of intangible capital in shaping the competitive and dynamic economic performance of organisations and firms. Accordingly, this study addresses how intangible capital influences urban economic development within an urban environment. Despite substantial research on the economic, and strategic determinants of urban economic development this multidimensional phenomenon remains to be one of the greatest challenges for economic geographers. The research provides a unique contribution, exploring intangible capital through the lenses of entrepreneurial capital and social-network capital. Drawing on business surveys and in-depth interviews with key stakeholders in the case of the three UK Core Cities Birmingham, Bristol and Cardiff. This paper critically considers how entrepreneurial capital and social-network capital is a crucial source of competitiveness and urban economic development. This paper deals with questions concerning the complexity of operationalizing ‘network capital’ in different urban settings and the challenges that reside in characterising its effects. The paper will highlight the role of institutions in facilitating urban economic development. Particular emphasis will be placed on exploring the roles formal and informal institutions have in delivering, supporting and nurturing entrepreneurial capital and social-network capital, to facilitate urban economic development. Discussions will then consider how institutions moderate and contribute to the economic development of urban areas, to provide implications in terms of future policy formulation in the context of large and medium sized cities.Keywords: urban economic development, network capital, entrepreneurialism, institutions
Procedia PDF Downloads 2761164 Topology Enhancement of a Straight Fin Using a Porous Media Computational Fluid Dynamics Simulation Approach
Authors: S. Wakim, M. Nemer, B. Zeghondy, B. Ghannam, C. Bouallou
Abstract:
Designing the optimal heat exchanger is still an essential objective to be achieved. Parametrical optimization involves the evaluation of the heat exchanger dimensions to find those that best satisfy certain objectives. This method contributes to an enhanced design rather than an optimized one. On the contrary, topology optimization finds the optimal structure that satisfies the design objectives. The huge development in metal additive manufacturing allowed topology optimization to find its way into engineering applications especially in the aerospace field to optimize metal structures. Using topology optimization in 3d heat and mass transfer problems requires huge computational time, therefore coupling it with CFD simulations can reduce this it. However, existed CFD models cannot be coupled with topology optimization. The CFD model must allow creating a uniform mesh despite the initial geometry complexity and also to swap the cells from fluid to solid and vice versa. In this paper, a porous media approach compatible with topology optimization criteria is developed. It consists of modeling the fluid region of the heat exchanger as porous media having high porosity and similarly the solid region is modeled as porous media having low porosity. The switching from fluid to solid cells required by topology optimization is simply done by changing each cell porosity using a user defined function. This model is tested on a plate and fin heat exchanger and validated by comparing its results to experimental data and simulations results. Furthermore, this model is used to perform a material reallocation based on local criteria to optimize a plate and fin heat exchanger under a constant heat duty constraint. The optimized fin uses 20% fewer materials than the first while the pressure drop is reduced by about 13%.Keywords: computational methods, finite element method, heat exchanger, porous media, topology optimization
Procedia PDF Downloads 1541163 Fully Eulerian Finite Element Methodology for the Numerical Modeling of the Dynamics of Heart Valves
Authors: Aymen Laadhari
Abstract:
During the last decade, an increasing number of contributions have been made in the fields of scientific computing and numerical methodologies applied to the study of the hemodynamics in the heart. In contrast, the numerical aspects concerning the interaction of pulsatile blood flow with highly deformable thin leaflets have been much less explored. This coupled problem remains extremely challenging and numerical difficulties include e.g. the resolution of full Fluid-Structure Interaction problem with large deformations of extremely thin leaflets, substantial mesh deformations, high transvalvular pressure discontinuities, contact between leaflets. Although the Lagrangian description of the structural motion and strain measures is naturally used, many numerical complexities can arise when studying large deformations of thin structures. Eulerian approaches represent a promising alternative to readily model large deformations and handle contact issues. We present a fully Eulerian finite element methodology tailored for the simulation of pulsatile blood flow in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets. Our method enables to use a fluid solver on a fixed mesh, whilst being able to easily model the mechanical properties of the valve. We introduce a semi-implicit time integration scheme based on a consistent NewtonRaphson linearization. A variant of the classical Newton method is introduced and guarantees a third-order convergence. High-fidelity computational geometries are built and simulations are performed under physiological conditions. We address in detail the main features of the proposed method, and we report several experiments with the aim of illustrating its accuracy and efficiency.Keywords: eulerian, level set, newton, valve
Procedia PDF Downloads 2781162 Exploring Community Benefits Frameworks as a Tool for Addressing Intersections of Equity and the Green Economy in Toronto's Urban Development
Authors: Cheryl Teelucksingh
Abstract:
Toronto is in the midst of an urban development and infrastructure boom. Population growth and concerns about urban sprawl and carbon emissions have led to pressure on the municipal and the provincial governments to re-think urban development. Toronto’s approach to climate change mitigation and adaptation has positioning of the emerging green economy as part of the solution. However, the emerging green economy many not benefit all Torontonians in terms of jobs, improved infrastructure, and enhanced quality of life. Community benefits agreements (CBAs) are comprehensive, negotiated commitments, in which founders and builders of major infrastructure projects formally agree to work with community interest groups based in the community where the development is taking place, toward mutually beneficial environmental and labor market outcomes. When community groups are equitably represented in the process, they stand not only to benefit from the jobs created from the project itself, but also from the longer-term community benefits related to the quality of the completed work, including advocating for communities’ environmental needs. It is believed that green employment initiatives in Toronto should give greater consideration to best practices learned from community benefits agreements. Drawing on the findings of a funded qualitative study in Toronto (Canada), “The Green Gap: Toward Inclusivity in Toronto’s Green Economy” (2013-2016), this paper examines the emergent CBA in Toronto in relation to the development of a light rail transit project. Theoretical and empirical consideration will be given to the research gaps around CBAs, the role of various stakeholders, and discuss the potential for CBAs to gain traction in the Toronto’s urban development context. The narratives of various stakeholders across Toronto’s green economy will be interwoven with a discussion of the CBA model in Toronto and other jurisdictions.Keywords: green economy in Toronto, equity, community benefits agreements, environmental justice, community sustainability
Procedia PDF Downloads 3421161 Development of Personal Protection Equipment for Dental Surgeon
Authors: Thi. A. D. Tran, Matthieu Arnold, Dominique Adolphe, Laurence Schcher, Guillaume Reys
Abstract:
During daily oral health cares, dental surgeons are in contact with numerous potentially infectious germs from patients' saliva and blood. In order to take into account these risks, a product development process has been unrolled to propose to the dental surgeon a personal protection equipment that is suitable with their expectations in terms of images, protection and comfort. After a consumer study, to evaluate how the users wear the garment and their expectations, specifications have been carried out and technical solutions have been developed in order to answer to the maximum of the desiderata. Thermal studies and comfort studies have been performed. The obtained results lead to define the technical solutions concerning the design of the new scrub. Three main functions have been investigated, the ergonomic aspect, the protection and the thermal comfort. In terms of ergonomic aspect, instrumented garments have been worn and pressure measurements have been done. The results highlight that a raglan shape for the sleeves has to be selected for a better dynamic comfort. Moreover, spray tests helped us to localize the potential contamination area and therefore protection devices have been placed on the garment. Concerning the thermal comfort, an I-R study was conducted in consulting room under the real working conditions; the heating zones have been detected. Based on these results, solutions have been proposed and implemented in a new gown. This new gown is currently composed of three different parts; a protective layer placed in the chest area to avoid contamination; a breathable layer placed in the back and in the armpits and a normal PET/Cotton fabric for the rest of the gown. Through the fitting tests conducted in hospital, it was obtained that the new design was highly appreciated. Some points can nevertheless be further improved. A final product will be produced based on necessary improvements.Keywords: comfort, dentists, garment, thermal
Procedia PDF Downloads 3101160 A Prospective Randomised Observational Study of Obstructed Total Anamalous Pulmonary Venous Connection (TAPVC) Repair Patients
Authors: Sanjeev Singh
Abstract:
Background: Obstructed total anomalous pulmonary venous connection (OTAPVC) typically presents with severe cardiovascular decompensation and requires urgent surgical management. Pulmonary arterial hypertension (PAH) is a major risk factor affecting mortality. Perioperative management focuses on providing inotropic support and managing potential pulmonary hypertensive episodes. The aim of this study was to determine the outcome of patients with high pulmonary arterial pressure (PAP) with milrinone alone and a combination of milrinone and inhaled nitric oxide (INO). Material and Methods: After the approval of the ethical committee, this single-center prospective randomized and observational study was conducted over a period of two years among eighty-six patients with obstructed TAPVC repair with severe PAH. Group-I patients received milrinone, and Group-II patients received both milrinone (after aortic cross-clamp removal) and INO during the post-operative period at the cardiac care unit (CCU). Clinical outcomes such as ventilation time, length of stay (LOS) in the CCU, LOS in the hospital, complications, and hospital mortality were compared between the two groups. Result: The average ventilation time, LOS in CCU, and LOS in hospital for group I were 96.82 ± 19.46 hours, 10.91 ± 7.53 days, and 14.46 ± 7.58 days, respectively, and for group II, it was 85.14 ± 15.79 hours, 7.28 ± 3.68 days, and 10.21 ± 3.14 days, respectively, which was statistically significantly lower for group II. Reintubation, RV dysfunction, and hospital mortality were 16.3%, 37.2%, and 6.9% in group I, and 4.8%, 14.6%, and 2.4% in group II, respectively. The P value for each variable was significant < 0.05 (except mortality). Conclusion: Preoperative obstruction is a risk factor for postoperative obstruction, as 235 patients with obstructed TAPVC had severe PAH (39.98%) in this study. Management of severe PAH with a combination of milrinone and INO had a better outcome than milrinone alone.Keywords: inhaled nitric oxide, milrinone, pulmonary artery hypertension, total anomalous pulmonary venous connection
Procedia PDF Downloads 211159 Exploration and Evaluation of the Effect of Multiple Countermeasures on Road Safety
Authors: Atheer Al-Nuaimi, Harry Evdorides
Abstract:
Every day many people die or get disabled or injured on roads around the world, which necessitates more specific treatments for transportation safety issues. International road assessment program (iRAP) model is one of the comprehensive road safety models which accounting for many factors that affect road safety in a cost-effective way in low and middle income countries. In iRAP model road safety has been divided into five star ratings from 1 star (the lowest level) to 5 star (the highest level). These star ratings are based on star rating score which is calculated by iRAP methodology depending on road attributes, traffic volumes and operating speeds. The outcome of iRAP methodology are the treatments that can be used to improve road safety and reduce fatalities and serious injuries (FSI) numbers. These countermeasures can be used separately as a single countermeasure or mix as multiple countermeasures for a location. There is general agreement that the adequacy of a countermeasure is liable to consistent losses when it is utilized as a part of mix with different countermeasures. That is, accident diminishment appraisals of individual countermeasures cannot be easily added together. The iRAP model philosophy makes utilization of a multiple countermeasure adjustment factors to predict diminishments in the effectiveness of road safety countermeasures when more than one countermeasure is chosen. A multiple countermeasure correction factors are figured for every 100-meter segment and for every accident type. However, restrictions of this methodology incorporate a presumable over-estimation in the predicted crash reduction. This study aims to adjust this correction factor by developing new models to calculate the effect of using multiple countermeasures on the number of fatalities for a location or an entire road. Regression models have been used to establish relationships between crash frequencies and the factors that affect their rates. Multiple linear regression, negative binomial regression, and Poisson regression techniques were used to develop models that can address the effectiveness of using multiple countermeasures. Analyses are conducted using The R Project for Statistical Computing showed that a model developed by negative binomial regression technique could give more reliable results of the predicted number of fatalities after the implementation of road safety multiple countermeasures than the results from iRAP model. The results also showed that the negative binomial regression approach gives more precise results in comparison with multiple linear and Poisson regression techniques because of the overdispersion and standard error issues.Keywords: international road assessment program, negative binomial, road multiple countermeasures, road safety
Procedia PDF Downloads 2401158 The Effective Use of the Network in the Distributed Storage
Authors: Mamouni Mohammed Dhiya Eddine
Abstract:
This work aims at studying the exploitation of high-speed networks of clusters for distributed storage. Parallel applications running on clusters require both high-performance communications between nodes and efficient access to the storage system. Many studies on network technologies led to the design of dedicated architectures for clusters with very fast communications between computing nodes. Efficient distributed storage in clusters has been essentially developed by adding parallelization mechanisms so that the server(s) may sustain an increased workload. In this work, we propose to improve the performance of distributed storage systems in clusters by efficiently using the underlying high-performance network to access distant storage systems. The main question we are addressing is: do high-speed networks of clusters fit the requirements of a transparent, efficient and high-performance access to remote storage? We show that storage requirements are very different from those of parallel computation. High-speed networks of clusters were designed to optimize communications between different nodes of a parallel application. We study their utilization in a very different context, storage in clusters, where client-server models are generally used to access remote storage (for instance NFS, PVFS or LUSTRE). Our experimental study based on the usage of the GM programming interface of MYRINET high-speed networks for distributed storage raised several interesting problems. Firstly, the specific memory utilization in the storage access system layers does not easily fit the traditional memory model of high-speed networks. Secondly, client-server models that are used for distributed storage have specific requirements on message control and event processing, which are not handled by existing interfaces. We propose different solutions to solve communication control problems at the filesystem level. We show that a modification of the network programming interface is required. Data transfer issues need an adaptation of the operating system. We detail several propositions for network programming interfaces which make their utilization easier in the context of distributed storage. The integration of a flexible processing of data transfer in the new programming interface MYRINET/MX is finally presented. Performance evaluations show that its usage in the context of both storage and other types of applications is easy and efficient.Keywords: distributed storage, remote file access, cluster, high-speed network, MYRINET, zero-copy, memory registration, communication control, event notification, application programming interface
Procedia PDF Downloads 219