Search results for: improved sparrow search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9464

Search results for: improved sparrow search algorithm

4574 Biometric Identification with Latitude and Longitude Fingerprint Verification for Attendance

Authors: Muhammad Fezan Afzal, Imran Khan, Salma Imtiaz

Abstract:

The need for human verification and identification requires from centuries for authentication. Since it is being used in big institutes like financial, government and crime departments, a continued struggle is important to make this system more efficient to prevent security breaches. Therefore, multiple devices are used to authenticate the biometric for each individual. A large number of devices are required to cover a large number of users. As the number of devices increases, cost will automatically increase. Furthermore, it is time-consuming for biometrics due to the devices being insufficient and are not available at every door. In this paper, we propose the framework and algorithm where the mobile of each individual can also perform the biometric authentication of attendance and security. Every mobile has a biometric authentication system that is used in different mobile applications for security purposes. Therefore, each individual can use the biometric system mobile without moving from one place to another. Moreover, by using the biometrics mobile, the cost of biometric systems can be removed that are mostly deployed in different organizations for the attendance of students, employees and for other security purposes.

Keywords: fingerprint, fingerprint authentication, mobile verification, mobile biometric verification, mobile fingerprint sensor

Procedia PDF Downloads 69
4573 Metareasoning Image Optimization Q-Learning

Authors: Mahasa Zahirnia

Abstract:

The purpose of this paper is to explore new and effective ways of optimizing satellite images using artificial intelligence, and the process of implementing reinforcement learning to enhance the quality of data captured within the image. In our implementation of Bellman's Reinforcement Learning equations, associated state diagrams, and multi-stage image processing, we were able to enhance image quality, detect and define objects. Reinforcement learning is the differentiator in the area of artificial intelligence, and Q-Learning relies on trial and error to achieve its goals. The reward system that is embedded in Q-Learning allows the agent to self-evaluate its performance and decide on the best possible course of action based on the current and future environment. Results show that within a simulated environment, built on the images that are commercially available, the rate of detection was 40-90%. Reinforcement learning through Q-Learning algorithm is not just desired but required design criteria for image optimization and enhancements. The proposed methods presented are a cost effective method of resolving uncertainty of the data because reinforcement learning finds ideal policies to manage the process using a smaller sample of images.

Keywords: Q-learning, image optimization, reinforcement learning, Markov decision process

Procedia PDF Downloads 215
4572 Multiple Images Stitching Based on Gradually Changing Matrix

Authors: Shangdong Zhu, Yunzhou Zhang, Jie Zhang, Hang Hu, Yazhou Zhang

Abstract:

Image stitching is a very important branch in the field of computer vision, especially for panoramic map. In order to eliminate shape distortion, a novel stitching method is proposed based on gradually changing matrix when images are horizontal. For images captured horizontally, this paper assumes that there is only translational operation in image stitching. By analyzing each parameter of the homography matrix, the global homography matrix is gradually transferred to translation matrix so as to eliminate the effects of scaling, rotation, etc. in the image transformation. This paper adopts matrix approximation to get the minimum value of the energy function so that the shape distortion at those regions corresponding to the homography can be minimized. The proposed method can avoid multiple horizontal images stitching failure caused by accumulated shape distortion. At the same time, it can be combined with As-Projective-As-Possible algorithm to ensure precise alignment of overlapping area.

Keywords: image stitching, gradually changing matrix, horizontal direction, matrix approximation, homography matrix

Procedia PDF Downloads 319
4571 Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses

Authors: Ashis Mallick, Rajeev Ranjan

Abstract:

The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing.

Keywords: Adomian decomposition, inverse analysis, hyperbolic fin, variable thermal conductivity

Procedia PDF Downloads 327
4570 A Learning Automata Based Clustering Approach for Underwater ‎Sensor Networks to Reduce Energy Consumption

Authors: Motahareh Fadaei

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: clustering, energy consumption‎, learning automata, underwater sensor networks

Procedia PDF Downloads 314
4569 Towards Designing of a Potential New HIV-1 Protease Inhibitor Using Quantitative Structure-Activity Relationship Study in Combination with Molecular Docking and Molecular Dynamics Simulations

Authors: Mouna Baassi, Mohamed Moussaoui, Hatim Soufi, Sanchaita RajkhowaI, Ashwani Sharma, Subrata Sinha, Said Belaaouad

Abstract:

Human Immunodeficiency Virus type 1 protease (HIV-1 PR) is one of the most challenging targets of antiretroviral therapy used in the treatment of AIDS-infected people. The performance of protease inhibitors (PIs) is limited by the development of protease mutations that can promote resistance to the treatment. The current study was carried out using statistics and bioinformatics tools. A series of thirty-three compounds with known enzymatic inhibitory activities against HIV-1 protease was used in this paper to build a mathematical model relating the structure to the biological activity. These compounds were designed by software; their descriptors were computed using various tools, such as Gaussian, Chem3D, ChemSketch and MarvinSketch. Computational methods generated the best model based on its statistical parameters. The model’s applicability domain (AD) was elaborated. Furthermore, one compound has been proposed as efficient against HIV-1 protease with comparable biological activity to the existing ones; this drug candidate was evaluated using ADMET properties and Lipinski’s rule. Molecular Docking performed on Wild Type and Mutant Type HIV-1 proteases allowed the investigation of the interaction types displayed between the proteases and the ligands, Darunavir (DRV) and the new drug (ND). Molecular dynamics simulation was also used in order to investigate the complexes’ stability, allowing a comparative study of the performance of both ligands (DRV & ND). Our study suggested that the new molecule showed comparable results to that of Darunavir and may be used for further experimental studies. Our study may also be used as a pipeline to search and design new potential inhibitors of HIV-1 proteases.

Keywords: QSAR, ADMET properties, molecular docking, molecular dynamics simulation.

Procedia PDF Downloads 40
4568 The Different Improvement of Numerical Magnitude and Spatial Representation of Numbers to Symbolic Approximate Arithmetic: A Training Study of Preschooler

Authors: Yu Liang, Wei Wei

Abstract:

Spatial representation of numbers and numerical magnitude are important for preschoolers’ mathematical ability. Mental number line, a typical index to measure numbers spatial representation, and numerical comparison are both related to arithmetic obviously. However, they seem to rely on different mechanisms and probably influence arithmetic through different mechanisms. In line with this idea, preschool children were trained with two tasks to investigate which one is more important for approximate arithmetic. The training of numerical processing and number line estimation were proved to be effective. They both improved the ability of approximate arithmetic. When the difficulty of approximate arithmetic was taken into account, the performance in number line training group was not significantly different among three levels. However, two harder levels achieved significance in numerical comparison training group. Thus, comparing spatial representation ability, symbolic approximation arithmetic relies more on numerical magnitude. Educational implications of the study were discussed.

Keywords: approximate arithmetic, mental number line, numerical magnitude, preschooler

Procedia PDF Downloads 252
4567 A Multi Agent Based Protection Scheme for Smart Distribution Network in Presence of Distributed Energy Resources

Authors: M. R. Ebrahimi, B. Mahdaviani

Abstract:

Conventional electric distribution systems are radial in nature, supplied at one end through a main source. These networks generally have a simple protection system usually implemented using fuses, re-closers, and over-current relays. Recently, great attention has been paid to applying Distributed energy resources (DERs) throughout electric distribution systems. Presence of such generation in a network leads to losing coordination of protection devices. Therefore, it is desired to develop an algorithm which is capable of protecting distribution systems that include DER. On the other hand smart grid brings opportunities to the power system. Fast advancement in communication and measurement techniques accelerates the development of multi agent system (MAS). So in this paper, a new approach for the protection of distribution networks in the presence of DERs is presented base on MAS. The proposed scheme has been implemented on a sample 27-bus distribution network.

Keywords: distributed energy resource, distribution network, protection, smart grid, multi agent system

Procedia PDF Downloads 608
4566 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: electrocardiogram, dictionary learning, sparse coding, classification

Procedia PDF Downloads 386
4565 DSF Elements in High-Rise Timber Buildings

Authors: Miroslav Premrov, Andrej Štrukelj, Erika Kozem Šilih

Abstract:

The utilization of prefabricated timber-wall elements with double glazing, called as double-skin façade element (DSF), represents an innovative structural approach in the context of new high-rise timber construction, simultaneously combining sustainable solutions with improved energy efficiency and living quality. In addition to the minimum energy needs of buildings, the design of modern buildings is also increasingly focused on the optimal indoor comfort, in particular on sufficient natural light indoors. An optimally energy-designed building with an optimal layout of glazed areas around the building envelope represents a great potential in modern timber construction. Usually, all these transparent façade elements, because of energy benefits, are primary asymmetrical oriented and if they are considered as non-resisting against a horizontal load impact, a strong torsion effects in the building can appear. The problem of structural stability against a strong horizontal load impact of such modern timber buildings especially increase in a case of high-rise structures where additional bracing elements have to be used. In such a case, special diagonal bracing systems or other bracing solutions with common timber wall elements have to be incorporated into the structure of the building to satisfy all prescribed resisting requirements given by the standards. However, all such structural solutions are usually not environmentally friendly and also not contribute to an improved living comfort, or they are not accepted by the architects at all. Consequently, it is a special need to develop innovative load-bearing timber-glass wall elements which are in the same time environmentally friendly, can increase internal comfort in the building, but are also load-bearing. The new developed load-bearing DSF elements can be a good answer on all these requirements. Timber-glass façade elements DSF wall elements consist of two transparent layers, thermal-insulated three-layered glass pane on the internal side and an additional single-layered glass pane on the external side of the wall. The both panes are separated by an air channel which can be of any dimensions and can have a significant influence on the thermal insulation or acoustic response of such a wall element. Most already published studies on DSF elements primarily deal only with energy and LCA solutions and do not address any structural problems. In previous studies according to experimental analysis and mathematical modeling it was already presented a possible benefit of such load-bearing DSF elements, especially comparing with previously developed load-bearing single-skin timber wall elements, but they were not applicate yet in any high-rise timber structure. Therefore, in the presented study specially selected 10-storey prefabricated timber building constructed in a cross-laminated timber (CLT) structural wall system is analyzed using the developed DSF elements in a sense to increase a structural lateral stability of the whole building. The results evidently highlight the importance the load-bearing DSF elements, as their incorporation can have a significant impact on the overall behavior of the structure through their influence on the stiffness properties. Taking these considerations into account is crucial to ensure compliance with seismic design codes and to improve the structural resilience of high-rise timber buildings.

Keywords: glass, high-rise buildings, numerical analysis, timber

Procedia PDF Downloads 46
4564 Quaternized PPO/PSF Anion Exchange Membranes Doped with ZnO-Nanoparticles for Fuel Cell Application

Authors: P. F. Msomi, P. T. Nonjola, P. G. Ndungu, J. Ramontja

Abstract:

In view of the projected global energy demand and increasing levels of greenhouse gases and pollutants issues have inspired an intense search for alternative new energy technologies, which will provide clean, low cost and environmentally friendly solutions to meet the end user requirements. Alkaline anion exchange membrane fuel cells (AAEMFC) have been recognized as ideal candidates for the generation of such clean energy for future stationary and mobile applications due to their many advantages. The key component of the AAEMFC is the anion exchange membrane (AEM). In this report, a series of quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/ polysulfone (QPPO/PSF) blend anionic exchange membranes (AEM) were successfully fabricated and characterized for alkaline fuel cell application. Zinc Oxide (ZnO) nanoparticles were introduced in the polymer matrix to enhance the intrinsic properties of the AEM. The characteristic properties of the QPPO/PSF and QPPO/PSF-ZnO blend membrane were investigated with X-ray diffraction (XRD), thermogravimetric analysis (TGA) scanning electron microscope (SEM) and contact angle (CA). To confirm successful quaternisation, FT-IR spectroscopy and proton nuclear magnetic resonance (1H NMR) were used. Other properties such as ion exchange capacity (IEC), water uptake, contact angle and ion conductivity (IC) were also undertaken to check if the prepared nanocomposite materials are suitable for fuel cell application. The membrane intrinsic properties were found to be enhanced by the addition of ZnO nanoparticles. The addition of ZnO nanoparticles resulted to a highest IEC of 3.72 mmol/g and a 30-fold IC increase of the nanocomposite due to its lower methanol permeability. The above results indicate that QPPO/PSF-ZnO is a good candidate for AAEMFC application.

Keywords: anion exchange membrane, fuel cell, zinc oxide nanoparticle, nanocomposite

Procedia PDF Downloads 428
4563 Estimating the Effect of Fluid in Pressing Process

Authors: A. Movaghar, R. A. Mahdavinejad

Abstract:

To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.

Keywords: pressing, notch, matrix, flow function, vortex

Procedia PDF Downloads 290
4562 The Planner's Pentangle: A Proposal for a 21st-Century Model of Planning for Sustainable Development

Authors: Sonia Hirt

Abstract:

The Planner's Triangle, an oft-cited model that visually defined planning as the search for sustainability to balance the three basic priorities of equity, economy, and environment, has influenced planning theory and practice for a quarter of a century. In this essay, we argue that the triangle requires updating and expansion. Even if planners keep sustainability as their key core aspiration at the center of their imaginary geometry, the triangle's vertices have to be rethought. Planners should move on to a 21st-century concept. We propose a Planner's Pentangle with five basic priorities as vertices of a new conceptual polygon. These five priorities are Wellbeing, Equity, Economy, Environment, and Esthetics (WE⁴). The WE⁴ concept more accurately and fully represents planning’s history. This is especially true in the United States, where public art and public health played pivotal roles in the establishment of the profession in the late 19th and early 20th centuries. It also more accurately represents planning’s future. Both health/wellness and aesthetic concerns are becoming increasingly important in the 21st century. The pentangle can become an effective tool for understanding and visualizing planning's history and present. Planning has a long history of representing urban presents and future as conceptual models in visual form. Such models can play an important role in understanding and shaping practice. For over two decades, one such model, the Planner's Triangle, stood apart as the expression of planning's pursuit for sustainability. But if the model is outdated and insufficiently robust, it can diminish our understanding of planning practice, as well as the appreciation of the profession among non-planners. Thus, we argue for a new conceptual model of what planners do.

Keywords: sustainable development, planning for sustainable development, planner's triangle, planner's pentangle, planning and health, planning and art, planning history

Procedia PDF Downloads 141
4561 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 115
4560 Inferential Reasoning for Heterogeneous Multi-Agent Mission

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.

Keywords: distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 155
4559 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes

Authors: L. S. Chathurika

Abstract:

Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.

Keywords: algorithm, classification, evaluation, features, testing, training

Procedia PDF Downloads 119
4558 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN

Authors: Ajoy Kumar Das, Prasenjit Dey

Abstract:

Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.

Keywords: forced convection, square cylinder, nanofluid, neural network

Procedia PDF Downloads 321
4557 Knowledge Representation Based on Interval Type-2 CFCM Clustering

Authors: Lee Myung-Won, Kwak Keun-Chang

Abstract:

This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.

Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation

Procedia PDF Downloads 322
4556 Effect of Si/Al Ratio on SSZ-13 Crystallization and Its Methanol-To-Olefins Catalytic Properties

Authors: Zhiqiang Xu, Hongfang Ma, Haitao Zhang, Weixin Qian, Weiyong Ying

Abstract:

SSZ-13 materials with different Si/Al ratio were prepared by varying the composition of aluminosilicate precursor solutions upon hydrothermal treatment at 150 °C. The Si/Al ratio of the initial system was systematically changed from 12.5 to infinity in order to study the limits of Al composition in precursor solutions for constructing CHA structure. The intermediates and final products were investigated by complementary techniques such as XRD, HRTEM, FESEM, and chemical analysis. NH3-TPD was used to study the Brønsted acidity of SSZ-13 samples with different Si/Al ratios. The effect of the Si/Al ratio on the precursor species, ultimate crystal size, morphology and yield was investigated. The results revealed that Al species determine the nucleation rate and the number of nuclei, which is tied to the morphology and yield of SSZ-13. The size of SSZ-13 increased and the yield decreased as the Si/Al ratio was improved. Varying Si/Al ratio of the initial system is a facile, commercially viable method of tailoring SSZ-13 crystal size and morphology. Furthermore, SSZ-13 materials with different Si/Al ratio were tested as catalysts for the methanol to olefins (MTO) reaction at 350 °C. SSZ-13 with the Si/Al ratio of 35 shows the best MTO catalytic performance.

Keywords: crystallization, MTO, Si/Al ratio, SSZ-13

Procedia PDF Downloads 294
4555 Photocatalytic Degradation of Acid Dye Over Ag, Loaded ZnO Under UV/Solar Light

Authors: Farida Kaouah, Wassila Hachi, Lamia Brahmi, Chahida Ousselah, Salim Boumaza, Mohamed Trari

Abstract:

The feasibility of using solar irradiation instead of UV light in photocatalysis is a promising approach for water treatment. In this study, photocatalytic degradation of a widely used textile dye, Acid Blue 25 (AB25), with noble metal loaded ZnO photocatalyst (Ag/ZnO), was investigated in aqueous suspension under solar light. The results showed that the deposition of Ag as a noble metal onto the ZnO surface, improved the photodegradation of AB25. . The effect of different parameters such as catalyst dose, initial dye concentration, and contact time was optimized and the optimal degradation of AB25 (97%) was achieved for initial AB25 concentration of 24 mg L−1 an catalyst dose of 1 g L−1 at natural pH (5.42) after 180 min. The kinetic studies were achieved and revealed that the photocatalytic degradation process obeyed to Langmuir–Hinshelwood model and followed a pseudo-first order rate expression. This work envisages the great potential that sunlight photocatalysis has in the degradation of dyes from wastewater

Keywords: acid dye, photocatalytic degradation, sunlight, zinc oxide, noble metal, Langmuir–Hinshelwood model

Procedia PDF Downloads 112
4554 Chinese College Students’ Intercultural Competence and Culture Learning Through Telecollaboration

Authors: Li Yuqing

Abstract:

Fostering the development of intercultural (communicative) competence (IC) is one way to equip our students with the linguistic and cultural skills to communicate effectively with people from diverse backgrounds, particularly English majors who are most likely to encounter multicultural work environments in the future. The purpose of this study is to compare the English majors' intercultural competence in terms of cognitive, affective, and behavioral aspects before and after a ten-week telecollaboration program between 23 English majors at a Chinese university and 23 American students enrolled in a Chinese class at an American university, and analyze their development during the program. The results indicate that subjects' cognitive, affective, and behavioral perceptions of IC improved significantly over time. In addition, the program had significant effects on the participants' “Interaction Confidence,” “Interaction Engagement,” and “Interaction Enjoyment” - three components of intercultural sensitivity - as well as their overall intercultural effectiveness (except for “Message Skills”). With the widespread use of the internet, this type of online cultural exchange has a promising future, as suggested by the findings of the current study.

Keywords: intercultural competence, English majors, computer-mediated communication, telecollaboration

Procedia PDF Downloads 74
4553 Building Information Modelling: A Review to Indian Scenario

Authors: P. Agnivesh, P. V. Ponambala Moorthi

Abstract:

Evolution of information modelling leads to the visualisation of well-organized built environment. Building Information Modelling (BIM) is considered as evolution in the off-site construction which essentially enhances and controls the present scenario of on-site construction paradigms. Promptness, sustainability and security are considered as the important characteristics of the building information modelling. Projects that uses BIM are tied firmly by technology but distributed organizationally. This allows different team members in the project to associate and integrate the works and work flows. This will in turn improve the efficiency of work breakdown structure. Internationally BIM had been accepted as modern computer aided way of information sharing by construction industry for efficient way of manipulation in order to avoid the on-site misperceptions. Even though, in developing countries like India BIM is in the phase of start and requires lot of mandates and policies to be brought about by the government for its widespread implementations. This paper reviews the current scenario of BIM worldwide and in India and suggests for the improved implementation of building modelling for Indian policy condition.

Keywords: building information modelling, Indian polity, information modelling, information sharing, mandates and policies, sustainability.

Procedia PDF Downloads 375
4552 Improved Morphology in Sequential Deposition of the Inverted Type Planar Heterojunction Solar Cells Using Cheap Additive (DI-H₂O)

Authors: Asmat Nawaz, Ceylan Zafer, Ali K. Erdinc, Kaiying Wang, M. Nadeem Akram

Abstract:

Hybrid halide Perovskites with the general formula ABX₃, where X = Cl, Br or I, are considered as an ideal candidates for the preparation of photovoltaic devices. The most commonly and successfully used hybrid halide perovskite for photovoltaic applications is CH₃NH₃PbI₃ and its analogue prepared from lead chloride, commonly symbolized as CH₃NH₃PbI₃_ₓClₓ. Some researcher groups are using lead free (Sn replaces Pb) and mixed halide perovskites for the fabrication of the devices. Both mesoporous and planar structures have been developed. By Comparing mesoporous structure in which the perovskite materials infiltrate into mesoporous metal oxide scaffold, the planar architecture is much simpler and easy for device fabrication. In a typical perovskite solar cell, a perovskite absorber layer is sandwiched between the hole and electron transport. Upon the irradiation, carriers are created in the absorber layer that can travel through hole and electron transport layers and the interface in between. We fabricated inverted planar heterojunction structure ITO/PEDOT/ Perovskite/PCBM/Al, based solar cell via two-step spin coating method. This is also called Sequential deposition method. A small amount of cheap additive H₂O was added into PbI₂/DMF to make a homogeneous solution. We prepared four different solution such as (W/O H₂O, 1% H₂O, 2% H₂O, 3% H₂O). After preparing, the whole night stirring at 60℃ is essential for the homogenous precursor solutions. We observed that the solution with 1% H₂O was much more homogenous at room temperature as compared to others. The solution with 3% H₂O was precipitated at once at room temperature. The four different films of PbI₂ were formed on PEDOT substrates by spin coating and after that immediately (before drying the PbI₂) the substrates were immersed in the methyl ammonium iodide solution (prepared in isopropanol) for the completion of the desired perovskite film. After getting desired films, rinse the substrates with isopropanol to remove the excess amount of methyl ammonium iodide and finally dried it on hot plate only for 1-2 minutes. In this study, we added H₂O in the PbI₂/DMF precursor solution. The concept of additive is widely used in the bulk- heterojunction solar cells to manipulate the surface morphology, leading to the enhancement of the photovoltaic performance. There are two most important parameters for the selection of additives. (a) Higher boiling point w.r.t host material (b) good interaction with the precursor materials. We observed that the morphology of the films was improved and we achieved a denser, uniform with less cavities and almost full surface coverage films but only using precursor solution having 1% H₂O. Therefore, we fabricated the complete perovskite solar cell by sequential deposition technique with precursor solution having 1% H₂O. We concluded that with the addition of additives in the precursor solutions one can easily be manipulate the morphology of the perovskite film. In the sequential deposition method, thickness of perovskite film is in µm and the charge diffusion length of PbI₂ is in nm. Therefore, by controlling the thickness using other deposition methods for the fabrication of solar cells, we can achieve the better efficiency.

Keywords: methylammonium lead iodide, perovskite solar cell, precursor composition, sequential deposition

Procedia PDF Downloads 246
4551 Generating Biogas from Municipal Kitchen Waste: An Experience from Gaibandha, Bangladesh

Authors: Taif Rocky, Uttam Saha, Mahobul Islam

Abstract:

With a rapid urbanisation in Bangladesh, waste management remains one of the core challenges. Turning municipal waste into biogas for mass usage is a solution that Bangladesh needs to adopt urgently. Practical Action with its commitment to challenging poverty with technological justice has piloted such idea in Gaibandha. The initiative received immense success and drew the attention of policy makers and practitioners. We believe, biogas from waste can highly contribute to meet the growing demand for energy in the country at present and in the future. Practical Action has field based experience in promoting small scale and innovative technologies. We have proven track record in integrated solid waste management. We further utilized this experience to promote waste to biogas at end users’ level. In 2011, we have piloted a project on waste to biogas in Gaibandha, a northern secondary town of Bangladesh. With resource and support from UNICEF and with our own innovative funds we have established a complete chain of utilizing waste to the renewable energy source and organic fertilizer. Biogas is produced from municipal solid waste, which is properly collected, transported and segregated by private entrepreneurs. The project has two major focuses, diversification of biogas end use and establishing a public-private partnership business model. The project benefits include Recycling of Wastes, Improved institutional (municipal) capacity, Livelihood from improved services and Direct Income from the project. Project risks include Change of municipal leadership, Traditional mindset, Access to decision making, Land availability. We have observed several outcomes from the initiative. Up scaling such an initiative will certainly contribute for sustainable cleaner and healthier urban environment and urban poverty reduction. - It reduces the unsafe disposal of wastes which improve the cleanliness and environment of the town. -Make drainage system effective reducing the adverse impact of water logging or flooding. -Improve public health from better management of wastes. -Promotes usage of biogas replacing the use of firewood/coal which creates smoke and indoor air pollution in kitchens which have long term impact on health of women and children. -Reduce the greenhouse gas emission from the anaerobic recycling of wastes and contributes to sustainable urban environment. -Promote the concept of agroecology from the uses of bio slurry/compost which contributes to food security. -Creates green jobs from waste value chain which impacts on poverty alleviation of urban extreme poor. -Improve municipal governance from inclusive waste services and functional partnership with private sectors. -Contribute to the implementation of 3R (Reduce, Reuse, Recycle) Strategy and Employment Creation of extreme poor to achieve the target set in Vision 2021 by Government of Bangladesh.

Keywords: kitchen waste, secondary town, biogas, segregation

Procedia PDF Downloads 222
4550 Comparative Analysis of Forensic Medicine Course Evaluation: A Two Year Study

Authors: Prateek Rastogi

Abstract:

Medical teaching in present era concentrates not only on teaching but on effective teaching. For effective teaching a combination of effective carefully designed curriculum, an educated educator, competent learner and fool proof evaluation system is required. Keeping these parameters in mind and study was undertaken at Kasturba Medical College, Mangalore among medical students. In this study, evaluation of Forensic Medicine syllabus along with its teaching and evaluation methodology was done using 20 different parameters. This questionnaire based study was done over a period of two years i.e. 2013 and 2014. Batch of students who just passed the forensic medicine subject was included for study. Carefully designed questionnaire contained questions related to course content, teaching methodology and evaluation system along with provisions to mention merits and demerits of subject. The feedbacks in first round were analyzed and suggestions were implemented before conducting the second round of study. Overall evaluation of course was done as well as it was compared with other subjects of second MBBS. It was noted that Scores improved in 2nd survey thus stressing the importance of course evaluation and student feedback in teaching improvement.

Keywords: teaching methodology, system of evaluation, course content, bioinformatics, biomedicine

Procedia PDF Downloads 357
4549 A Method for Reduction of Association Rules in Data Mining

Authors: Diego De Castro Rodrigues, Marcelo Lisboa Rocha, Daniela M. De Q. Trevisan, Marcos Dias Da Conceicao, Gabriel Rosa, Rommel M. Barbosa

Abstract:

The use of association rules algorithms within data mining is recognized as being of great value in the knowledge discovery in databases. Very often, the number of rules generated is high, sometimes even in databases with small volume, so the success in the analysis of results can be hampered by this quantity. The purpose of this research is to present a method for reducing the quantity of rules generated with association algorithms. Therefore, a computational algorithm was developed with the use of a Weka Application Programming Interface, which allows the execution of the method on different types of databases. After the development, tests were carried out on three types of databases: synthetic, model, and real. Efficient results were obtained in reducing the number of rules, where the worst case presented a gain of more than 50%, considering the concepts of support, confidence, and lift as measures. This study concluded that the proposed model is feasible and quite interesting, contributing to the analysis of the results of association rules generated from the use of algorithms.

Keywords: data mining, association rules, rules reduction, artificial intelligence

Procedia PDF Downloads 161
4548 Battery Replacement Strategy for Electric AGVs in an Automated Container Terminal

Authors: Jiheon Park, Taekwang Kim, Kwang Ryel Ryu

Abstract:

Electric automated guided vehicles (AGVs) are becoming popular in many automated container terminals nowadays because they are pollution-free and environmentally friendly vehicles for transporting the containers within the terminal. Since efficient operation of AGVs is critical for the productivity of the container terminal, the replacement of batteries of the AGVs must be conducted in a strategic way to minimize undesirable transportation interruptions. While a too frequent replacement may lead to a loss of terminal productivity by delaying container deliveries, missing the right timing of battery replacement can result in a dead AGV that causes a severer productivity loss due to the extra efforts required to finish post treatment. In this paper, we propose a strategy for battery replacement based on a scoring function of multiple criteria taking into account the current battery level, the distances to different battery stations, and the progress of the terminal job operations. The strategy is optimized using a genetic algorithm with the objectives of minimizing the total time spent for battery replacement as well as maximizing the terminal productivity.

Keywords: AGV operation, automated container terminal, battery replacement, electric AGV, strategy optimization

Procedia PDF Downloads 389
4547 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: diabetic retinopathy, fundus, CHT, exudates, hemorrhages

Procedia PDF Downloads 272
4546 IoT Based Information Processing and Computing

Authors: Mannan Ahmad Rasheed, Sawera Kanwal, Mansoor Ahmad Rasheed

Abstract:

The Internet of Things (IoT) has revolutionized the way we collect and process information, making it possible to gather data from a wide range of connected devices and sensors. This has led to the development of IoT-based information processing and computing systems that are capable of handling large amounts of data in real time. This paper provides a comprehensive overview of the current state of IoT-based information processing and computing, as well as the key challenges and gaps that need to be addressed. This paper discusses the potential benefits of IoT-based information processing and computing, such as improved efficiency, enhanced decision-making, and cost savings. Despite the numerous benefits of IoT-based information processing and computing, several challenges need to be addressed to realize the full potential of these systems. These challenges include security and privacy concerns, interoperability issues, scalability and reliability of IoT devices, and the need for standardization and regulation of IoT technologies. Moreover, this paper identifies several gaps in the current research related to IoT-based information processing and computing. One major gap is the lack of a comprehensive framework for designing and implementing IoT-based information processing and computing systems.

Keywords: IoT, computing, information processing, Iot computing

Procedia PDF Downloads 188
4545 The Management of Care by People with Type 2 Diabetes versus the Professional Care at Primary Health Care in Brazil

Authors: Nunila Ferreira de Oliveira, Silvana Martins Mishima

Abstract:

Diabetes mellitus type 2 (DM2) prevalence, is increasing on the world, in Brazil is considered a public health problem. Treatment focuses on glycemic control depending primarily of lifestyle changes - not drug treatment (NDT), may involve drug therapy (DT) and requires continuous health monitoring. In Brazil this monitoring is performed by the Unified Health System (SUS) through Primary Health Care (PHC), which stimulate people with DM2 empowerment for care management. SUS was approved in 1988 and the PHC operationalization was strengthened with the creation of the Family Health Strategy (FHS) in 1994. Our aim was to analyze the people with DM2 participation in front of the care management health monitoring in the FHS. Qualitative research was carried out through non-participant observation of attendance of 25 people with DM2 in the FHS and interviewed at home. Ethical guidelines were followed. It was found that people with DM2 only follow professionals’ recommendations that make sense according to their own conceptions of health/disease; most of them emphasize the importance of (DT) with little emphasis on the NDT, was found great difficulty in the NDT and lack of knowledge about the disease and care. As regards monitoring the FHS, were observed therapeutic practices based on the bio medical model, although the APS search for another care perspective; NDT is not systematically accompanied by the health team and takes place a few educational activities on the DM2 in the FHS, with low user adoption. The work of the FHS is done by multidisciplinary teams, but we see the need for greater participation of nurses in clinical-care follow-up of this population and may also act in adapting to the NDT. Finally we emphasize the need for professional practices that consider the difficulties to care management by people with DM2, especially because of the NDT. It is noticed that the measures recommended by the FHS professionals are not always developed by people with DM2. We must seek the empowerment of people with DM2 to manage the form of care associated with the FHS team, seeking to reduce the incidence of complications and higher quality of life.

Keywords: diabetes mellitus, primary health care, nursing, management of care

Procedia PDF Downloads 456