Search results for: specific learning disability
9764 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments
Authors: Rahul Paul, Peter Mctaggart, Luke Skinner
Abstract:
Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry
Procedia PDF Downloads 999763 The Art and Science of Trauma-Informed Psychotherapy: Guidelines for Inter-Disciplinary Clinicians
Authors: Daphne Alroy-Thiberge
Abstract:
Trauma-impacted individuals present unique treatment challenges that include high reactivity, hyper-and hypo-arousal, poor adherence to therapy, as well as powerful transference and counter-transference experiences in therapy. This work provides an overview of the clinical tenets most often encountered in trauma-impacted individuals. Further, it provides readily applicable clinical techniques to optimize therapeutic rapport and facilitate accelerated positive mental health outcomes. Finally, integrated neuroscience and clinical evidence-based data are discussed to shed new light on crisis states in trauma-impacted individuals. This knowledge is utilized to provide effective and concrete interventions towards rapid and successful de-escalation of the impacted individual. A highly interactive, adult-learning-principles-based modality is utilized to provide an organic learning experience for participants. The information and techniques learned aim to increase clinical effectiveness, reduce staff injuries and burnout, and significantly enhance positive mental health outcomes and self-determination for the trauma-impacted individuals treated.Keywords: clinical competencies, crisis interventions, psychotherapy techniques, trauma informed care
Procedia PDF Downloads 1099762 Higher Freshwater Fish and Sea Fish Intake Is Inversely Associated with Liver Cancer in Patients with Hepatitis B
Authors: Maomao Cao
Abstract:
Background and aims While the association between higher consumption of fish and lower liver cancer risk has been confirmed, however, the association between specific fish intake and liver cancer risk remains unknown. We aimed to identify the association between specific fish consumption and the risk of liver cancer. Methods: Based on a community-based seropositive hepatitis B cohort involving 18404 individuals, face to face interview was conducted by a standardized questionnaire to acquire baseline information. Three common fish types in this study were analyzed, including freshwater fish, sea fish, and small fish (shrimp, crab, conch, and shell). All participants received liver cancer screening, and possible cases were identified by CT or MRI. Multivariable logistic models were applied to estimate the odds ratio (OR) and 95% confidence intervals (CI). Multivariate multiple imputations were utilized to impute observations with missing values. Results: 179 liver cancer cases were identified. Consumption of freshwater fish and sea fish at least once a week had a strong inverse association with liver cancer risk compared with the lowest intake level, with an adjusted OR of 0.53 (95% CI, 0.38-0.75) and 0.38 (95% CI, 0.19-0.73), respectively. This inverse association was also observed after the imputation. There was no statistically significant association between intake of small fish and liver cancer risk (OR=0.58, 95%, CI 0.32-1.08). Conclusions: Our findings suggest that consumption of freshwater fish and sea fish at least once a week could reduce liver cancer risk.Keywords: cross-sectional study, fish intake, liver cancer, risk factor
Procedia PDF Downloads 2739761 Improving the Students’ Writing Skill by Using Brainstorming Technique
Authors: M. Z. Abdul Rofiq Badril Rizal
Abstract:
This research is aimed to know the improvement of students’ English writing skill by using brainstorming technique. The technique used in writing is able to help the students’ difficulties in generating ideas and to lead the students to arrange the ideas well as well as to focus on the topic developed in writing. The research method used is classroom action research. The data sources of the research are an English teacher who acts as an observer and the students of class X.MIA5 consist of 35 students. The test result and observation are collected as the data in this research. Based on the research result in cycle one, the percentage of students who reach minimum accomplishment criteria (MAC) is 76.31%. It shows that the cycle must be continued to cycle two because the aim of the research has not accomplished, all of the students’ scores have not reached MAC yet. After continuing the research to cycle two and the weaknesses are improved, the process of teaching and learning runs better. At the test which is conducted in the end of learning process in cycle two, all of the students reach the minimum score and above 76 based on the minimum accomplishment criteria. It means the research has been successful and the percentage of students who reach minimum accomplishment criteria is 100%. Therefore, the writer concludes that brainstorming technique is able to improve the students’ English writing skill at the tenth grade of SMAN 2 Jember.Keywords: brainstorming technique, improving, writing skill, knowledge and innovation engineering
Procedia PDF Downloads 3679760 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 679759 A Shared Space: A Pioneering Approach to Interprofessional Education in New Zealand
Authors: Maria L. Ulloa, Ruth M. Crawford, Stephanie Kelly, Joey Domdom
Abstract:
In recent decades health and social service delivery have become more collaborative and interdisciplinary. Emerging trends suggest the need for an integrative and interprofessional approach to meet the challenges faced by professionals navigating the complexities of health and social service practice environments. Terms such as multidisciplinary practice, interprofessional collaboration, interprofessional education and transprofessional practice have become the common language used across a range of social services and health providers in western democratic systems. In Aotearoa New Zealand, one example of an interprofessional collaborative approach to curriculum design and delivery in health and social service is the development of an innovative Masters of Professional Practice programme. This qualification is the result of a strategic partnership between two tertiary institutions – Whitireia New Zealand (NZ) and the Wellington Institute of Technology (Weltec) in Wellington. The Master of Professional Practice programme was designed and delivered from the perspective of a collaborative, interprofessional and relational approach. Teachers and students in the programme come from a diverse range of cultural, professional and personal backgrounds and are engaged in courses using a blended learning approach that incorporates the values and pedagogies of interprofessional education. Students are actively engaged in professional practice while undertaking the programme. This presentation describes the themes of exploratory qualitative formative observations of engagement in class and online, student assessments, student research projects, as well as qualitative interviews with the programme teaching staff. These formative findings reveal the development of critical practice skills around the common themes of the programme: research and evidence based practice, education, leadership, working with diversity and advancing critical reflection of professional identities and interprofessional practice. This presentation will provide evidence of enhanced learning experiences in higher education and learning in multi-disciplinary contexts.Keywords: diversity, exploratory research, interprofessional education, professional identity
Procedia PDF Downloads 3029758 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System
Authors: R. Ramesh, K. K. Shivaraman
Abstract:
The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management
Procedia PDF Downloads 3059757 Learning Chinese Suprasegmentals for a Better Communicative Performance
Authors: Qi Wang
Abstract:
Chinese has become a powerful worldwide language and millions of learners are studying it all over the words. Chinese is a tone language with unique meaningful characters, which makes foreign learners master it with more difficulties. On the other hand, as each foreign language, the learners of Chinese first will learn the basic Chinese Sound Structure (the initials and finals, tones, Neutral Tone and Tone Sandhi). It’s quite common that in the following studies, teachers made a lot of efforts on drilling and error correcting, in order to help students to pronounce correctly, but ignored the training of suprasegmental features (e.g. stress, intonation). This paper analysed the oral data based on our graduation students (two-year program) from 2006-2013, presents the intonation pattern of our graduates to speak Chinese as second language -high and plain with heavy accents, without lexical stress, appropriate stop endings and intonation, which led to the misunderstanding in different real contexts of communications and the international official Chinese test, e.g. HSK (Chinese Proficiency Test), HSKK (HSK Speaking Test). This paper also demonstrated how the Chinese to use the suprasegmental features strategically in different functions and moods (declarative, interrogative, imperative, exclamatory and rhetorical intonations) in order to train the learners to achieve better Communicative Performance.Keywords: second language learning, suprasegmental, communication, HSK (Chinese Proficiency Test)
Procedia PDF Downloads 4379756 High Photosensitivity and Broad Spectral Response of Multi-Layered Germanium Sulfide Transistors
Authors: Rajesh Kumar Ulaganathan, Yi-Ying Lu, Chia-Jung Kuo, Srinivasa Reddy Tamalampudi, Raman Sankar, Fang Cheng Chou, Yit-Tsong Chen
Abstract:
In this paper, we report the optoelectronic properties of multi-layered GeS nanosheets (~28 nm thick)-based field-effect transistors (called GeS-FETs). The multi-layered GeS-FETs exhibit remarkably high photoresponsivity of Rλ ~ 206 AW-1 under illumination of 1.5 µW/cm2 at = 633 nm, Vg = 0 V, and Vds = 10 V. The obtained Rλ ~ 206 AW-1 is excellent as compared with a GeS nanoribbon-based and the other family members of group IV-VI-based photodetectors in the two-dimensional (2D) realm, such as GeSe and SnS2. The gate-dependent photoresponsivity of GeS-FETs was further measured to be able to reach Rλ ~ 655 AW-1 operated at Vg = -80 V. Moreover, the multi-layered GeS photodetector holds high external quantum efficiency (EQE ~ 4.0 × 104 %) and specific detectivity (D* ~ 2.35 × 1013 Jones). The measured D* is comparable to those of the advanced commercial Si- and InGaAs-based photodiodes. The GeS photodetector also shows an excellent long-term photoswitching stability with a response time of ~7 ms over a long period of operation (>1 h). These extraordinary properties of high photocurrent generation, broad spectral range, fast response, and long-term stability make the GeS-FET photodetector a highly qualified candidate for future optoelectronic applications.Keywords: germanium sulfide, photodetector, photoresponsivity, external quantum efficiency, specific detectivity
Procedia PDF Downloads 5419755 Service Information Integration Platform as Decision Making Tools for the Service Industry Supply Chain-Indonesia Service Integration Project
Authors: Haikal Achmad Thaha, Pujo Laksono, Dhamma Nibbana Putra
Abstract:
Customer service is one of the core interest in a service sector of a company, whether as the core business or as service part of the operation. Most of the time, the people and the previous research in service industry is focused on finding the best business model solution for the service sector, usually to decide between total in house customer service, outsourcing, or something in between. Conventionally, to take this decision is some important part of the management job, and this is a process that usually takes some time and staff effort, meanwhile market condition and overall company needs may change and cause loss of income and temporary disturbance in the companies operation . However, in this paper we have offer a new concept model to assist decision making process in service industry. This model will featured information platform as central tool to integrate service industry operation. The result is service information model which would ideally increase response time and effectivity of the decision making. it will also help service industry in switching the service solution system quickly through machine learning when the companies growth and the service solution needed are changing.Keywords: service industry, customer service, machine learning, decision making, information platform
Procedia PDF Downloads 6229754 Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method
Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi
Abstract:
The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)
Procedia PDF Downloads 2609753 Iranian Students’ and Teachers’ Perceptions of Effective Foreign Language Teaching
Authors: Mehrnoush Tajnia, Simin Sadeghi-Saeb
Abstract:
Students and teachers have different perceptions of effectiveness of instruction. Comparing students’ and teachers’ beliefs and finding the mismatches between them can increase L2 students’ satisfaction. Few studies have taken into account the beliefs of both students and teachers on different aspects of pedagogy and the effect of learners’ level of education and contexts on effective foreign language teacher practices. Therefore, the present study was conducted to compare students’ and teachers’ perceptions on effective foreign language teaching. A sample of 303 learners and 54 instructors from different private language institutes and universities participated in the study. A questionnaire was developed to elicit participants’ beliefs on effective foreign language teaching and learning. The analysis of the results revealed that: a) there is significant difference between the students’ beliefs about effective teacher practices and teachers’ belief, b) Class level influences students’ perception of effective foreign language teacher, d) There is a significant difference of opinion between those learners who study foreign languages at university and those who study foreign language in private institutes with respect to effective teacher practices. The present paper concludes that finding the gap between students’ and teachers’ beliefs would help both of the groups to enhance their learning and teaching.Keywords: effective teacher, effective teaching, students’ beliefs, teachers’ beliefs
Procedia PDF Downloads 3179752 Utilising Sociodrama as Classroom Intervention to Develop Sensory Integration in Adolescents who Present with Mild Impaired Learning
Authors: Talita Veldsman, Elzette Fritz
Abstract:
Many children attending special education present with sensory integration difficulties that hamper their learning and behaviour. These learners can benefit from therapeutic interventions as part of their classroom curriculum that can address sensory development and allow for holistic development to take place. A research study was conducted by utilizing socio-drama as a therapeutic intervention in the classroom in order to develop sensory integration skills. The use of socio-drama as therapeutic intervention proved to be a successful multi-disciplinary approach where education and psychology could build a bridge of growth and integration. The paper describes how socio-drama was used in the classroom and how these sessions were designed. The research followed a qualitative approach and involved six Afrikaans-speaking children attending special secondary school in the age group 12-14 years. Data collection included observations during the session, reflective art journals, semi-structured interviews with the teacher and informal interviews with the adolescents. The analysis found improved self-confidence, better social relationships, sensory awareness and self-regulation in the participants after a period of a year.Keywords: education, sensory integration, sociodrama, classroom intervention, psychology
Procedia PDF Downloads 5789751 Comparative Analysis of Decentralized Financial Education Systems: Lessons From Global Implementations
Authors: Flex Anim
Abstract:
The financial system is a decentralized studies system that was put into place in Ghana as a grassroots financial studies approach. Its main goal is to give people the precise knowledge, abilities, and training required for a given trade, business, profession, or occupation. In this essay, the question of how the financial studies system's devolution to local businesses results in responsible and responsive representation as well as long-term company learning is raised. It centers on two case studies, Asekwa Municipal and Oforikrom. The next question posed by the study is how senior high school students are rebuilding their livelihoods and socioeconomic well-being by creating new curriculum and social practices related to the finance and business studies system. The paper here concentrates on Kumasi District and makes inferences for the other two examples. The paper demonstrates how the financial studies system's establishment of representative groups creates the democratic space required for the successful representation of community goals. Nonetheless, the interests of a privileged few are advanced as a result of elite capture. The state's financial and business training programs do not adhere to the financial studies system's established policy procedures and do not transfer pertinent and discretionary resources to local educators. As a result, local educators are unable to encourage representation that is accountable and responsive. The financial studies system continues to pique the interest of rural areas, but this desire is skewed toward getting access to financial or business training institutions for higher education. Since the locals are not actively involved in financial education, the financial studies system serves just to advance the interests of specific populations. This article explains how rhetoric and personal benefits can be supported by the public even in the case of "failed" interventions.Keywords: financial studies system, financial studies' devolution, local government, senior high schools and financial education, as well as community goals and representation
Procedia PDF Downloads 749750 A Study of the Attitude Towards Marriage among Young Adults in Indian and Tibetan Society Which Impacted in Social Learning and Cross-Cultural Behavior
Authors: Meenakshi Chaubey
Abstract:
A principle proposed in the cross-cultural adaption of behavior among Indian and Tibetan societies in which there are not any great variations between their young adults on the mindset of day-to-day marriage, Marriage plays a dominant position in constructing the society, which in large part comprises underneath the domain of lifestyle. Way of life is a social behavior and norm located in human societies where an extensive range of phenomena can be transmitted thru social studying. It acts characteristic of the individual has been the diploma day-to-day which they have got cultivated a specific stage of class in arts, science, architecture. The existing studies preliminarily on young adults of each community, wherein we carried out a comparative observe of the mindset of daily marriage among Indian and Tibetan teens. Further, we studied statistics comprehensively on the mindset closer day by day the marriage between Indian adult males and Tibetan younger males. With the extension of a complete look, we considered the mindset of an everyday marriage of Indian girls and Tibetan young ladies. Studies 1 showed that there might be no sizable distinction within the attitude of the day-to-day marriage of Indian and Tibetan teenagers. It, in addition, showed that they followed each different marriage beliefs and customs. Studies 2 showed that there might be no important difference in the attitude toward the everyday marriage of Indian and Tibetan young males. It similarly showcased that day-to-day secular schooling gadget in Tibetan society complements their clinical approach and changes their point of view on distinct social issues along with marriage. Research three confirmed that there is no substantial difference in the mindset of the daily marriage of Indian and Tibetan younger females. It similarly spread out the strict authorities' recommendations that they may no longer be allowed day-to-day comply with their marriage practices, including polygamy and polyandry. Thus, the information showed that there's a shift of lifestyle from one network every day to some other community because of social every day, which affects the conduct and results of daily past cultural adaptation.Keywords: culture, marriage, attitude, society, young adults, Indian, Tibetan
Procedia PDF Downloads 859749 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction
Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong
Abstract:
Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.Keywords: data refinement, machine learning, mutual information, short-term latency prediction
Procedia PDF Downloads 1699748 Investigation of Flow Characteristics of Trapezoidal Side Weir in Rectangular Channel for Subcritical Flow
Authors: Malkhan Thakur, P. Deepak Kumar, P. K. S. Dikshit
Abstract:
In recent years, the hydraulic behavior of side weirs has been the subject of many investigations. Most of the studies have been in connection with specific problems and have involved models. This is perhaps understandable, since a generalized treatment is made difficult by the large number of possible variables to be used to define the problem. A variety of empirical head discharge relationships have been suggested for side weirs. These empirical approaches failed to adequately consider the actual situation, and produced equations applicable only in circumstances virtually identical to those of the experiment. The present investigation is targeted to study to a greater depth the effect of different trapezium angles of a trapezoidal side weir and study of water surface profile in spatially varied flow with decreasing discharge maintaining the main channel flow subcritical. On the basis of experiment, the relationship between upstream Froude number and coefficient of discharge has been established. All the characteristics of spatially varied flow with decreasing discharge have been studied and subsequently formulated. The scope of the present investigation has been basically limited to a one-dimensional model of flow for the purpose of analysis. A formulation has been derived using the theoretical concept of constant specific energy. Coefficient of discharge has been calculated and experimental results were presented.Keywords: weirs, subcritical flow, rectangular channel, trapezoidal side weir
Procedia PDF Downloads 2699747 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage
Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng
Abstract:
Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning
Procedia PDF Downloads 739746 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning
Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor
Abstract:
Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH
Procedia PDF Downloads 1749745 Using Deep Learning in Lyme Disease Diagnosis
Authors: Teja Koduru
Abstract:
Untreated Lyme disease can lead to neurological, cardiac, and dermatological complications. Rapid diagnosis of the erythema migrans (EM) rash, a characteristic symptom of Lyme disease is therefore crucial to early diagnosis and treatment. In this study, we aim to utilize deep learning frameworks including Tensorflow and Keras to create deep convolutional neural networks (DCNN) to detect images of acute Lyme Disease from images of erythema migrans. This study uses a custom database of erythema migrans images of varying quality to train a DCNN capable of classifying images of EM rashes vs. non-EM rashes. Images from publicly available sources were mined to create an initial database. Machine-based removal of duplicate images was then performed, followed by a thorough examination of all images by a clinician. The resulting database was combined with images of confounding rashes and regular skin, resulting in a total of 683 images. This database was then used to create a DCNN with an accuracy of 93% when classifying images of rashes as EM vs. non EM. Finally, this model was converted into a web and mobile application to allow for rapid diagnosis of EM rashes by both patients and clinicians. This tool could be used for patient prescreening prior to treatment and lead to a lower mortality rate from Lyme disease.Keywords: Lyme, untreated Lyme, erythema migrans rash, EM rash
Procedia PDF Downloads 2419744 The Consumption of Limited Edition Products in Soccer Clubs of Southern Brazil
Authors: Eduardo Wiebbelling, Marcelo Curth
Abstract:
Among the sporting modalities, soccer stands out as the one that reached the world's largest spray today, moving large monetary sums. However, the modality presents potential to be explored by the agents inserted in it. New advertising campaigns have overwhelmed the media and the consumption of sports goods, especially soccer, has increased over the years by having experts increase their marketing projects linked to this specific area. However, little is studied about consumer behavior regarding the purchase of specific products linked to the club. In this sense, the research aims to understand the reasons that lead the fans of two rival clubs in southern Brazil to consume limited edition products from their respective soccer clubs. The method used was an in-depth exploratory survey with thirty memberships and non-memberships. The results showed that in the group of memberships the main motivations are emotional, of historical rescue from memories and feelings that arouse in the fan when they remember their idols and the titles conquered by the club. In the group of non-memberships, a more rational and objective view was perceived, involving aspects such as promotion, utility and extra benefits. Finally, it is realized that fans generally do not value the products to be limited edition. It is believed that this is due to the fact that the products are usually marketed at a higher price when compared to similar products offered on a regular basis.Keywords: consumer behavior, limited edition, soccer, sports marketing
Procedia PDF Downloads 3419743 The Role of Organizational Identity in Disaster Response, Recovery and Prevention: A Case Study of an Italian Multi-Utility Company
Authors: Shanshan Zhou, Massimo Battaglia
Abstract:
Identity plays a critical role when an organization faces disasters. Individuals reflect on their working identities and identify themselves with the group and the organization, which facilitate collective sensemaking under crisis situations and enable coordinated actions to respond to and recover from disasters. In addition, an organization’s identity links it to its regional community, which fosters the mobilization of resources and contributes to rapid recovery. However, identity is also problematic for disaster prevention because of its persistence. An organization’s ego-defenses system prohibits the rethink of its identity and a rigid identity obstructs disaster prevention. This research aims to tackle the ‘problem’ of identity by study in-depth a case of an Italian multi–utility which experienced the 2012 Northern Italy earthquakes. Collecting data from 11 interviews with top managers and key players in the local community and archived materials, we find that the earthquakes triggered the rethink of the organization’s identity, which got reinforced afterward. This research highlighted the importance of identity in disaster response and recovery. More importantly, it explored the solution of overcoming the barrier of ego-defense that is to transform the organization into a learning organization which constantly rethinks its identity.Keywords: community identity, disaster, identity, organizational learning
Procedia PDF Downloads 7329742 Single Imputation for Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.Keywords: machine learning, audiograms, data imputations, single imputations
Procedia PDF Downloads 829741 Association of AGT (M268T) Gene Polymorphism in Diabetes and Nephropathy in Pakistan
Authors: Syed M. Shahid, Rozeena Shaikh, Syeda N. Nawab, Abid Azhar
Abstract:
Diabetes mellitus (DM) is a prevalent non-communicable disease worldwide. DM may lead to many vascular complications like hypertension, nephropathy, retinopathy, neuropathy and foot infections. Pathogenesis of diabetic nephropathy (DN) is implicated by the polymorphisms in genes encoding the specific components of renin angiotensin aldosterone system (RAAS) which include angiotensinogen (AGT), angiotensin-II receptor and angiotensin converting enzyme (ACE) genes. This study was designed to explore the possible association of AG (M268T) polymorphism in the patients of diabetes and nephropathy in Pakistan. Study subjects included 100 controls, 260 diabetic patients without renal insufficiency and 190 diabetic nephropathy patients with persistent albuminuria. Fasting blood samples were collected from all the subjects after getting institutional ethical approval and informed consent. The biochemical estimations, PCR amplification and direct sequencing for the specific region of AGT gene was carried out. A significantly high frequency of TT genotype and T allele of AGT (M268T) was observed in the patients of diabetes with nephropathy as compared to controls and diabetic patients without any known renal impairment. The TT genotype and T allele of AGT (M268T) polymorphism may be considered as a genetic risk factor for the development and progression of nephropathy in diabetes. Further cross sectional population studies would be of help to establish and confirm the observed possible association of AGT gene variations with development of nephropathy in diabetes.Keywords: RAAS, AGT (M268T), diabetes, nephropathy
Procedia PDF Downloads 5269740 Exploring the Applications of Neural Networks in the Adaptive Learning Environment
Authors: Baladitya Swaika, Rahul Khatry
Abstract:
Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.Keywords: computer adaptive tests, item response theory, machine learning, neural networks
Procedia PDF Downloads 1759739 Characterisation of the H-ZSM-5 Zeolite Samples Synthesized in Wide Range of Si/Al Ratios and with H₂SO₄ and CH₃COOH Acids Used for Transformation to H-Form
Authors: Mladen Jankovic, Biljana Djuric, Djurdja Oljaca, Vladimir Damjanovic, Radislav Filipovic, Zoran Obrenovic
Abstract:
One of the key characteristics of zeolites with ZSM-5 crystalline form is the possibility of synthesis in a wide range of molar ratios, from the relatively low ratio of about 20 to highly silicate forms with a Si/Al ratio over 1000. For industrial production and commercial use of this type of zeolite, it is very important to know the influence of the molar Si/Al ratio on the characteristics of zeolite powders. In this paper, the influence of the Si/Al ratio on the characteristics of H-ZSM-5 zeolites synthesized in the presence of tetrapropylammonium bromide is questioned, including the possibility of conversion to the H-form using different acids. The quality of the samples is characterized in terms of crystallinity, chemical composition, morphology, granulometry, specific surface area (BET), pore size and acidity. XRD, FT-IR, EDX, ICP, SEM and TPD instrumental techniques were used to characterize the samples. In most of the performed syntheses, zeolite has been obtained with very good properties. It was shown that the examined conditions have a significant influence on the characteristics of the synthesized powders. The different chemical composition of the starting mixture, ie. the Si/Al ratio, has a very significant influence on the crystal structure of the synthesized powders, and thus on the other tested characteristics. It has been observed that optimal ion exchange results for powders of different Si/Al ratios are achieved by using different acids. Also, the dependence of the specific surface on the concentration of H+ or Na+ ions was confirmed.Keywords: Characterisation, H-ZSM-5, molar ratio, synthesis, tetrapropylammonium bromide
Procedia PDF Downloads 1999738 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market
Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua
Abstract:
Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.Keywords: candlestick chart, deep learning, neural network, stock market prediction
Procedia PDF Downloads 4489737 Update on Epithelial Ovarian Cancer (EOC), Types, Origin, Molecular Pathogenesis, and Biomarkers
Authors: Salina Yahya Saddick
Abstract:
Ovarian cancer remains the most lethal gynecological malignancy due to the lack of highly sensitive and specific screening tools for detection of early-stage disease. The OSE provides the progenitor cells for 90% of human ovarian cancers. Recent morphologic, immunohistochemical and molecular genetic studies have led to the development of a new paradigm for the pathogenesis and origin of epithelial ovarian cancer (EOC) based on a ualistic model of carcinogenesis that divides EOC into two broad categories designated Types I and II which are characterized by specific mutations, including KRAS, BRAF, ERBB2, CTNNB1, PTEN PIK3CA, ARID1A, and PPPR1A, which target specific cell signaling pathways. Type 1 tumors rarely harbor TP53. type I tumors are relatively genetically stable and typically display a variety of somatic sequence mutations that include KRAS, BRAF, PTEN, PIK3CA CTNNB1 (the gene encoding beta catenin), ARID1A and PPP2R1A but very rarely TP53 . The cancer stem cell (CSC) hypothesis postulates that the tumorigenic potential of CSCs is confined to a very small subset of tumor cells and is defined by their ability to self-renew and differentiate leading to the formation of a tumor mass. Potential protein biomarker miRNA, are promising biomarkers as they are remarkably stable to allow isolation and analysis from tissues and from blood in which they can be found as free circulating nucleic acids and in mononuclear cells. Recently, genomic anaylsis have identified biomarkers and potential therapeutic targets for ovarian cancer namely, FGF18 which plays an active role in controlling migration, invasion, and tumorigenicity of ovarian cancer cells through NF-κB activation, which increased the production of oncogenic cytokines and chemokines. This review summarizes update information on epithelial ovarian cancers and point out to the most recent ongoing research.Keywords: epithelial ovarian cancers, somatic sequence mutations, cancer stem cell (CSC), potential protein, biomarker, genomic analysis, FGF18 biomarker
Procedia PDF Downloads 3809736 A Review on Parametric Optimization of Casting Processes Using Optimization Techniques
Authors: Bhrugesh Radadiya, Jaydeep Shah
Abstract:
In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques.Keywords: casting defects, genetic algorithm, parametric optimization, Taguchi method, TLBO algorithm
Procedia PDF Downloads 7289735 Evaluation of Technology Tools for Mathematics Instruction by Novice Elementary Teachers
Authors: Christopher J. Johnston
Abstract:
This paper presents the finding of a research study in which novice (first and second year) elementary teachers (grades Kindergarten – six) evaluated various mathematics Virtual Manipulatives, websites, and Applets (tools) for use in mathematics instruction. Participants identified the criteria they used for evaluating these types of resources and provided recommendations for or against five pre-selected tools. During the study, participants participated in three data collection activities: (1) A brief Likert-scale survey which gathered information about their attitudes toward technology use; (2) An identification of criteria for evaluating technology tools; and (3) A review of five pre-selected technology tools in light of their self-identified criteria. Data were analyzed qualitatively using four theoretical categories (codes): Software Features (41%), Mathematics (26%), Learning (22%), and Motivation (11%). These four theoretical categories were then grouped into two broad categories: Content and Instruction (Mathematics and Learning), and Surface Features (Software Features and Motivation). These combined, broad categories suggest novice teachers place roughly the same weight on pedagogical features as they do technological features. Implications for mathematics teacher educators are discussed, and suggestions for future research are provided.Keywords: mathematics education, novice teachers, technology, virtual manipulatives
Procedia PDF Downloads 133