Search results for: single walled carbon nanotube
2745 Altered Lower Extremity Biomechanical Risk Factor Related to Anterior Cruciate Ligament Injury in Athlete with Functional Ankle Instability
Authors: Mohammad Karimizadehardakani, Hooman Minoonejad, Reza Rajabi, Ali Sharifnejad
Abstract:
Background: Ankle sprain is one of the most important risk factor of anterior cruciate ligament (ACL) injury. Also, functional ankle instability (FAI) population has alterations in lower extremity sagittal plane biomechanics during landing task. We want to examine whether biomechanical alterations demonstrated by FAI patients are associated with the mechanism of ACL injury during high risk and sport related tasks. Methods: Sixteen basketball player with FAI and 16 non-injured control performed a single-leg cross drop landing. Knee sagittal and frontal (ATSF) was calculated. Independent t-tests, multiple linear regression, and Pearson correlation were used for analysis data. Result: Subject with FAI showed more peak ATFS, posterior ground reaction force (GRF) and less knee flexion, compared to the controls (P= 0.001, P= 0.004, P= 0.011). Knee flexion (r= −0.824, P = 0.011) and posterior GRF (r= 0.901, P = .001) were correlated with ATSF; Posterior GRF was factor that most explained the variance in ATSF (R2= 0.645; P = .001) in the FAI group. Conclusions: Result of our study showed there is a potential biomechanical relationship between the presence of FAI and risk factors associated with ACL injury mechanism.Keywords: functional ankle instability, anterior cruciate ligament, biomechanics, risk factor
Procedia PDF Downloads 2232744 Ecofriendly Multi-Layer Polymer Treatment for Hydrophobic and Water Repellent Porous Cotton Fabrics
Authors: Muhammad Zahid, Ilker S. Bayer, Athanassia Athanassiou
Abstract:
Fluorinated polymers having C8 chemistry (chemicals with 8 fluorinated carbon atoms) are well renowned for their excellent low surface tension and water repelling properties. However, these polymers degrade into highly toxic heavy perfluoro acids in the environment. When the C8 chemistry is reduced to C6 chemistry, this environmental concern is eliminated at the expense of reduced liquid repellent performance. In order to circumvent this, in this study, we demonstrate pre-treatment of woven cotton fabrics with a fluorinated acrylic copolymer with C6 chemistry and subsequently with a silicone polymer to render them hydrophobic. A commercial fluorinated acrylic copolymer was blended with silica nanoparticles to form hydrophobic nano-roughness on cotton fibers and a second coating layer of polydimethylsiloxane (PDMS) was applied on the fabric. A static water contact angle (for 5µl) and rolling angle (for 12.5µl) of 147°±2° and 31° were observed, respectively. Hydrostatic head measurements were also performed to better understand the performance with 26±1 cm and 2.56kPa column height and static pressure respectively. Fabrication methods (with rod coater etc.) were kept simple, reproducible, and scalable and cost efficient. Moreover, the robustness of applied coatings was also evaluated by sonication cleaning and abrasion methods. Water contact angle (WCA), water shedding angle (WSA), hydrostatic head, droplet bouncing-rolling off and prolonged staining tests were used to characterize hydrophobicity of materials. For chemical and morphological analysis, various characterization methods were used such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM).Keywords: fluorinated polymer, hydrophobic, polydimethylsiloxane, water contact angle
Procedia PDF Downloads 3252743 Supply Chain Risk Management: A Meta-Study of Empirical Research
Authors: Shoufeng Cao, Kim Bryceson, Damian Hine
Abstract:
The existing supply chain risk management (SCRM) research is currently chaotic and somewhat disorganized, and the topic has been addressed conceptually more often than empirically. This paper, using both qualitative and quantitative data, employs a modified Meta-study method to investigate the SCRM empirical research published in quality journals over the period of 12 years (2004-2015). The purpose is to outline the extent research trends and the employed research methodologies (i.e., research method, data collection and data analysis) across the sub-field that will guide future research. The synthesized findings indicate that empirical study on risk ripple effect along an entire supply chain, industry-specific supply chain risk management and global/export supply chain risk management has not yet given much attention than it deserves in the SCRM field. Besides, it is suggested that future empirical research should employ multiple and/or mixed methods and multi-source data collection techniques to reduce common method bias and single-source bias, thus improving research validity and reliability. In conclusion, this paper helps to stimulate more quality empirical research in the SCRM field via identifying promising research directions and providing some methodology guidelines.Keywords: empirical research, meta-study, methodology guideline, research direction, supply chain risk management
Procedia PDF Downloads 3172742 Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants
Authors: Malinwo Estone Ayikpa
Abstract:
Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.Keywords: distribution system, loss, photovoltaic generation, primal-dual interior point method
Procedia PDF Downloads 3322741 Enhanced Growth of Microalgae Chlamydomonas reinhardtii Cultivated in Different Organic Waste and Effective Conversion of Algal Oil to Biodiesel
Authors: Ajith J. Kings, L. R. Monisha Miriam, R. Edwin Raj, S. Julyes Jaisingh, S. Gavaskar
Abstract:
Microalgae are a potential bio-source for rejuvenated solutions in various disciplines of science and technology, especially in medicine and energy. Biodiesel is being replaced for conventional fuels in automobile industries with reduced pollution and equivalent performance. Since it is a carbon neutral fuel by recycling CO2 in photosynthesis, global warming potential can be held in control using this fuel source. One of the ways to meet the rising demand of automotive fuel is to adopt with eco-friendly, green alternative fuels called sustainable microalgal biodiesel. In this work, a microalga Chlamydomonas reinhardtii was cultivated and optimized in different media compositions developed from under-utilized waste materials in lab scale. Using the optimized process conditions, they are then mass propagated in out-door ponds, harvested, dried and oils extracted for optimization in ambient conditions. The microalgal oil was subjected to two step esterification processes using acid catalyst to reduce the acid value (0.52 mg kOH/g) in the initial stage, followed by transesterification to maximize the biodiesel yield. The optimized esterification process parameters are methanol/oil ratio 0.32 (v/v), sulphuric acid 10 vol.%, duration 45 min at 65 ºC. In the transesterification process, commercially available alkali catalyst (KOH) is used and optimized to obtain a maximum biodiesel yield of 95.4%. The optimized parameters are methanol/oil ratio 0.33(v/v), alkali catalyst 0.1 wt.%, duration 90 min at 65 ºC 90 with smooth stirring. Response Surface Methodology (RSM) is employed as a tool for optimizing the process parameters. The biodiesel was then characterized with standard procedures and especially by GC-MS to confirm its compatibility for usage in internal combustion engine.Keywords: microalgae, organic media, optimization, transesterification, characterization
Procedia PDF Downloads 2342740 Growth and Characterization of Bis-Thiourea Nickel Barium Chloride Single Crystals
Authors: Rakesh Hajiyani, Chetan Chauhan, Harshkant Jethva, Mihir Joshi
Abstract:
Metal bis-thiourea type organo-metallic crystals are popular as non-linear optical materials. Bis-thiourea nickel barium chloride was synthesized and crystals were grown by slow aqueous solvent evaporation technique. The transparent and colorless crystals having maximum dimensions of 13 mm x 8 mm x 2.2 mm were obtained. The EDAX was carried out to estimate the content of nickel and barium in the grown crystals. The powder XRD analysis suggested orthorhombic crystal structure with unit cell parameters as: a= 9.70 Å, b= 10.68 Å and c= 17.95 Å. The FTIR spectroscopy study confirmed the presence of various functional groups. The UV-vis spectroscopy study indicated that the crystals were transparent in the visible region with 90% transmittance level further optical parameters were studied. From the TGA it was found that the crystals remained stable up to 170 0C and then decomposed through two decomposition stages. The dielectric study was carried out in the frequency range of applied field from 500 Hz to 1 MHz. The variations of dielectric constant, dielectric loss were studied with frequency. It was found that the dielectric constant and the dielectric loss decreased as the frequency of applied field increased. The results are discussed.Keywords: crystal growth, dielectric study, optical parameters, organo-metallic crystals, powder xrd, slow evaporation technique, TGA
Procedia PDF Downloads 4502739 Computer Assisted Strategies Help to Pharmacist
Authors: Komal Fizza
Abstract:
All around the world in every field professionals are taking great support from their computers. Computer assisted strategies not only increase the efficiency of the professionals but also in case of healthcare they help in life-saving interventions. The background of this current research is aimed towards two things; first to find out if computer assisted strategies are useful for Pharmacist for not and secondly how much these assist a Pharmacist to do quality interventions. Shifa International Hospital is a 500 bedded hospital, and it is running Antimicrobial Stewardship, during their stewardship rounds pharmacists observed that a lot of wrong doses of antibiotics were coming at times those were being overlooked by the other pharmacist even. So, with the help of MIS team the patients were categorized into adult and peads depending upon their age. Minimum and maximum dose of every single antibiotic present in the pharmacy that could be dispensed to the patient was developed. These were linked to the order entry window. So whenever pharmacist would type any order and the dose would be below or above the therapeutic limit this would give an alert to the pharmacist. Whenever this message pop-up this was recorded at the back end along with the antibiotic name, pharmacist ID, date, and time. From 14th of January 2015 and till 14th of March 2015 the software stopped different users 350 times. Out of this 300 were found to be major errors which if reached to the patient could have harmed them to the greater extent. While 50 were due to typing errors and minor deviations. The pilot study showed that computer assisted strategies can be of great help to the pharmacist. They can improve the efficacy and quality of interventions.Keywords: antibiotics, computer assisted strategies, pharmacist, stewardship
Procedia PDF Downloads 4912738 Isolation and Characterization of Endophytic Bacteria Associated with Root-Nodules of Medicago sativa in Al-Ahasa Region
Authors: Ashraf Y. Z. Khalifa, Mohammed A. Almalki
Abstract:
Medicago sativa (Alfalfa) is an important forage crop legume worldwide including Saudia Arabia due to its high nutritive value. Soil bacteria exist in root or root-nodules of Medicago sativa in either symbiotic relationships or in associations. The aim of the present study was to isolate and characterize endophytic bacteria that live in association with non-nodulated roots of Medicago sativa growing in Al-Ahsaa region, Saudia Arabia. Several bacterial strains were isolated from sterilized roots of Medicago sativa. Strains were characterized using 16S rRNA gene sequences, phylogenetic relationships analysis, morphological and biochemical characteristics. The strains utilized 50% (10 out of 20) of the different chemical substrates contained in the API20E strip. In general, many strains had the ability to ferment/oxidise all the carbohydrate tested except for rhamnose and the polyol carbohydrate, inositol. Comparative sequence analysis of the 16S rDNA gene indicated that the strains were closely related to the genus Bacillus. Furthermore, the growth parameters of Vigna sinensis were enhanced upon single-inoculation of the isolated strains, compared to the uninoculated control plants. The results highlighted that the root-nodules of Medicago sativa harbor non-nodulating bacterial strains that could have significant agricultural applications.Keywords: Medicago sativa, endophytic bacteria, Pisum sativum, Vigna sinensis
Procedia PDF Downloads 3772737 The Potential for Cyclotron and Generator-produced Positron Emission Tomography Radiopharmaceuticals: An Overview
Authors: Ng Yen, Shafii Khamis, Rehir Bin Dahalan
Abstract:
Cyclotrons in the energy range 10-30 MeV are widely used for the production of clincally relevant radiosiotopes used in positron emission tomography (PET) nuclear imaging. Positron emmision tomography is a powerful nuclear imaging tool that produces high quality 3-dimentional images of functional processes of body. The advantage of PET among all other imaging devices is that it allows the study of an impressive array of discrete biochemical and physiologic processes, within a single imaging session. The number of PET scanner increases every year globally due to high clinical demand. However, not all PET centers can afford a cyclotron, due to the expense associated with operation of an in-house cyclotron. Therefore, current research has also focused on the development of parent/daughter generators that can reliably provide PET nuclides. These generators (68Ge/68Ga generator, 62Zn/62Cu, 82Sr/82Rb, etc) can provide even short-lived radionuclides at any time on demand, without the need of an ‘in-house cyclotron’. The parent isotope is produced at a cyclotron/reactor facility, and can be shipped to remote clinical sites (regionally/overseas), where the daughter isotope is eluted, a model similar to the 99Mo/99mTc generator system. The specific aim for this presentation is to talk about the potential for both of the cyclotron and generator-produced PET radiopharmaceuticals used in clinical imaging.Keywords: positron emission tomography, radiopharmaceutical, cyclotron, generator
Procedia PDF Downloads 4822736 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models
Authors: Bipasha Sen, Aditya Agarwal
Abstract:
Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition
Procedia PDF Downloads 1232735 The Underestimate of the Annual Maximum Rainfall Depths Due to Coarse Time Resolution Data
Authors: Renato Morbidelli, Carla Saltalippi, Alessia Flammini, Tommaso Picciafuoco, Corrado Corradini
Abstract:
A considerable part of rainfall data to be used in the hydrological practice is available in aggregated form within constant time intervals. This can produce undesirable effects, like the underestimate of the annual maximum rainfall depth, Hd, associated with a given duration, d, that is the basic quantity in the development of rainfall depth-duration-frequency relationships and in determining if climate change is producing effects on extreme event intensities and frequencies. The errors in the evaluation of Hd from data characterized by a coarse temporal aggregation, ta, and a procedure to reduce the non-homogeneity of the Hd series are here investigated. Our results indicate that: 1) in the worst conditions, for d=ta, the estimation of a single Hd value can be affected by an underestimation error up to 50%, while the average underestimation error for a series with at least 15-20 Hd values, is less than or equal to 16.7%; 2) the underestimation error values follow an exponential probability density function; 3) each very long time series of Hd contains many underestimated values; 4) relationships between the non-dimensional ratio ta/d and the average underestimate of Hd, derived from continuous rainfall data observed in many stations of Central Italy, may overcome this issue; 5) these equations should allow to improve the Hd estimates and the associated depth-duration-frequency curves at least in areas with similar climatic conditions.Keywords: central Italy, extreme events, rainfall data, underestimation errors
Procedia PDF Downloads 1912734 Derivation of Trigonometric Identities and Solutions through Baudhayan Numbers
Authors: Rakesh Bhatia
Abstract:
Students often face significant challenges in understanding and applying trigonometric identities, primarily due to the overwhelming need to memorize numerous formulas. This often leads to confusion, frustration, and difficulty in effectively using these formulas across diverse types of problems. Traditional methods of learning trigonometry demand considerable time and effort, which can further hinder comprehension and application. Vedic Mathematics offers an innovative and simplified approach to overcoming these challenges. This paper explores how Baudhayan Numbers, can be used to derive trigonometric identities and simplify calculations related to height and distance. Unlike conventional approaches, this method minimizes the need for extensive paper-based calculations, promoting a conceptual understanding. Using Vedic Mathematics Sutras such as Anurupyena and Vilokanam, this approach enables the derivation of over 100 trigonometric identities through a single, unified approach. The simplicity and efficiency of this technique not only make learning trigonometry more accessible but also foster computational thinking. Beyond academics, the practical applications of this method extend to engineering fields such as bridge design and construction, where precise trigonometric calculations are critical. This exploration underscores the potential of Vedic Mathematics to revolutionize the learning and application of trigonometry by offering a streamlined, intuitive, and versatile framework.Keywords: baudhayan numbers, anurupyena, vilokanam, sutras
Procedia PDF Downloads 82733 Microbubbles Enhanced Synthetic Phorbol Ester Degradation by Ozonolysis
Authors: D. Kuvshinov, A. Siswanto, W. Zimmerman
Abstract:
A phorbol-12-myristate-13-acetate (TPA) is a synthetic analogue of phorbol ester (PE), a natural toxic compound of Euphorbiaceae plant. The oil extracted from plants of this family is useful source for primarily biofuel. However this oil can also be used as a food stock due to its significant nutrition content. The limitations for utilizing the oil as a food stock are mainly due to a toxicity of PE. Nowadays a majority of PE detoxification processes are expensive as include multi steps alcohol extraction sequence. Ozone is considered as a strong oxidative agent. It reaction with PE it attacks the carbon double bond of PE. This modification of PE molecular structure results into nontoxic ester with high lipid content. This report presents data on development of simple and cheap PE detoxification process with water application as a buffer and ozone as reactive component. The core of this new technique is a simultaneous application of new microscale plasma unit for ozone production and patented gas oscillation technology. In combination with a reactor design the technology permits ozone injection to the water-TPA mixture in form of microbubbles. The efficacy of a heterogeneous process depends on diffusion coefficient which can be controlled by contact time and interface area. The low velocity of rising microbubbles and high surface to volume ratio allow fast mass transfer to be achieved during the process. Direct injection of ozone is the most efficient process for a highly reactive and short lived chemical. Data on the plasma unit behavior are presented and influence of the gas oscillation technology to the microbubbles production mechanism has been discussed. Data on overall process efficacy for TPA degradation is shown.Keywords: microbubble, ozonolysis, synthetic phorbol ester, chemical engineering
Procedia PDF Downloads 2172732 Design of Low-Emission Catalytically Stabilized Combustion Chamber Concept
Authors: Annapurna Basavaraju, Andreas Marn, Franz Heitmeir
Abstract:
The Advisory Council for Aeronautics Research in Europe (ACARE) is cognizant for the overall reduction of NOx emissions by 80% in its vision 2020. Moreover small turbo engines have higher fuel specific emissions compared to large engines due to their limited combustion chamber size. In order to fulfill these requirements, novel combustion concepts are essential. This motivates to carry out the research on the current state of art, catalytic stabilized combustion chamber using hydrogen in small jet engines which are designed and investigated both numerically and experimentally during this project. Catalytic combustion concepts can also be adopted for low caloric fuels and are therefore not constrained to only hydrogen. However, hydrogen has high heating value and has the major advantage of producing only the nitrogen oxides as pollutants during the combustion, thus eliminating the interest on other emissions such as Carbon monoxides etc. In the present work, the combustion chamber is designed based on the ‘Rich catalytic Lean burn’ concept. The experiments are conducted for the characteristic operating range of an existing engine. This engine has been tested successfully at Institute of Thermal Turbomachinery and Machine Dynamics (ITTM), Technical University Graz. One of the facts that the efficient combustion is a result of proper mixing of fuel-air mixture, considerable significance is given to the selection of appropriate mixer. This led to the design of three diverse configurations of mixers and is investigated experimentally and numerically. Subsequently the best mixer would be equipped in the main combustion chamber and used throughout the experimentation. Furthermore, temperatures and pressures would be recorded at various locations inside the combustion chamber and the exhaust emissions will also be analyzed. The instrumented combustion chamber would be inspected at the engine relevant inlet conditions for nine different sets of catalysts at the Hot Flow Test Facility (HFTF) of the institute.Keywords: catalytic combustion, gas turbine, hydrogen, mixer, NOx emissions
Procedia PDF Downloads 3052731 Dynamic Analysis and Design of Lower Extremity Power-Assisted Exoskeleton
Authors: Song Shengli, Tan Zhitao, Li Qing, Fang Husheng, Ye Qing, Zhang Xinglong
Abstract:
Lower extremity power-assisted exoskeleton (LEPEX) is a kind of wearable electromechanical integration intelligent system, walking in synchronization with the wearer, which can assist the wearer walk by means of the driver mounted in the exoskeleton on each joint. In this paper, dynamic analysis and design of the LEPEX are performed. First of all, human walking process is divided into single leg support phase, double legs support phase and ground collision model. The three kinds of dynamics modeling is established using the Lagrange method. Then, the flat walking and climbing stairs dynamic information such as torque and power of lower extremity joints is derived for loading 75kg according to scholar Stansfield measured data of flat walking and scholars R. Riener measured data of climbing stair respectively. On this basis, the joint drive way in the sagittal plane is determined, and the structure of LEPEX is designed. Finally, the designed LEPEX is simulated under ADAMS by using a person’s joint sports information acquired under flat walking and climbing stairs. The simulation result effectively verified the correctness of the structure.Keywords: kinematics, lower extremity exoskeleton, simulation, structure
Procedia PDF Downloads 4252730 Effect of the Average Kits Birth Weight and of the Number of Born Alive per Liter on the Milk Production of Algerian Rabbit Raised in Aures Area
Abstract:
In order to characterize rabbits does of an Aures local population raised in Algeria; a study of their milk yield was realized in the experimental rabbitry of El Hadj Lakhdhar University. Milk production of does was measured every day during the days following 215 parturitions. It was estimated by weighing the female before and after the single daily suckling (10-15 min between the 2 weighing operations). The various calculated parameters were the quantity of milk produced per day, per week and the total quantity produced in 21 days, as well as the intake of milk by young rabbits. The analysis concerned the effects of the number of successive litters (3 classes: 1 to 3 and more) and of the average number of the number of young rabbits suckled per litter (6 classes: from 1-2 kits to more than 6). During the 21 days of controlled lactation, the average litter size was 6±3. The rabbits of the Aures area produced on average 2544.34±747 g in 21 days that is 121 g of milk/day or 21g of milk/kit/day. The milk yield increased from 526, 1035, 1240, and 2801g to 760, 1365, 1715 and 3840 for week 1, 2, 3 and the total period of lactation respectively. Nevertheless, milk production available per kit and per day decreased linearly with kits number in the litter for each of the 3 weeks considered. On the other hand the milk yield was not affected by the weight at birth of kits.Keywords: milk production, litter size, rabbit, Aures area, Algeria
Procedia PDF Downloads 5212729 An Analysis of the Affect of Climate Change on Humanitarian Law: The Way Forward
Authors: Anjali Kanagali, Astha Sinha
Abstract:
Climate change is the greatest threat being faced by mankind in the 21st century. It no longer is merely an environmental, scientific or economic issue but is a humanitarian issue as well. Paris Agreement put great pressure on the businesses to reduce carbon emissions and mitigate the impact of climate change. However, the already increased climate variability and extreme weather are aggravating emergency humanitarian needs. According to the Intergovernmental Panel on Climate Change (IPCC), if efficient policy changes are not made in time to combat the climate change issues, the situation will deteriorate with an estimated global temperature rise of 4 degrees. The existing international network of Humanitarian system is not adequately structured to handle the projected natural disasters and climate change crisis. The 2030 Agenda which embraces the 17 Sustainable Development Goals (SGDs) discussed the relationship between the climate change and humanitarian assistance. The Humanitarian law aims to protect, amongst other things, ‘internally displaced persons’ which includes people displaced due to natural hazard related disasters engulfing the hazards of climate change. ‘Legal protection’ of displaced people to protect their rights is becoming a pressing need in such times. In this paper, attempts will be made to analyze the causes of the displacement, identify areas where the effect of the climate change is most likely to occur and to examine the character of forced displacement triggering population movement. We shall discuss the pressure on the Humanitarian system and assistance due to climate change issues and the need for vesting powers to the local communities or local government players to deal with the climate changes. We shall also discuss the possibility of setting up a new framework where non-state actors could be set up for climate change impact and its governance.Keywords: humanitarian assistance to climate change, humanitarian crisis, internally displaced person, legal framework for climate migrants, non-state actors
Procedia PDF Downloads 3212728 Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery
Authors: Jay Ananth
Abstract:
The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility.Keywords: drug discovery, lipophilicity, ligand-receptor interactions, machine learning, drug development
Procedia PDF Downloads 1112727 Flexural Fatigue Performance of Self-Compacting Fibre Reinforced Concrete
Authors: Surinder Pal Singh, Sanjay Goel
Abstract:
The paper presents results of an investigation conducted to study the flexural fatigue characteristics of Self Compacting Concrete (SCC) and Self Compacting Fibre Reinforced Concrete (SCFRC). In total 360 flexural fatigue tests and 270 static flexural strength tests were conducted on SCC and SCFRC specimens to obtain the fatigue test data. The variability in the distribution of fatigue life of SCC and SCFRC have been analyzed and compared with that of NVC and NVFRC containing steel fibres of comparable size and shape. The experimental coefficients of fatigue equations have been estimated to represent relationship between stress level (S) and fatigue life (N) for SCC and SCFRC containing different fibre volume fractions. The probability of failure (Pf) has been incorporated in S-N relationships to obtain families of S-N-Pf relationships. A good agreement between the predicted curves and those obtained from the test data has been observed. The fatigue performance of SCC and SCFRC has been evaluated in terms of two-million cycles fatigue strength/endurance limit. The theoretic fatigue lives were also estimated using single-log fatigue equation for 10% probability of failure to estimate the enhanced extent of theoretic fatigue lives of SCFRC with reference to SCC and NVC. The reduction in variability in the fatigue life, increased endurance limit and increased theoretiac fatigue lives demonstrates an overall better fatigue performance for SCC and SCFRC.Keywords: fatigue life, fibre, probability of failure, self-compacting concrete
Procedia PDF Downloads 3582726 Solar-Assisted City Bus Electrical Installation: Opportunities and Impact on the Environment in Sydney
Authors: M. J. Geca, T. Tulwin, A. Majczak
Abstract:
On-board electricity consumption in the diesel city bus during operation is an important energy source. Electricity is generated by a combustion engine-driven alternator. Increased fuel consumption to generate on-board electricity in the bus has a negative impact on the emission of toxic components and carbon dioxide. At the same time, the bus roof surface allows placing a set of lightweight photovoltaic panels with power from 1 to 1.5 kW. The article presents an experimental study of electricity consumption of a city bus with diesel engine equipped with photovoltaic installation. The stream of electricity consumed by the bus and generated by a standard alternator and PV system was recorded. Base on the experimental research carried out in central Europe; the article analyses the impact of an additional source of electricity in the form of a photovoltaic installation on fuel consumption and emissions of toxic components of vehicles located in the latitude of Sydney. In Poland, the maximum global value of horizontal irradiation GHI is 1150 kWh/m², while for Sydney 1652 kWh/m². In addition, the profile of temperature and sunshine per year is different for these two different latitudes as presented in the article. Electricity generated directly from the sun powers the bus's electrical receivers. The photovoltaic system is able to replace 23% of annual electricity consumption, which at the same time will reduce 4% of fuel consumption and CO₂ reduction. Approximately 25% of the light is lost during vehicle traffic in Sydney latitude. The temperature losses of photovoltaic panels are comparable due to the cooling during vehicle motion. Acknowledgement: The project/research was financed in the framework of the project Lublin University of Technology - Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).Keywords: electric energy, photovoltaic system, fuel consumption, CO₂
Procedia PDF Downloads 1132725 Integrating Knowledge into Health Care Systems: A Case Study Investigation on UAE Health Care
Authors: Alya Al Ghufli, Kelaithim Al Tunaiji, Sara Al Ali, Khalid Samara
Abstract:
It is well known that health care systems encompass a variety of key knowledge sources that need to be integrated and shared amongst all types of users to attain higher-levels of motivation and productivity. The development of Health Integrated Systems (HIS) is often seen as a crucial step in strengthening the integration of knowledge to help serve the information needs of health care users. As an emergent economy, the United Arab Emirates (UAE) is regarded as a new arrival in the area of health information systems. As a new nation, there may be several challenges in terms of organisational climate and the sufficient skills and knowledge activities for effective use of HIS. In this regard, the lack of coordination, attitudes and practice of health-related systems can eventually result in unnecessary data and generally poor use of the system. This paper includes results from a qualitative preliminary study carried out from a case study investigation in a single large primary health care organisation in the United Arab Emirates (UAE) comprising various health care users. The study explored health care user’s perceptions about health integration and the impact it has on their practice. The main sources of information were semi-structured interviews and non-obtrusive observations. The authors conclude by presenting various recommendations for the development of HIS and knowledge activities and areas for further study.Keywords: health integrated systems, knowledge sharing, knowledge activities, health information systems
Procedia PDF Downloads 4362724 Energy Consumption Estimation for Hybrid Marine Power Systems: Comparing Modeling Methodologies
Authors: Kamyar Maleki Bagherabadi, Torstein Aarseth Bø, Truls Flatberg, Olve Mo
Abstract:
Hydrogen fuel cells and batteries are one of the promising solutions aligned with carbon emission reduction goals for the marine sector. However, the higher installation and operation costs of hydrogen-based systems compared to conventional diesel gensets raise questions about the appropriate hydrogen tank size, energy, and fuel consumption estimations. Ship designers need methodologies and tools to calculate energy and fuel consumption for different component sizes to facilitate decision-making regarding feasibility and performance for retrofits and design cases. The aim of this work is to compare three alternative modeling approaches for the estimation of energy and fuel consumption with various hydrogen tank sizes, battery capacities, and load-sharing strategies. A fishery vessel is selected as an example, using logged load demand data over a year of operations. The modeled power system consists of a PEM fuel cell, a diesel genset, and a battery. The methodologies used are: first, an energy-based model; second, considering load variations during the time domain with a rule-based Power Management System (PMS); and third, a load variations model and dynamic PMS strategy based on optimization with perfect foresight. The errors and potentials of the methods are discussed, and design sensitivity studies for this case are conducted. The results show that the energy-based method can estimate fuel and energy consumption with acceptable accuracy. However, models that consider time variation of the load provide more realistic estimations of energy and fuel consumption regarding hydrogen tank and battery size, still within low computational time.Keywords: fuel cell, battery, hydrogen, hybrid power system, power management system
Procedia PDF Downloads 382723 Peripheral Inflammation and Neurodegeneration; A Potential for Therapeutic Intervention in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis
Authors: Lourdes Hanna, Edward Poluyi, Chibuikem Ikwuegbuenyi, Eghosa Morgan, Grace Imaguezegie
Abstract:
Background: Degeneration of the central nervous system (CNS), also known as neurodegeneration, describes an age-associated progressive loss of the structure and function of neuronal materials, leading to functional and mental impairments. Main body: Neuroinflammation contributes to the continuous worsening of neurodegenerative states which are characterised by functional and mental impairments due to the progressive loss of the structure and function of neu-ronal materials. Some of the most common neurodegenerative diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Whilst neuroinflammation is a key contributor to the progression of such disease states, it is not the single cause as there are multiple factors which contribute. Theoretically, non-steroidal anti-inflammatory drugs (NSAIDs) have potential to target neuroinflammation to reduce the severity of disease states. Whilst some animal models investigating the effects of NSAIDs on the risk of neurodegenerative diseases have shown a beneficial effect, this is not the same finding. Conclusion: Further investigation using more advanced research methods is required to better understand neuroinflammatory pathways and understand if there is still a potential window for NSAID efficacy.Keywords: intervention, central nervous system, neurodegeneration, neuroinflammation
Procedia PDF Downloads 822722 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking
Authors: Peter U. Eze, P. Udaya, Robin J. Evans
Abstract:
Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.Keywords: Constant Correlation, Medical Image, Spread Spectrum, Tamper Detection, Watermarking
Procedia PDF Downloads 1942721 Incorporating Circular Economy into Passive Design Strategies in Tropical Nigeria
Authors: Noah G. Akhimien, Eshrar Latif
Abstract:
The natural environment is in need for an urgent rescue due to dilapidation and recession of resources. Passive design strategies have proven to be one of the effective ways to reduce CO2 emissions and to improve building performance. On the other hand, there is a huge drop in material availability due to poor recycling culture. Consequently, building waste pose environmental hazard due to unrecycled building materials from construction and deconstruction. Buildings are seen to be material banks for a circular economy, therefore incorporating circular economy into passive housing will not only safe guide the climate but also improve resource efficiency. The study focuses on incorporating a circular economy in passive design strategies for an affordable energy and resource efficient residential building in Nigeria. Carbon dioxide (CO2) concentration is still on the increase as buildings are responsible for a significant amount of this emission globally. Therefore, prompt measures need to be taken to combat the effect of global warming and associated threats. Nigeria is rapidly growing in human population, resources on the other hand have receded greatly, and there is an abrupt need for recycling even in the built environment. It is necessary that Nigeria responds to these challenges effectively and efficiently considering building resource and energy. Passive design strategies were assessed using simulations to obtain qualitative and quantitative data which were inferred to case studies as it relates to the Nigeria climate. Building materials were analysed using the ReSOLVE model in order to explore possible recycling phase. This provided relevant information and strategies to illustrate the possibility of circular economy in passive buildings. The study offers an alternative approach, as it is the general principle for the reworking of an economy on ecological lines in passive housing and by closing material loops in circular economy.Keywords: building, circular, efficiency, environment, sustainability
Procedia PDF Downloads 2532720 Employing Nudge as Artistic Strategy in Managing Lagos Waste Issues
Authors: Iranlade Festus Adeyem
Abstract:
This paper analyses the role played by the Nudge method as an artistic strategy in addressing the issues of Lagos waste management in Nigeria. As a Lagosian, experiential knowledge of Lagos’ dirty environment through careless littering, especially in the Lagos Mainland community, was helpful. Employing Nudge theory in creative waste recycling assists in persuading Lagosians through strategic sensitization to carefully weigh their options rather than being compelled to act in a dictated direction. Empirical awareness of Lagos’ environment and creative, reflective experiences were handy in inspiring the identified communities to subtly encourage the reuse, recycling and repurposing of generated waste instead of dumping it indiscriminately. The repurposed waste used to ‘upcycle’ and ‘downcycle’ contemporary artworks were displayed to highlight single-use materials as improvised alternatives to conventional ones. The Nudge concept application, therefore, persuades Lagosians, Lagos artists and trainees to see waste as untapped effective materials during the campaigns. Using the Nudge philosophy thus encourages Lagosians and creatives to use personal discretion in managing their generated waste naturally. Its application also helped intervene minimally in the Lagos waste objectives to prevent the attendant health issues that may occur. And inspire waste improvisation for the scarce, imported and expensive art materials in Lagos City.Keywords: improvisation, nudge, upcycle and downcycle, strategy
Procedia PDF Downloads 112719 Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea
Authors: Jaehyung Jung, Kiman Kim, Heesang Eum
Abstract:
Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions.Keywords: bottom-up approach, greenhouse gas (GHG), reduction, scenario, solar cell
Procedia PDF Downloads 2202718 DFT Insights into CO₂ Capture Mechanisms and Kinetics in Diamine-Appended Grafted Mg₂ (dobpdc) Metal- Organic Frameworks
Authors: Mao-Sheng Su, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Climate change is widely recognized as a global crisis, with anthropogenic CO₂ emissions from fossil fuel combustion and industrial processes being major contributors. To address this challenge, carbon capture and sequestration (CCS) technology has emerged as a key strategy for selectively capturing CO₂ from flue gas streams. Among the various solid adsorbents, metal–organic frameworks (MOFs) are notable for their extensive surface area and controllable pore chemistry. The porous MOF structure is comprised of metal ions or clusters coordinated to organic linker compounds. In particular, the pore parameters of MOFs are readily tunable, making them promising materials for CO₂ capture applications. Among these, amine-functionalized MOFs have demonstrated exceptional CO₂ capture abilities because their high uptake capacity and selectivity. In this study, we have investigated the CO₂ capture abilities and adsorption mechanisms of the diamine-appended framework N-Ethylethylenediamine-Mg₂(4,4’-dioxidobiphenyl-3,3’-dicarboxylate) (e-2-Mg₂(dobpdc)) using density functional theory (DFT) calculations. Previous studies have suggested that CO₂ can be captured via both outer- and inner-amine binding sites. Our findings reveal that CO₂ adsorption at the outer amine site is kinetically more favorable compared to the inner amine site, with a lower energy barrier of 1.34 eV for CO₂ physisorption to chemisorption compared to the inner amine, which has an activation barrier of 1.60 eV. Furthermore, we find that CO₂ adsorption is significantly enhanced in an alkaline environment, as deprotonation of the diamine molecule reduces the energy barrier to 0.24 eV. This theoretical study provides detailed insights into CO₂ adsorption in diamine-appended e-2-Mg₂(dobpdc) MOF, offering a deeper understanding of CO₂ capture mechanisms and valuable information for the advancement of effective CO₂ sequestration technologies.Keywords: DFT, MOFs, CO₂ capture, catalyst
Procedia PDF Downloads 292717 A Theoretical Modelling and Simulation of a Surface Plasmon Resonance Biosensor for the Detection of Glucose Concentration in Blood and Urine
Authors: Natasha Mandal, Rakesh Singh Moirangthem
Abstract:
The present work reports a theoretical model to develop a plasmonic biosensor for the detection of glucose concentrations in human blood and urine as the abnormality of glucose label is the major cause of diabetes which becomes a life-threatening disease worldwide. This study is based on the surface plasmon resonance (SPR) sensor applications which is a well-established, highly sensitive, label-free, rapid optical sensing tool. Here we have introduced a sandwich assay of two dielectric spacer layers of MgF2 and BaTiO3which gives better performance compared to commonly used SiO2 and TiO2 dielectric spacers due to their low dielectric loss and higher refractive index. The sensitivity of our proposed sensor was found as 3242 nm/RIU approximately, with an excellent linear response of 0.958, which is higher than the conventional single-layer Au SPR sensor. Further, the sensitivity enhancement is also optimized by coating a few layers of two-dimensional (2D) nanomaterials (e.g., Graphene, h-BN, MXene, MoS2, WS2, etc.) on the sensor chip. Hence, our proposed SPR sensor has the potential for the detection of glucose concentration in blood and urine with enhanced sensitivity and high affinity and could be utilized as a reliable platform for the optical biosensing application in the field of medical diagnosis.Keywords: biosensor, surface plasmon resonance, dielectric spacer, 2D nanomaterials
Procedia PDF Downloads 1062716 Development and Characterisation of Nonwoven Fabrics for Apparel Applications
Authors: Muhammad Cheema, Tahir Shah, Subhash Anand
Abstract:
The cost of making apparel fabrics for garment manufacturing is very high because of their conventional manufacturing processes and new methods/processes are being constantly developed for making fabrics by unconventional methods. With the advancements in technology and the availability of the innovative fibres, durable nonwoven fabrics by using the hydroentanglement process that can compete with the woven fabrics in terms of their aesthetic and tensile properties are being developed. In the work reported here, the hydroentangled nonwoven fabrics were developed through a hybrid nonwoven manufacturing processes by using fibrillated Tencel® and bi-component (sheath/core) polyethylene/polyester (PE/PET) fibres, in which the initial nonwoven fabrics were prepared by the needle-punching method followed by hydroentanglement process carried out at optimal pressures of 50 to 250bars. The prepared fabrics were characterized according to the British Standards (BS 3356:1990, BS 9237:1995, BS 13934-1:1999) and the attained results were compared with those for a standard plain-weave cotton, polyester woven fabric and commercially available nonwoven fabric (Evolon®). The developed hydroentangled fabrics showed better drape properties owing to their flexural rigidity of 252 mg.cm in the machine direction, while the corresponding commercial hydroentangled fabric displayed a value of 1340 mg.cm in the machine direction. The tensile strength of the developed hydroentangled fabrics showed an approximately 200% increase than the commercial hydroentangled fabrics. Similarly, the developed hydroentangled fabrics showed higher properties in term of air permeability, such as the developed hydroentangled fabric exhibited 448 mm/sec and Evolon fabric exhibited 69 mm/sec at 100 Pa pressure. Thus for apparel fabrics, the work combining the existing methods of nonwoven production, provides additional benefits in terms of cost, time and also helps in reducing the carbon footprint for the apparel fabric manufacture.Keywords: hydroentanglement, nonwoven apparel, durable nonwoven, wearable nonwoven
Procedia PDF Downloads 268