Search results for: photovoltaic integrated shading device
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5389

Search results for: photovoltaic integrated shading device

589 Geometric Optimisation of Piezoelectric Fan Arrays for Low Energy Cooling

Authors: Alastair Hales, Xi Jiang

Abstract:

Numerical methods are used to evaluate the operation of confined face-to-face piezoelectric fan arrays as pitch, P, between the blades is varied. Both in-phase and counter-phase oscillation are considered. A piezoelectric fan consists of a fan blade, which is clamped at one end, and an extremely low powered actuator. This drives the blade tip’s oscillation at its first natural frequency. Sufficient blade tip speed, created by the high oscillation frequency and amplitude, is required to induce vortices and downstream volume flow in the surrounding air. A single piezoelectric fan may provide the ideal solution for low powered hot spot cooling in an electronic device, but is unable to induce sufficient downstream airflow to replace a conventional air mover, such as a convection fan, in power electronics. Piezoelectric fan arrays, which are assemblies including multiple fan blades usually in face-to-face orientation, must be developed to widen the field of feasible applications for the technology. The potential energy saving is significant, with a 50% power demand reduction compared to convection fans even in an unoptimised state. A numerical model of a typical piezoelectric fan blade is derived and validated against experimental data. Numerical error is found to be 5.4% and 9.8% using two data comparison methods. The model is used to explore the variation of pitch as a function of amplitude, A, for a confined two-blade piezoelectric fan array in face-to-face orientation, with the blades oscillating both in-phase and counter-phase. It has been reported that in-phase oscillation is optimal for generating maximum downstream velocity and flow rate in unconfined conditions, due at least in part to the beneficial coupling between the adjacent blades that leads to an increased oscillation amplitude. The present model demonstrates that confinement has a significant detrimental effect on in-phase oscillation. Even at low pitch, counter-phase oscillation produces enhanced downstream air velocities and flow rates. Downstream air velocity from counter-phase oscillation can be maximally enhanced, relative to that generated from a single blade, by 17.7% at P = 8A. Flow rate enhancement at the same pitch is found to be 18.6%. By comparison, in-phase oscillation at the same pitch outputs 23.9% and 24.8% reductions in peak downstream air velocity and flow rate, relative to that generated from a single blade. This optimal pitch, equivalent to those reported in the literature, suggests that counter-phase oscillation is less affected by confinement. The optimal pitch for generating bulk airflow from counter-phase oscillation is large, P > 16A, due to the small but significant downstream velocity across the span between adjacent blades. However, by considering design in a confined space, counterphase pitch should be minimised to maximise the bulk airflow generated from a certain cross-sectional area within a channel flow application. Quantitative values are found to deviate to a small degree as other geometric and operational parameters are varied, but the established relationships are maintained.

Keywords: piezoelectric fans, low energy cooling, power electronics, computational fluid dynamics

Procedia PDF Downloads 221
588 Investigations into the in situ Enterococcus faecalis Biofilm Removal Efficacies of Passive and Active Sodium Hypochlorite Irrigant Delivered into Lateral Canal of a Simulated Root Canal Model

Authors: Saifalarab A. Mohmmed, Morgana E. Vianna, Jonathan C. Knowles

Abstract:

The issue of apical periodontitis has received considerable critical attention. Bacteria is integrated into communities, attached to surfaces and consequently form biofilm. The biofilm structure provides bacteria with a series protection skills against, antimicrobial agents and enhances pathogenicity (e.g. apical periodontitis). Sodium hypochlorite (NaOCl) has become the irrigant of choice for elimination of bacteria from the root canal system based on its antimicrobial findings. The aim of the study was to investigate the effect of different agitation techniques on the efficacy of 2.5% NaOCl to eliminate the biofilm from the surface of the lateral canal using the residual biofilm, and removal rate of biofilm as outcome measures. The effect of canal complexity (lateral canal) on the efficacy of the irrigation procedure was also assessed. Forty root canal models (n = 10 per group) were manufactured using 3D printing and resin materials. Each model consisted of two halves of an 18 mm length root canal with apical size 30 and taper 0.06, and a lateral canal of 3 mm length, 0.3 mm diameter located at 3 mm from the apical terminus. E. faecalis biofilms were grown on the apical 3 mm and lateral canal of the models for 10 days in Brain Heart Infusion broth. Biofilms were stained using crystal violet for visualisation. The model halves were reassembled, attached to an apparatus and tested under a fluorescence microscope. Syringe and needle irrigation protocol was performed using 9 mL of 2.5% NaOCl irrigant for 60 seconds. The irrigant was either left stagnant in the canal or activated for 30 seconds using manual (gutta-percha), sonic and ultrasonic methods. Images were then captured every second using an external camera. The percentages of residual biofilm were measured using image analysis software. The data were analysed using generalised linear mixed models. The greatest removal was associated with the ultrasonic group (66.76%) followed by sonic (45.49%), manual (43.97%), and passive irrigation group (control) (38.67%) respectively. No marked reduction in the efficiency of NaOCl to remove biofilm was found between the simple and complex anatomy models (p = 0.098). The removal efficacy of NaOCl on the biofilm was limited to the 1 mm level of the lateral canal. The agitation of NaOCl results in better penetration of the irrigant into the lateral canals. Ultrasonic agitation of NaOCl improved the removal of bacterial biofilm.

Keywords: 3D printing, biofilm, root canal irrigation, sodium hypochlorite

Procedia PDF Downloads 231
587 Integration of “FAIR” Data Principles in Longitudinal Mental Health Research in Africa: Lessons from a Landscape Analysis

Authors: Bylhah Mugotitsa, Jim Todd, Agnes Kiragga, Jay Greenfield, Evans Omondi, Lukoye Atwoli, Reinpeter Momanyi

Abstract:

The INSPIRE network aims to build an open, ethical, sustainable, and FAIR (Findable, Accessible, Interoperable, Reusable) data science platform, particularly for longitudinal mental health (MH) data. While studies have been done at the clinical and population level, there still exists limitations in data and research in LMICs, which pose a risk of underrepresentation of mental disorders. It is vital to examine the existing longitudinal MH data, focusing on how FAIR datasets are. This landscape analysis aimed to provide both overall level of evidence of availability of longitudinal datasets and degree of consistency in longitudinal studies conducted. Utilizing prompters proved instrumental in streamlining the analysis process, facilitating access, crafting code snippets, categorization, and analysis of extensive data repositories related to depression, anxiety, and psychosis in Africa. While leveraging artificial intelligence (AI), we filtered through over 18,000 scientific papers spanning from 1970 to 2023. This AI-driven approach enabled the identification of 228 longitudinal research papers meeting inclusion criteria. Quality assurance revealed 10% incorrectly identified articles and 2 duplicates, underscoring the prevalence of longitudinal MH research in South Africa, focusing on depression. From the analysis, evaluating data and metadata adherence to FAIR principles remains crucial for enhancing accessibility and quality of MH research in Africa. While AI has the potential to enhance research processes, challenges such as privacy concerns and data security risks must be addressed. Ethical and equity considerations in data sharing and reuse are also vital. There’s need for collaborative efforts across disciplinary and national boundaries to improve the Findability and Accessibility of data. Current efforts should also focus on creating integrated data resources and tools to improve Interoperability and Reusability of MH data. Practical steps for researchers include careful study planning, data preservation, machine-actionable metadata, and promoting data reuse to advance science and improve equity. Metrics and recognition should be established to incentivize adherence to FAIR principles in MH research

Keywords: longitudinal mental health research, data sharing, fair data principles, Africa, landscape analysis

Procedia PDF Downloads 91
586 First Year Experience of International Students in Malaysian Universities

Authors: Nur Hidayah Iwani Mohd Kamal

Abstract:

The higher education institutions in Malaysia is challenged with a more socially and culturally diverse student population than ever before, especially with the increasing number of international students studying in Malaysia in the recent years. First year university is a critical time in students’ lives. Students are not only developing intelectually, they are also establishing and maintaining personal relationships, developing an identity, deciding about career and lifestyle, maintaining personal health and wellness, and developing an integrated philosohy of life. The higher education institutions work as a diverse community of learners to provide a supportive environment for these first year students in assisting them in their transition from high school to university. Although many universities are taking steps to improve the first year experience for their new local and international students, efforts must be taken to ensure organized and coordinated manner in order for the initiatives to be successful. The objectives of the study are to examine the international students’ perceptions and interpretation of their first year experiences in shaping and determining their attitudes toward study and the quality of their entire undergraduate academic career; and identify an appropriate mechanism to encounter the international students’ adjustment in the new environment in order to facilitate cross-functional communication and create a coherent and meaningful first year experience. A key construct in this study is that if universities wish to recruiting and retaining international students, it is their ethical responsibility to determine how they can best meet their needs at the academic and social level, create a supportive ‘learning community’ as a foundation of their educational experience, hence facilitate cross-cultural communication and create a coherent and meaningful first year experience. This study is simultaneously frames in relation to focus on the factors that influence a successful and satisfying transition to university life by the first year international students. The study employs a mixed-method data collection involving semi-structured interviews, questionnaire, classroom observation and document analysis. This study provides valuable insight into the struggles that many international students face as they attempt to make the adjustment not only to a new educational system but factors such as psychosocial and cultural problems. It would discuss some of the factors that impact the international students during their first year in university in their quest to be academically successful. It concludes with some recommendations on how Malaysian universities provide these students with a good first year experience based on some the best practices of universities around the world.

Keywords: first year experience, Malaysian universities, international students, education

Procedia PDF Downloads 288
585 Behavior of GRS Abutment Facing under Variable Cycles of Lateral Excitation through Physical Model Tests

Authors: Ashutosh Verma, Satyendra Mittal

Abstract:

Numerous geosynthetic reinforced soil (GRS) abutment failures over the years have been attributed to the loss of strength at the facing-reinforcement interface due to seasonal thermal expansion/contraction of the bridge deck. This causes excessive settlement below the bridge seat, causing bridge bumps along the approach road which reduces the design life of any abutment. Before designers while choosing the type of facing, a broad range of facing configurations are undoubtedly available. Generally speaking, these configurations can be divided into three groups: modular (panels/block), continuous, and full height rigid (FHR). The purpose of the current study is to use 1g physical model tests under serviceable cyclic lateral displacements to experimentally investigate the behaviour of these three facing classifications. To simulate field behaviour, a field instrumented GRS abutment prototype was modeled into a N scaled down 1g physical model (N = 5) with adjustable facing arrangements to represent these three facing classifications. For cyclic lateral displacement (d/H) of top facing at loading rate of 1mm/min, the peak earth pressure coefficient (K) on the facing and vertical settlement of the footing (s/B) at 25, 50, 75 and 100 cycles have been measured. For a constant footing offset of x/H = 0.1, three forms of cyclic displacements have been performed to simulate active condition (CA), passive condition (CP), and active-passive condition (CAP). The findings showed that when reinforcements are integrated into the wall along with presence of gravel gabions i.e. FHR design, a rather substantial earth pressure occurs over the facing. Despite this, the FHR facing's continuous nature works in conjunction with the reinforcements' membrane resilience to reduce footing settlement. On the other hand, the pressure over the wall is released upon lateral excitation by the relative displacement between the panels in modular facing reducing the connection strength at the interface and leading to greater settlements below footing. On the contrary, continuous facing do not exhibit relative displacement along the depth of facing rather fails through rotation about the base, which extends the zone of active failure in the backfill leading to large depressions in the backfill region around the bridge seat. Conservatively, FHR facing shows relatively stable responses under lateral cyclic excitations as compared to modular or continuous type of abutment facing.

Keywords: GRS abutments, 1g physical model, full height rigid, cyclic lateral displacement

Procedia PDF Downloads 83
584 Durham Region: How to Achieve Zero Waste in a Municipal Setting

Authors: Mirka Januszkiewicz

Abstract:

The Regional Municipality of Durham is the upper level of a two-tier municipal and regional structure comprised of eight lower-tier municipalities. With a population of 655,000 in both urban and rural settings, the Region is approximately 2,537 square kilometers neighboring the City of Toronto, Ontario Canada to the east. The Region has been focused on diverting waste from disposal since the development of its Long Term Waste Management Strategy Plan for 2000-2020. With a 54 percent solid waste diversion rate, the focus now is on achieving 70 percent diversion on the path to zero waste using local waste management options whenever feasible. The Region has an Integrated Waste Management System that consists of a weekly curbside collection of recyclable printed paper and packaging and source separated organics; a seasonal collection of leaf and yard waste; a bi-weekly collection of residual garbage; and twice annual collection of intact, sealed household batteries. The Region also maintains three Waste Management Facilities for residential drop-off of household hazardous waste, polystyrene, construction and demolition debris and electronics. Special collection events are scheduled in the spring, summer and fall months for reusable items, household hazardous waste, and electronics. The Region is in the final commissioning stages of an energy from the waste facility for residual waste disposal that will recover energy from non-recyclable wastes. This facility is state of the art and is equipped for installation of carbon capture technology in the future. Despite all of these diversion programs and efforts, there is still room for improvement. Recent residential waste studies revealed that over 50% of the residual waste placed at the curb that is destined for incineration could be recycled. To move towards a zero waste community, the Region is looking to more advanced technologies for extracting the maximum recycling value from residential waste. Plans are underway to develop a pre-sort facility to remove organics and recyclables from the residual waste stream, including the growing multi-residential sector. Organics would then be treated anaerobically to generate biogas and fertilizer products for beneficial use within the Region. This project could increase the Region’s diversion rate beyond 70 percent and enhance the Region’s climate change mitigation goals. Zero waste is an ambitious goal in a changing regulatory and economic environment. Decision makers must be willing to consider new and emerging technologies and embrace change to succeed.

Keywords: municipal waste, residential, waste diversion, zero waste

Procedia PDF Downloads 219
583 Organic Light Emitting Devices Based on Low Symmetry Coordination Structured Lanthanide Complexes

Authors: Zubair Ahmed, Andrea Barbieri

Abstract:

The need to reduce energy consumption has prompted a considerable research effort for developing alternative energy-efficient lighting systems to replace conventional light sources (i.e., incandescent and fluorescent lamps). Organic light emitting device (OLED) technology offers the distinctive possibility to fabricate large area flat devices by vacuum or solution processing. Lanthanide β-diketonates complexes, due to unique photophysical properties of Ln(III) ions, have been explored as emitting layers in OLED displays and in solid-state lighting (SSL) in order to achieve high efficiency and color purity. For such applications, the excellent photoluminescence quantum yield (PLQY) and stability are the two key points that can be achieved simply by selecting the proper organic ligands around the Ln ion in a coordination sphere. Regarding the strategies to enhance the PLQY, the most common is the suppression of the radiationless deactivation pathways due to the presence of high-frequency oscillators (e.g., OH, –CH groups) around the Ln centre. Recently, a different approach to maximize the PLQY of Ln(β-DKs) has been proposed (named 'Escalate Coordination Anisotropy', ECA). It is based on the assumption that coordinating the Ln ion with different ligands will break the centrosymmetry of the molecule leading to less forbidden transitions (loosening the constraints of the Laporte rule). The OLEDs based on such complexes are available, but with low efficiency and stability. In order to get efficient devices, there is a need to develop some new Ln complexes with enhanced PLQYs and stabilities. For this purpose, the Ln complexes, both visible and (NIR) emitting, of variant coordination structures based on the various fluorinated/non-fluorinated β-diketones and O/N-donor neutral ligands were synthesized using a one step in situ method. In this method, the β-diketones, base, LnCl₃.nH₂O and neutral ligands were mixed in a 3:3:1:1 M ratio in ethanol that gave air and moisture stable complexes. Further, they were characterized by means of elemental analysis, NMR spectroscopy and single crystal X-ray diffraction. Thereafter, their photophysical properties were studied to select the best complexes for the fabrication of stable and efficient OLEDs. Finally, the OLEDs were fabricated and investigated using these complexes as emitting layers along with other organic layers like NPB,N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (hole-transporting layer), BCP, 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (hole-blocker) and Alq3 (electron-transporting layer). The layers were sequentially deposited under high vacuum environment by thermal evaporation onto ITO glass substrates. Moreover, co-deposition techniques were used to improve charge transport in the devices and to avoid quenching phenomena. The devices show strong electroluminescence at 612, 998, 1064 and 1534 nm corresponding to ⁵D₀ →⁷F₂(Eu), ²F₅/₂ → ²F₇/₂ (Yb), ⁴F₃/₂→ ⁴I₉/₂ (Nd) and ⁴I1₃/₂→ ⁴I1₅/₂ (Er). All the devices fabricated show good efficiency as well as stability.

Keywords: electroluminescence, lanthanides, paramagnetic NMR, photoluminescence

Procedia PDF Downloads 121
582 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 47
581 The Grand Egyptian Museum as a Cultural Interface

Authors: Mahmoud Moawad Mohamed Osman

Abstract:

The Egyptian civilization was and still is an inspiration for many human civilizations and modern sciences. For this reason, there is still a passion for the ancient Egyptian civilization. Due to the breadth and abundance of the outputs of the ancient Egyptian civilization, many museums have been established that contribute to displaying and demonstrating the splendor of the ancient Egyptian civilization, and among those museums is the Grand Egyptian Museum (Egypt's gift to the whole world). The idea of establishing the Grand Egyptian Museum began in the nineties of the last century, and in 2002 the foundation stone was laid for the museum project to be built in a privileged location overlooking the eternal pyramids of Giza, where the Egyptian state was declared, and under the auspices of the United Nations Educational, Scientific and Cultural Organization (UNESCO) and the International Union of Architects. , for an international architectural competition for the best design for the museum. The current design submitted by Heneghan Peng Architects in Ireland won, and its design was based on the rays of the sun extending from the tops of the three pyramids when they meet to represent a conical mass, which is the Grand Egyptian Museum. The construction of the museum project began in May 2005, when the site was paved and prepared, and in 2006, the largest antiquities restoration center in the Middle East was established, dedicated to the restoration, preservation, maintenance and rehabilitation of the antiquities scheduled to be displayed in the museum halls, which was opened in 2010. The construction of the museum building, which has an area of more than 300,000 square meters, was completed during the year 2021, and includes a number of exhibition halls, each of which is considered larger than many current museums in Egypt and the world. The museum is considered one of the most important and greatest achievements of modern Egypt. It was created to be an integrated global civilizational, cultural and entertainment edifice, and to be the first destination for everyone interested in ancient Egyptian heritage, as the largest museum in the world that tells the story of the history of ancient Egyptian civilization, as it contains a large number of distinctive and unique artifacts, including the treasures of the golden king Tutankhamun, which... It is displayed for the first time in its entirety since the discovery of his tomb in November 1922, in addition to the collection of Queen Hetepheres, the guard of the mother of King Khufu, the builder of the Great Pyramid in Giza, as well as the Museum of King Khufu’s Boats, as well as various archaeological collectibles from the pre-dynastic era until the Greek and Roman eras.

Keywords: grand egyptian museum, egyptian civilization, education, museology

Procedia PDF Downloads 45
580 Creativity and Innovation in Postgraduate Supervision

Authors: Rajendra Chetty

Abstract:

The paper aims to address two aspects of postgraduate studies: interdisciplinary research and creative models of supervision. Interdisciplinary research can be viewed as a key imperative to solve complex problems. While excellent research requires a context of disciplinary strength, the cutting edge is often found at the intersection between disciplines. Interdisciplinary research foregrounds a team approach and information, methodologies, designs, and theories from different disciplines are integrated to advance fundamental understanding or to solve problems whose solutions are beyond the scope of a single discipline. Our aim should also be to generate research that transcends the original disciplines i.e. transdisciplinary research. Complexity is characteristic of the knowledge economy, hence, postgraduate research and engaged scholarship should be viewed by universities as primary vehicles through which knowledge can be generated to have a meaningful impact on society. There are far too many ‘ordinary’ studies that fall into the realm of credentialism and certification as opposed to significant studies that generate new knowledge and provide a trajectory for further academic discourse. Secondly, the paper will look at models of supervision that are different to the dominant ‘apprentice’ or individual approach. A reflective practitioner approach would be used to discuss a range of supervision models that resonate well with the principles of interdisciplinarity, growth in the postgraduate sector and a commitment to engaged scholarship. The global demand for postgraduate education has resulted in increased intake and new demands to limited supervision capacity at institutions. Team supervision lodged within large-scale research projects, working with a cohort of students within a research theme, the journal article route of doctoral studies and the professional PhD are some of the models that provide an alternative to the traditional approach. International cooperation should be encouraged in the production of high-impact research and institutions should be committed to stimulating international linkages which would result in co-supervision and mobility of postgraduate students and global significance of postgraduate research. International linkages are also valuable in increasing the capacity for supervision at new and developing universities. Innovative co-supervision and joint-degree options with global partners should be explored within strategic planning for innovative postgraduate programmes. Co-supervision of PhD students is probably the strongest driver (besides funding) for collaborative research as it provides the glue of shared interest, advantage and commitment between supervisors. The students’ field serves and informs the co-supervisors own research agendas and helps to shape over-arching research themes through shared research findings.

Keywords: interdisciplinarity, internationalisation, postgraduate, supervision

Procedia PDF Downloads 238
579 Multiple Insecticide Resistance in Culex quinquefasciatus Say, from Siliguri, West Bengal, India

Authors: Minu Bharati, Priyanka Rai, Satarupa Dutta, Dhiraj Saha

Abstract:

Culex quinquefasciatus Say, is a mosquito of immense public health concern due to its role in transmission of filariasis, which is an endemic disease in 20 states and union territories of India, putting about 600 million people at the risk of infection. The main strategies to control filaria in India include anti-larval measures in urban areas, Indoor Residual Spray (IRS) in rural areas and mass diethylcarbamazine citrate (DEC) administration. Larval destruction measures and IRS are done with the use of insecticides. In this study, Susceptibility/ Resistance to insecticides were assessed in Culex quinquefasciatus mosquitoes collected from eight densely populated areas of Siliguri subdivision, which has a high rate of filarial infection. To unveil the insecticide susceptibility status of Culex quinquefasciatus, bioassays were performed on field-caught mosquitoes against two major groups of insecticides, i.e. Synthetic Pyrethroids (SPs): 0.05% deltamethrin and 0.05% lambda-cyhalothrin and Organophosphates (OPs): 5% malathion and temephos using World Health Organisation (WHO) discriminating doses. The knockdown rates and knockdown times (KDT50) were also noted against deltamethrin, lambda-cyhalothrin and malathion. Also, activities of major detoxifying enzymes, i.e. α-carboxylesterases, β-carboxylesterases and cytochrome P450 (CYP450) monooxygenases were determined to find the involvement of biochemical mechanisms in resistance phenomenon (if any). The results obtained showed that, majority of the mosquito populations were moderately to severely resistant against both the SPs and one OP, i.e. temephos. Whereas, most of the populations showed 100% susceptibility to malathion. The knockdown rates and KDT50 in response to above-mentioned insecticides showed significant variation among different populations. Variability in activities of carboxylesterases and CYP450 monooxygenases were also observed with hints of their involvement in contribution towards insecticide resistance in some of the tested populations. It may be concluded that, Culex quinquefasciatus has started developing resistance against deltamethrin, lambda-cyhalothrin and temephos in Siliguri subdivision. Malathion seems to hold the greatest potentiality for control of these mosquitoes in this area as revealed through this study. Adoption of Integrated mosquito management (IMM) strategy should be the prime objective of the concerned authorities to delimit the insecticide resistance phenomenon and filariasis infections.

Keywords: Culex quinquefasciatus, detoxifying enzymes, insecticide resistance, knockdown rate

Procedia PDF Downloads 256
578 Comparative Study on Fire Safety Evaluation Methods for External Cladding Systems: ISO 13785-2 and BS 8414

Authors: Kyungsuk Cho, H. Y. Kim, S. U. Chae, J. H. Choi

Abstract:

Technological development has led to the construction of super-tall buildings and insulators are increasingly used as exterior finishing materials to save energy. However, insulators are usually combustible and vulnerable to fire. Fires like that at Wooshin Golden Suite Building in Busan, Korea in 2010 and that at CCTV Building in Beijing, China are the major examples of fire spread accelerated by combustible insulators. The exterior finishing materials of a high-rise building are not made of insulators only, but they are integrated with the building’s external cladding system. There is a limit in evaluating the fire safety of a cladding system with a single small-unit material such as a cone calorimeter. Therefore, countries provide codes to evaluate the fire safety of exterior finishing materials using full-scale tests. This study compares and to examine the applicability of the methods to Korea. Standard analysis showed differences in the type and size of fire sources and duration and exterior finishing materials also differed in size. In order to confirm the differences, fire tests were conducted on identical external cladding systems to compare fire safety. Although the exterior finishing materials were identical, varying degrees of fire spread were observed, which could be considered as differences in the type and size of the fire sources and duration. Therefore, it is deduced that extended studies should be conducted before the evaluation methods and standards are employed in Korea. The two standards for evaluating fire safety provided different results. Peak heat release rate was 5.5MW in ISO method and 3.0±0.5MW in BS method. Peak heat release rate in ISO method continued for 15 minutes. Fire ignition, growth, full development and decay evolved for 30 minutes in BS method where wood cribs were used as fire sources. Therefore, follow-up studies should be conducted to determine which of the two standards provides fire sources that approximate the size of flames coming out from the openings or those spreading to the outside when a fire occurs at a high-rise building.

Keywords: external cladding systems, fire safety evaluation, ISO 13785-2, BS 8414

Procedia PDF Downloads 242
577 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction

Authors: Radul Shishkov, Orlin Davchev

Abstract:

The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.

Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction

Procedia PDF Downloads 63
576 Engineering Topology of Photonic Systems for Sustainable Molecular Structure: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces topological order in descried social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. Topological order is important in describing the physical systems for exploiting optical systems and improving photonic devices. The stats of topological order have some interesting properties of topological degeneracy and fractional statistics that reveal the entanglement origin of topological order, etc. Topological ideas in photonics form exciting developments in solid-state materials, that being; insulating in the bulk, conducting electricity on their surface without dissipation or back-scattering, even in the presence of large impurities. A specific type of autopoiesis system is interrelated to the main categories amongst existing groups of the ecological phenomena interaction social and medical sciences. The hypothesis, nevertheless, has a nonlinear interaction with its natural environment 'interactional cycle' for exchange photon energy with molecules without changes in topology. The engineering topology of a biosensor is based on the excitation boundary of surface electromagnetic waves in photonic band gap multilayer films. The device operation is similar to surface Plasmonic biosensors in which a photonic band gap film replaces metal film as the medium when surface electromagnetic waves are excited. The use of photonic band gap film offers sharper surface wave resonance leading to the potential of greatly enhanced sensitivity. So, the properties of the photonic band gap material are engineered to operate a sensor at any wavelength and conduct a surface wave resonance that ranges up to 470 nm. The wavelength is not generally accessible with surface Plasmon sensing. Lastly, the photonic band gap films have robust mechanical functions that offer new substrates for surface chemistry to understand the molecular design structure and create sensing chips surface with different concentrations of DNA sequences in the solution to observe and track the surface mode resonance under the influences of processes that take place in the spectroscopic environment. These processes led to the development of several advanced analytical technologies: which are; automated, real-time, reliable, reproducible, and cost-effective. This results in faster and more accurate monitoring and detection of biomolecules on refractive index sensing, antibody-antigen reactions with a DNA or protein binding. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other in order to form unique spatial structure and dynamics of biological molecules for providing the environment mutual contribution in investigation of changes due to the pathogenic archival architecture of cell clusters.

Keywords: autopoiesis, photonics systems, quantum topology, molecular structure, biosensing

Procedia PDF Downloads 94
575 Automatic Segmentation of 3D Tomographic Images Contours at Radiotherapy Planning in Low Cost Solution

Authors: D. F. Carvalho, A. O. Uscamayta, J. C. Guerrero, H. F. Oliveira, P. M. Azevedo-Marques

Abstract:

The creation of vector contours slices (ROIs) on body silhouettes in oncologic patients is an important step during the radiotherapy planning in clinic and hospitals to ensure the accuracy of oncologic treatment. The radiotherapy planning of patients is performed by complex softwares focused on analysis of tumor regions, protection of organs at risk (OARs) and calculation of radiation doses for anomalies (tumors). These softwares are supplied for a few manufacturers and run over sophisticated workstations with vector processing presenting a cost of approximately twenty thousand dollars. The Brazilian project SIPRAD (Radiotherapy Planning System) presents a proposal adapted to the emerging countries reality that generally does not have the monetary conditions to acquire some radiotherapy planning workstations, resulting in waiting queues for new patients treatment. The SIPRAD project is composed by a set of integrated and interoperabilities softwares that are able to execute all stages of radiotherapy planning on simple personal computers (PCs) in replace to the workstations. The goal of this work is to present an image processing technique, computationally feasible, that is able to perform an automatic contour delineation in patient body silhouettes (SIPRAD-Body). The SIPRAD-Body technique is performed in tomography slices under grayscale images, extending their use with a greedy algorithm in three dimensions. SIPRAD-Body creates an irregular polyhedron with the Canny Edge adapted algorithm without the use of preprocessing filters, as contrast and brightness. In addition, comparing the technique SIPRAD-Body with existing current solutions is reached a contours similarity at least 78%. For this comparison is used four criteria: contour area, contour length, difference between the mass centers and Jaccard index technique. SIPRAD-Body was tested in a set of oncologic exams provided by the Clinical Hospital of the University of Sao Paulo (HCRP-USP). The exams were applied in patients with different conditions of ethnology, ages, tumor severities and body regions. Even in case of services that have already workstations, it is possible to have SIPRAD working together PCs because of the interoperability of communication between both systems through the DICOM protocol that provides an increase of workflow. Therefore, the conclusion is that SIPRAD-Body technique is feasible because of its degree of similarity in both new radiotherapy planning services and existing services.

Keywords: radiotherapy, image processing, DICOM RT, Treatment Planning System (TPS)

Procedia PDF Downloads 296
574 Transition from Linear to Circular Business Models with Service Design Methodology

Authors: Minna-Maari Harmaala, Hanna Harilainen

Abstract:

Estimates of the economic value of transitioning to circular economy models vary but it has been estimated to represent $1 trillion worth of new business into the global economy. In Europe alone, estimates claim that adopting circular-economy principles could not only have environmental and social benefits but also generate a net economic benefit of €1.8 trillion by 2030. Proponents of a circular economy argue that it offers a major opportunity to increase resource productivity, decrease resource dependence and waste, and increase employment and growth. A circular system could improve competitiveness and unleash innovation. Yet, most companies are not capturing these opportunities and thus the even abundant circular opportunities remain uncaptured even though they would seem inherently profitable. Service design in broad terms relates to developing an existing or a new service or service concept with emphasis and focus on the customer experience from the onset of the development process. Service design may even mean starting from scratch and co-creating the service concept entirely with the help of customer involvement. Service design methodologies provide a structured way of incorporating customer understanding and involvement in the process of designing better services with better resonance to customer needs. A business model is a depiction of how the company creates, delivers, and captures value; i.e. how it organizes its business. The process of business model development and adjustment or modification is also called business model innovation. Innovating business models has become a part of business strategy. Our hypothesis is that in addition to linear models still being easier to adopt and often with lower threshold costs, companies lack an understanding of how circular models can be adopted into their business and how customers will be willing and ready to adopt the new circular business models. In our research, we use robust service design methodology to develop circular economy solutions with two case study companies. The aim of the process is to not only develop the service concepts and portfolio, but to demonstrate the willingness to adopt circular solutions exists in the customer base. In addition to service design, we employ business model innovation methods to develop, test, and validate the new circular business models further. The results clearly indicate that amongst the customer groups there are specific customer personas that are willing to adopt and in fact are expecting the companies to take a leading role in the transition towards a circular economy. At the same time, there is a group of indifferents, to whom the idea of circularity provides no added value. In addition, the case studies clearly show what changes adoption of circular economy principles brings to the existing business model and how they can be integrated.

Keywords: business model innovation, circular economy, circular economy business models, service design

Procedia PDF Downloads 135
573 Peers' Alterity in Inverted Inclusion: A Case Study

Authors: Johanna Sagner, María José Sandoval

Abstract:

At the early stages of adolescence, young people, regardless of a disability or not, start to establish closer friendship ties. Unlike previous developmental phases, these ties are rather reciprocal, more committed, and require more time. Friendship ties during adolescence allow the development of social and personal skills, specifically the skills to start constructing identity. In an inclusive context that incorporates young people with a disability, friendship among peers also takes place. Nonetheless, the relation is shaped, among others, by the alterity construction about the other with disability. Research about peers’ relation between young people with and without disability in an inclusive context has shown that the relation tends to become a helper-helpee relation, where those with a disability are seen as people in need. Prejudices about the others’ condition or distancing from the other because of his/hers disability are common. In this sense, the helper-helpee relation, as a non-reciprocal and protective relation, will not promote friendship between classmates, but a rather asymmetric alterity. Our research is an explorative case study that wants to know how the relation between peers is shaped within a different inclusive program, were also the integrated group has special educational needs. Therefore, we analyze from a qualitative and quantitative approach the data of an inverted inclusive program. This is a unique case of a special public school for visual disability in Germany that includes young people from a mainstream school who had learning difficulties. For the research, we analyze data from interviews, focal interviews and open-ended questions with an interpretative phenomenological analysis approach. The questionnaires include a five point Likert scale, for which we calculate the acceptance rate. The findings show that the alterity relation between pupils is less asymmetrical and represents a rather horizontal alterity. The helper-helpee relation is marked by exchange, since both groups have special educational needs and therefore, those with visual disability and those with learning difficulties help each other indistinctly. Friendship is more present among classmates. The horizontal alterity peers’ relation is influenced by a sort of tie, where none of the groups need more or less help than other groups. Both groups identify that they themselves and the other have special needs. The axiological axe of alterity is not of superiority or inferiority, recognizing each other’s differences and otherness. Another influential factor relates with the amount of time they spend together, since the program does not have a resource room or a teacher who teaches parallel lessons. Two probable causes for that rather equal peer relation might be the constellation of fewer pupils per classroom and the differentiated lessons taught by teachers with a special educational formation.

Keywords: alterity, disability, inverted inclusion, peers’ relation

Procedia PDF Downloads 315
572 Building on Previous Microvalving Approaches for Highly Reliable Actuation in Centrifugal Microfluidic Platforms

Authors: Ivan Maguire, Ciprian Briciu, Alan Barrett, Dara Kervick, Jens Ducrèe, Fiona Regan

Abstract:

With the ever-increasing myriad of applications of which microfluidic devices are capable, reliable fluidic actuation development has remained fundamental to the success of these microfluidic platforms. There are a number of approaches which can be taken in order to integrate liquid actuation on microfluidic platforms, which can usually be split into two primary categories; active microvalves and passive microvalves. Active microvalves are microfluidic valves which require a physical parameter change by external, or separate interaction, for actuation to occur. Passive microvalves are microfluidic valves which don’t require external interaction for actuation due to the valve’s natural physical parameters, which can be overcome through sample interaction. The purpose of this paper is to illustrate how further improvements to past microvalve solutions can largely enhance systematic reliability and performance, with both novel active and passive microvalves demonstrated. Covered within this scope will be two alternative and novel microvalve solutions for centrifugal microfluidic platforms; a revamped pneumatic-dissolvable film active microvalve (PAM) strategy and a spray-on Sol-Gel based hydrophobic passive microvalve (HPM) approach. Both the PAM and the HPM mechanisms were demonstrated on a centrifugal microfluidic platform consisting of alternating layers of 1.5 mm poly(methyl methacrylate) (PMMA) (for reagent storage) sheets and ~150 μm pressure sensitive adhesive (PSA) (for microchannel fabrication) sheets. The PAM approach differs from previous SOLUBON™ dissolvable film methods by introducing a more reliable and predictable liquid delivery mechanism to microvalve site, thus significantly reducing premature activation. This approach has also shown excellent synchronicity when performed in a multiplexed form. The HPM method utilises a new spray-on and low curing temperature (70°C) sol-gel material. The resultant double layer coating comprises a PMMA adherent sol-gel as the bottom layer and an ultra hydrophobic silica nano-particles (SNPs) film as the top layer. The optimal coating was integrated to microfluidic channels with varying cross-sectional area for assessing microvalve burst frequencies consistency. It is hoped that these microvalving solutions, which can be easily added to centrifugal microfluidic platforms, will significantly improve automation reliability.

Keywords: centrifugal microfluidics, hydrophobic microvalves, lab-on-a-disc, pneumatic microvalves

Procedia PDF Downloads 188
571 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength

Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong

Abstract:

This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.

Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification

Procedia PDF Downloads 219
570 Human Resource Management Functions; Employee Performance; Professional Health Workers In Public District Hospitals

Authors: Benjamin Mugisha Bugingo

Abstract:

Healthcare staffhas been considered as asignificant pillar to the health care system. However, the contest of human resources for health in terms of the turnover of health workers in Uganda has been more distinct in the latest years. The objective of the paper, therefore, were to investigate the influence Role Human resource management functions in on employeeperformance of professional health workers in public district hospitals in Kampala. The study objectives were: to establish the effect of performance management function, financialincentives, non-financial incentives, participation, and involvement in the decision-making on the employee performance of professional health workers in public district hospitals in Kampala. The study was devised in the social exchange theory and the equity theory. This study adopted a descriptive research design using quantitative approaches. The study used a cross-sectional research design with a mixed-methods approach. With a population of 402 individuals, the study considered a sample of 252 respondents, including doctors, nurses, midwives, pharmacists, and dentists from 3 district hospitals. The study instruments entailed a questionnaire as a quantitative data collection tool and interviews and focus group discussions as qualitative data gathering tools. To analyze quantitative data, descriptive statistics were used to assess the perceived status of Human resource management functions and the magnitude of intentions to stay, and inferential statistics were used to show the effect of predictors on the outcome variable by plotting a multiple linear regression. Qualitative data were analyzed in themes and reported in narrative and verbatim quotes and were used to complement descriptive findings for a better understanding of the magnitude of the study variables. The findings of this study showed a significant and positive effect of performance management function, financialincentives, non-financial incentives, and participation and involvement in decision-making on employee performance of professional health workers in public district hospitals in Kampala. This study is expected to be a major contributor for the improvement of the health system in the country and other similar settings as it has provided the insights for strategic orientation in the area of human resources for health, especially for enhanced employee performance in relation with the integrated human resource management approach

Keywords: human resource functions, employee performance, employee wellness, profecial workers

Procedia PDF Downloads 98
569 Performance Optimization of Polymer Materials Thanks to Sol-Gel Chemistry for Fuel Cells

Authors: Gondrexon, Gonon, Mendil-Jakani, Mareau

Abstract:

Proton Exchange Membrane Fuel Cells (PEMFCs) seems to be a promising device used for converting hydrogen into electricity. PEMFC is made of a Membrane Electrode Assembly (MEA) composed of a Proton Exchange Membrane (PEM) sandwiched by two catalytic layers. Nowadays, specific performances are targeted in order to ensure the long-term expansion of this technology. Current polymers used (perfluorinated as Nafion®) are unsuitable (loss of mechanical properties) for the high-temperature range. To overcome this issue, sulfonated polyaromatic polymers appear to be a good alternative since it has very good thermomechanical properties. However, their proton conductivity and chemical stability (oxidative resistance to H2O2 formed during fuel cell (FC) operating) are very low. In our team, we patented an original concept of hybrid membranes able to fulfill the specific requirements for PEMFC. This idea is based on the improvement of commercialized polymer membrane via an easy and processable stabilization thanks to sol-gel (SG) chemistry with judicious embeded chemical functions. This strategy is thus breaking up with traditional approaches (design of new copolymers, use of inorganic charges/additives). In 2020, we presented the elaboration and functional properties of a 1st generation of hybrid membranes with promising performances and durability. The latter was made by self-condensing a SG phase with 3(mercaptopropyl)trimethoxysilane (MPTMS) inside a commercial sPEEK host membrane. The successful in-situ condensation reactions of the MPTMS was demonstrated by measures of mass uptakes, FTIR spectroscopy (presence of C-Haliphatics) and solid state NMR 29Si (T2 & T3 signals of self-condensation products). The ability of the SG phase to prevent the oxidative degradation of the sPEEK phase (thanks to thiol chemical functions) was then proved with H2O2 accelerating tests and FC operating tests. A 2nd generation made of thiourea functionalized SG precursors (named HTU & TTU) was made after. By analysing in depth the morphologies of these different hybrids by direct space analysis (AFM/SEM/TEM) and reciprocal space analysis (SANS/SAXS/WAXS), we highlighted that both SG phase morphology and its localisation into the host has a huge impact on the PEM functional properties observed. This relationship is also dependent on the chemical function embedded. The hybrids obtained have shown very good chemical resistance during aging test (exposed to H2O2) compared to the commercial sPEEK. But the chemical function used is considered as “sacrificial” and cannot react indefinitely with H2O2. Thus, we are now working on a 3rd generation made of both sacrificial/regenerative chemical functions which are expected to inhibit the chemical aging of sPEEK more efficiently. With this work, we are confident to reach a predictive approach of the key parameters governing the final properties.

Keywords: fuel cells, ionomers, membranes, sPEEK, chemical stability

Procedia PDF Downloads 72
568 Variability of the X-Ray Sun during Descending Period of Solar Cycle 23

Authors: Zavkiddin Mirtoshev, Mirabbos Mirkamalov

Abstract:

We have analyzed the time series of full disk integrated soft X-ray (SXR) and hard X-ray (HXR) emission from the solar corona during 2004 January 1 to 2009 December 31, covering the descending phase of solar cycle 23. We employed the daily X-ray index (DXI) derived from X-ray observations from the Solar X-ray Spectrometer (SOXS) mission in four different energy bands: 4-5.5; 5.5-7.5 keV (SXR) and 15-20; 20-25 keV (HXR). The application of Lomb-Scargle periodogram technique to the DXI time series observed by the Silicium detector in the energy bands reveals several short and intermediate periodicities of the X-ray corona. The DXI explicitly show the periods of 13.6 days, 26.7 days, 128.5 days, 151 days, 180 days, 220 days, 270 days, 1.24 year and 1.54 year periods in SXR as well as in HXR energy bands. Although all periods are above 70% confidence level in all energy bands, they show strong power in HXR emission in comparison to SXR emission. These periods are distinctly clear in three bands but somehow not unambiguously clear in 5.5-7.5 keV band. This might be due to the presence of Ferrum and Ferrum/Niccolum line features, which frequently vary with small scale flares like micro-flares. The regular 27-day rotation and 13.5 day period of sunspots from the invisible side of the Sun are found stronger in HXR band relative to SXR band. However, flare activity Rieger periods (150 and 180 days) and near Rieger period 220 days are very strong in HXR emission which is very much expected. On the other hand, our current study reveals strong 270 day periodicity in SXR emission which may be connected with tachocline, similar to a fundamental rotation period of the Sun. The 1.24 year and 1.54 year periodicities, represented from the present research work, are well observable in both SXR as well as in HXR channels. These long-term periodicities must also have connection with tachocline and should be regarded as a consequence of variation in rotational modulation over long time scales. The 1.24 year and 1.54 year periods are also found great importance and significance in the life formation and it evolution on the Earth, and therefore they also have great astro-biological importance. We gratefully acknowledge support by the Indian Centre for Space Science and Technology Education in Asia and the Pacific (CSSTEAP, the Centre is affiliated to the United Nations), Physical Research Laboratory (PRL) at Ahmedabad, India. This work has done under the supervision of Prof. Rajmal Jain and paper consist materials of pilot project and research part of the M. Tech program which was made during Space and Atmospheric Science Course.

Keywords: corona, flares, solar activity, X-ray emission

Procedia PDF Downloads 345
567 Technology for Biogas Upgrading with Immobilized Algae Biomass

Authors: Marcin Debowski, Marcin Zielinski, Miroslaw Krzemieniewski, Agata Glowacka-Gil, Paulina Rusanowska, Magdalena Zielinska, Agnieszka Cydzik-Kwiatkowska

Abstract:

Technologies of biogas upgrading are now perceived as competitive solution combustion and production of electricity and heat. Biomethane production will ensure broader application as energy carrier than biogas. Biomethane can be used as fuel in internal combustion engines or introduced into the natural gas transmission network. Therefore, there is a need to search for innovative, economically and technically justified methods for biogas enrichment. The aim of this paper is to present a technology solution for biogas upgrading with immobilized algae biomass. Reactor for biogas upgrading with immobilized algae biomass can be used for removing CO₂ from the biogas, flue gases and the waste gases especially coming from different industry sectors, e.g. from the food industry from yeast production process, biogas production systems, liquid and gaseous fuels combustion systems, hydrocarbon processing technology. The basis for the technological assumptions of presented technology were laboratory works and analyses that tested technological variants of biogas upgrading. The enrichment of biogas with a methane content of 90-97% pointed to technological assumptions for installation on a technical scale. Reactor for biogas upgrading with algae biomass is characterized by a significantly lower cubature in relation to the currently used solutions which use CO₂ removal processes. The invention, by its structure, assumes achieving a very high concentration of biomass of algae through its immobilization in capsules. This eliminates the phenomenon of lowering the pH value, i.e. acidification of the environment in which algae grow, resulting from the introduction of waste gases at a high CO₂ concentration. The system for introducing light into algae capsules is characterized by a higher degree of its use, due to lower losses resulting from the phenomenon of absorption of light energy by water. The light from the light source is continuously supplied to the formed biomass of algae or cyanobacteria in capsules by the light tubes. The light source may be sunlight or a light generator of a different wavelength of light from 300 nm to 800 nm. A portion of gas containing CO₂, accumulated in the tank and conveyed by the pump is periodically introduced into the housing of the photobioreactor tank. When conveying the gas that contains CO₂, it penetrates the algal biomass in capsules through the outer envelope, displacing, from the algal biomass, gaseous metabolic products which are discharged by the outlet duct for gases. It contributes to eliminating the negative impact of this factor on CO₂ binding processes. As a result of the cyclic dosing of gases containing carbon dioxide, gaseous metabolic products of algae are displaced and removed outside the technological system. Technology for biogas upgrading with immobilized algae biomass is suitable for the small biogas plant. The advantages of this technology are high efficiency as well as useful algae biomass which can be used mainly as animal feed, fertilizers and in the power industry. The construction of the device allows effective removal of carbon dioxide from gases at a high CO₂ concentration.

Keywords: biogas, carbon dioxide, immobilised biomass, microalgae, upgrading

Procedia PDF Downloads 157
566 Multi-Agent System Based Distributed Voltage Control in Distribution Systems

Authors: A. Arshad, M. Lehtonen. M. Humayun

Abstract:

With the increasing Distributed Generation (DG) penetration, distribution systems are advancing towards the smart grid technology for least latency in tackling voltage control problem in a distributed manner. This paper proposes a Multi-agent based distributed voltage level control. In this method a flat architecture of agents is used and agents involved in the whole controlling procedure are On Load Tap Changer Agent (OLTCA), Static VAR Compensator Agent (SVCA), and the agents associated with DGs and loads at their locations. The objectives of the proposed voltage control model are to minimize network losses and DG curtailments while maintaining voltage value within statutory limits as close as possible to the nominal. The total loss cost is the sum of network losses cost, DG curtailment costs, and voltage damage cost (which is based on penalty function implementation). The total cost is iteratively calculated for various stricter limits by plotting voltage damage cost and losses cost against varying voltage limit band. The method provides the optimal limits closer to nominal value with minimum total loss cost. In order to achieve the objective of voltage control, the whole network is divided into multiple control regions; downstream from the controlling device. The OLTCA behaves as a supervisory agent and performs all the optimizations. At first, a token is generated by OLTCA on each time step and it transfers from node to node until the node with voltage violation is detected. Upon detection of such a node, the token grants permission to Load Agent (LA) for initiation of possible remedial actions. LA will contact the respective controlling devices dependent on the vicinity of the violated node. If the violated node does not lie in the vicinity of the controller or the controlling capabilities of all the downstream control devices are at their limits then OLTC is considered as a last resort. For a realistic study, simulations are performed for a typical Finnish residential medium-voltage distribution system using Matlab ®. These simulations are executed for two cases; simple Distributed Voltage Control (DVC) and DVC with optimized loss cost (DVC + Penalty Function). A sensitivity analysis is performed based on DG penetration. The results indicate that costs of losses and DG curtailments are directly proportional to the DG penetration, while in case 2 there is a significant reduction in total loss. For lower DG penetration, losses are reduced more or less 50%, while for higher DG penetration, loss reduction is not very significant. Another observation is that the newer stricter limits calculated by cost optimization moves towards the statutory limits of ±10% of the nominal with the increasing DG penetration as for 25, 45 and 65% limits calculated are ±5, ±6.25 and 8.75% respectively. Observed results conclude that the novel voltage control algorithm proposed in case 1 is able to deal with the voltage control problem instantly but with higher losses. In contrast, case 2 make sure to reduce the network losses through proposed iterative method of loss cost optimization by OLTCA, slowly with time.

Keywords: distributed voltage control, distribution system, multi-agent systems, smart grids

Procedia PDF Downloads 312
565 Understanding the Benefits of Multiple-Use Water Systems (MUS) for Smallholder Farmers in the Rural Hills of Nepal

Authors: RAJ KUMAR G.C.

Abstract:

There are tremendous opportunities to maximize smallholder farmers’ income from small-scale water resource development through micro irrigation and multiple-use water systems (MUS). MUS are an improved water management approach, developed and tested successfully by iDE that pipes water to a community both for domestic use and for agriculture using efficient micro irrigation. Different MUS models address different landscape constraints, water demand, and users’ preferences. MUS are complemented by micro irrigation kits, which were developed by iDE to enable farmers to grow high-value crops year-round and to use limited water resources efficiently. Over the last 15 years, iDE’s promotion of the MUS approach has encouraged government and other key stakeholders to invest in MUS for better planning of scarce water resources. Currently, about 60% of the cost of MUS construction is covered by the government and community. Based on iDE’s experience, a gravity-fed MUS costs approximately $125 USD per household to construct, and it can increase household income by $300 USD per year. A key element of the MUS approach is keeping farmers well linked to input supply systems and local produce collection centers, which helps to ensure that the farmers can produce a sufficient quantity of high-quality produce that earns a fair price. This process in turn creates an enabling environment for smallholders to invest in MUS and micro irrigation. Therefore, MUS should be seen as an integrated package of interventions –the end users, water sources, technologies, and the marketplace– that together enhance technical, financial, and institutional sustainability. Communities are trained to participate in sustainable water resource management as a part of the MUS planning and construction process. The MUS approach is cost-effective, improves community governance of scarce water resources, helps smallholder farmers to improve rural health and livelihoods, and promotes gender equity. MUS systems are simple to maintain and communities are trained to ensure that they can undertake minor maintenance procedures themselves. All in all, the iDE Nepal MUS offers multiple benefits and represents a practical and sustainable model of the MUS approach. Moreover, there is a growing national consensus that rural water supply systems should be designed for multiple uses, acknowledging that substantial work remains in developing national-level and local capacity and policies for scale-up.

Keywords: multiple-use water systems , small scale water resources, rural livelihoods, practical and sustainable model

Procedia PDF Downloads 290
564 A Second Chance to Live and Move: Lumbosacral Spinal Cord Ischemia-Infarction after Cardiac Arrest and the Artery of Adamkiewicz

Authors: Anna Demian, Levi Howard, L. Ng, Leslie Simon, Mark Dragon, A. Desai, Timothy Devlantes, W. David Freeman

Abstract:

Introduction: Out-of-hospital cardiac arrest (OHCA) can carry a high mortality. For survivors, the most common complication is hypoxic-ischemic brain injury (HIBI). Rarely, lumbosacral spinal cord and/or other spinal cord artery ischemia can occur due to anatomic variation and variable mean arterial pressure after the return of spontaneous circulation. We present a case of an OHCA survivor who later woke up with bilateral leg weakness with preserved sensation (ASIA grade B, L2 level). Methods: We describe a clinical, radiographic, and laboratory presentation, as well as a National Library of Medicine (NLM) search engine methodology, characterizing incidence/prevalence of this entity is discussed. A 70-year-old male, a longtime smoker, and alcohol user, suddenly collapsed at a bar surrounded by friends. He had complained of chest pain before collapsing. 911 was called. EMS arrived, and the patient was in pulseless electrical activity (PEA), cardiopulmonary resuscitation (CPR) was initiated, and the patient was intubated, and a LUCAS device was applied for continuous, high-quality CPR in the field by EMS. In the ED, central lines were placed, and thrombolysis was administered for a suspected Pulmonary Embolism (PE). It was a prolonged code that lasted 90 minutes. The code continued with the eventual return of spontaneous circulation. The patient was placed on an epinephrine and norepinephrine drip to maintain blood pressure. ECHO was performed and showed a “D-shaped” ventricle worrisome for PE as well as an ejection fraction around 30%. A CT with PE protocol was performed and confirmed bilateral PE. Results: The patient woke up 24 hours later, following commands, and was extubated. He was found paraplegic below L2 with preserved sensation, with hypotonia and areflexia consistent with “spinal shock” or anterior spinal cord syndrome. MRI thoracic and lumbar spine showed a conus medullaris level spinal cord infarction. The patient was given IV steroids upon initial discovery of cord infarct. NLM search using “cardiac arrest” and “spinal cord infarction” revealed 57 results, with only 8 review articles. Risk factors include age, atherosclerotic disease, and intraaortic balloon pump placement. AoA (Artery of Adamkiewicz) anatomic variation along with existing atherosclerotic factors and low perfusion were also known risk factors. Conclusion: Acute paraplegia from anterior spinal cord infarction of the AoA territory after cardiac arrest is rare. Larger prospective, multicenter trials are needed to examine potential interventions of hypothermia, lumbar drains, which are sometimes used in aortic surgery to reduce ischemia and/or other neuroprotectants.

Keywords: cardiac arrest, spinal cord infarction, artery of Adamkiewicz, paraplegia

Procedia PDF Downloads 189
563 ECE Teachers’ Evolving Pedagogical Documentation in MAFApp: ICT Integration for Collective Online Thinking in Early Childhood Education

Authors: Cynthia Adlerstein-Grimberg, Andrea Bralic-Echeverría

Abstract:

An extensive and controversial research debate discusses pedagogical documentation (PD) within early childhood education (ECE) as integral to ECE teachers' professional development. The literature converges in acknowledging that ICT integration in PD can be fundamental for children's and teachers' collaborative learning by making their processes visible and open to reflection. Controversial issues about PD emerge around ICT integration and the use of multimedia applications and platforms, displacing the physical experience involved in this pedagogical practice. Authors argue that online platforms make PD become a passive device to demonstrate accountability and performance. Furthermore, ICT integration would make educators inform children and families of pedagogical processes, positioning them more as consumers instead of involving them in collective thinking and pedagogical decision-making. This article analyses how pedagogical documentation mediated by a multimedia application (MAFApp) allows for the positive strengthening of an ECE pedagogical online community that thinks collectively about learning environments. In doing so, the paper shows how ICT integration supports ECE teachers' collective online thinking, enabling them to move from the controversial version of online PD, where they only act as informers of children's learning and assume a voyeuristic perspective, towards a collective online thinking that builds professional development and supports pedagogical decision-making about learning environments. This article answers How ECE teachers' pedagogical documentation evolves with ICT integration using the MAFApp multimedia application in a national ECE online community. From a posthumanist stance, this paper draws on an 18-month collaborative ethnographic immersion in Chile's unique public ECE online PD community. It develops a unique case study of an online ECE pedagogical community mediated by a multimedia application called MAFApp. This ECE online community includes 32 Chilean public kindergartens, 45 ECE teachers, and 72 assistants, who produced 534 pedagogical documentation. Fieldwork included 35 in-depth interviews, 13 discussion groups, and the constant comparison method for the PD coding. Findings show ICT integration in PD builds collective online thinking that evolves through four moments of growing complexity: 1) teachernalism of built environments, 2) onlookerism of children's anecdotes in learning environments; 3) storytelling of children's place-making, and 4) empowering pedagogies for co-creating learning environments. ICT integration through the MAFApp multimedia application enabled ECE teachers to build collective online thinking, making pedagogies of place visible and engaging children in co-constructing learning environments. This online PD is a continuous professional learning space for ECE teachers, empowering pedagogies of place. In conclusion, ICT integration into PD progressively empowers pedagogies of place in Chilean public ECE. Strengthening collective online thinking using the MAFApp multimedia application sharply contrasts with some recent PD research findings. ICT integration to PD enabled strong collective online thinking. Doing so makes PD operate as a place of professional development, pedagogical reflective encounters, and experimentation while inhabiting their own learning environments with children.

Keywords: early childhood education, ICT integration, multimedia application, online collective thinking, pedagogical documentation, professional development

Procedia PDF Downloads 71
562 Modeling and Implementation of a Hierarchical Safety Controller for Human Machine Collaboration

Authors: Damtew Samson Zerihun

Abstract:

This paper primarily describes the concept of a hierarchical safety control (HSC) in discrete manufacturing to up-hold productivity with human intervention and machine failures using a systematic approach, through increasing the system availability and using additional knowledge on machines so as to improve the human machine collaboration (HMC). It also highlights the implemented PLC safety algorithm, in applying this generic concept to a concrete pro-duction line using a lab demonstrator called FATIE (Factory Automation Test and Integration Environment). Furthermore, the paper describes a model and provide a systematic representation of human-machine collabora-tion in discrete manufacturing and to this end, the Hierarchical Safety Control concept is proposed. This offers a ge-neric description of human-machine collaboration based on Finite State Machines (FSM) that can be applied to vari-ous discrete manufacturing lines instead of using ad-hoc solutions for each line. With its reusability, flexibility, and extendibility, the Hierarchical Safety Control scheme allows upholding productivity while maintaining safety with reduced engineering effort compared to existing solutions. The approach to the solution begins with a successful partitioning of different zones around the Integrated Manufacturing System (IMS), which are defined by operator tasks and the risk assessment, used to describe the location of the human operator and thus to identify the related po-tential hazards and trigger the corresponding safety functions to mitigate it. This includes selective reduced speed zones and stop zones, and in addition with the hierarchical safety control scheme and advanced safety functions such as safe standstill and safe reduced speed are used to achieve the main goals in improving the safe Human Ma-chine Collaboration and increasing the productivity. In a sample scenarios, It is shown that an increase of productivity in the order of 2.5% is already possible with a hi-erarchical safety control, which consequently under a given assumptions, a total sum of 213 € could be saved for each intervention, compared to a protective stop reaction. Thereby the loss is reduced by 22.8%, if occasional haz-ard can be refined in a hierarchical way. Furthermore, production downtime due to temporary unavailability of safety devices can be avoided with safety failover that can save millions per year. Moreover, the paper highlights the proof of the development, implementation and application of the concept on the lab demonstrator (FATIE), where it is realized on the new safety PLCs, Drive Units, HMI as well as Safety devices in addition to the main components of the IMS.

Keywords: discrete automation, hierarchical safety controller, human machine collaboration, programmable logical controller

Procedia PDF Downloads 369
561 Integration Process and Analytic Interface of different Environmental Open Data Sets with Java/Oracle and R

Authors: Pavel H. Llamocca, Victoria Lopez

Abstract:

The main objective of our work is the comparative analysis of environmental data from Open Data bases, belonging to different governments. This means that you have to integrate data from various different sources. Nowadays, many governments have the intention of publishing thousands of data sets for people and organizations to use them. In this way, the quantity of applications based on Open Data is increasing. However each government has its own procedures to publish its data, and it causes a variety of formats of data sets because there are no international standards to specify the formats of the data sets from Open Data bases. Due to this variety of formats, we must build a data integration process that is able to put together all kind of formats. There are some software tools developed in order to give support to the integration process, e.g. Data Tamer, Data Wrangler. The problem with these tools is that they need data scientist interaction to take part in the integration process as a final step. In our case we don’t want to depend on a data scientist, because environmental data are usually similar and these processes can be automated by programming. The main idea of our tool is to build Hadoop procedures adapted to data sources per each government in order to achieve an automated integration. Our work focus in environment data like temperature, energy consumption, air quality, solar radiation, speeds of wind, etc. Since 2 years, the government of Madrid is publishing its Open Data bases relative to environment indicators in real time. In the same way, other governments have published Open Data sets relative to the environment (like Andalucia or Bilbao). But all of those data sets have different formats and our solution is able to integrate all of them, furthermore it allows the user to make and visualize some analysis over the real-time data. Once the integration task is done, all the data from any government has the same format and the analysis process can be initiated in a computational better way. So the tool presented in this work has two goals: 1. Integration process; and 2. Graphic and analytic interface. As a first approach, the integration process was developed using Java and Oracle and the graphic and analytic interface with Java (jsp). However, in order to open our software tool, as second approach, we also developed an implementation with R language as mature open source technology. R is a really powerful open source programming language that allows us to process and analyze a huge amount of data with high performance. There are also some R libraries for the building of a graphic interface like shiny. A performance comparison between both implementations was made and no significant differences were found. In addition, our work provides with an Official Real-Time Integrated Data Set about Environment Data in Spain to any developer in order that they can build their own applications.

Keywords: open data, R language, data integration, environmental data

Procedia PDF Downloads 315
560 An Adiabatic Quantum Optimization Approach for the Mixed Integer Nonlinear Programming Problem

Authors: Maxwell Henderson, Tristan Cook, Justin Chan Jin Le, Mark Hodson, YoungJung Chang, John Novak, Daniel Padilha, Nishan Kulatilaka, Ansu Bagchi, Sanjoy Ray, John Kelly

Abstract:

We present a method of using adiabatic quantum optimization (AQO) to solve a mixed integer nonlinear programming (MINLP) problem instance. The MINLP problem is a general form of a set of NP-hard optimization problems that are critical to many business applications. It requires optimizing a set of discrete and continuous variables with nonlinear and potentially nonconvex constraints. Obtaining an exact, optimal solution for MINLP problem instances of non-trivial size using classical computation methods is currently intractable. Current leading algorithms leverage heuristic and divide-and-conquer methods to determine approximate solutions. Creating more accurate and efficient algorithms is an active area of research. Quantum computing (QC) has several theoretical benefits compared to classical computing, through which QC algorithms could obtain MINLP solutions that are superior to current algorithms. AQO is a particular form of QC that could offer more near-term benefits compared to other forms of QC, as hardware development is in a more mature state and devices are currently commercially available from D-Wave Systems Inc. It is also designed for optimization problems: it uses an effect called quantum tunneling to explore all lowest points of an energy landscape where classical approaches could become stuck in local minima. Our work used a novel algorithm formulated for AQO to solve a special type of MINLP problem. The research focused on determining: 1) if the problem is possible to solve using AQO, 2) if it can be solved by current hardware, 3) what the currently achievable performance is, 4) what the performance will be on projected future hardware, and 5) when AQO is likely to provide a benefit over classical computing methods. Two different methods, integer range and 1-hot encoding, were investigated for transforming the MINLP problem instance constraints into a mathematical structure that can be embedded directly onto the current D-Wave architecture. For testing and validation a D-Wave 2X device was used, as well as QxBranch’s QxLib software library, which includes a QC simulator based on simulated annealing. Our results indicate that it is mathematically possible to formulate the MINLP problem for AQO, but that currently available hardware is unable to solve problems of useful size. Classical general-purpose simulated annealing is currently able to solve larger problem sizes, but does not scale well and such methods would likely be outperformed in the future by improved AQO hardware with higher qubit connectivity and lower temperatures. If larger AQO devices are able to show improvements that trend in this direction, commercially viable solutions to the MINLP for particular applications could be implemented on hardware projected to be available in 5-10 years. Continued investigation into optimal AQO hardware architectures and novel methods for embedding MINLP problem constraints on to those architectures is needed to realize those commercial benefits.

Keywords: adiabatic quantum optimization, mixed integer nonlinear programming, quantum computing, NP-hard

Procedia PDF Downloads 526