Search results for: panel data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42454

Search results for: panel data analysis

37684 Impact of Proposed Modal Shift from Private Users to Bus Rapid Transit System: An Indian City Case Study

Authors: Rakesh Kumar, Fatima Electricwala

Abstract:

One of the major thrusts of the Bus Rapid Transit System is to reduce the commuter’s dependency on private vehicles and increase the shares of public transport to make urban transportation system environmentally sustainable. In this study, commuter mode choice analysis is performed that examines behavioral responses to the proposed Bus Rapid Transit System (BRTS) in Surat, with estimation of the probable shift from private mode to public mode. Further, evaluation of the BRTS scenarios, using Surat’s transportation ecological footprint was done. A multi-modal simulation model was developed in Biogeme environment to explicitly consider private users behaviors and non-linear environmental impact. The data of the different factors (variables) and its impact that might cause modal shift of private mode users to proposed BRTS were collected through home-interview survey using revealed and stated preference approach. A multi modal logit model of mode-choice was then calibrated using the collected data and validated using proposed sample. From this study, a set of perception factors, with reliable and predictable data base, to explain the variation in modal shift behaviour and their impact on Surat’s ecological environment has been identified. A case study of the proposed BRTS connecting the Surat Industrial Hub to the coastal area is provided to illustrate the approach.

Keywords: BRTS, private modes, mode choice models, ecological footprint

Procedia PDF Downloads 519
37683 Exploring Influence Range of Tainan City Using Electronic Toll Collection Big Data

Authors: Chen Chou, Feng-Tyan Lin

Abstract:

Big Data has been attracted a lot of attentions in many fields for analyzing research issues based on a large number of maternal data. Electronic Toll Collection (ETC) is one of Intelligent Transportation System (ITS) applications in Taiwan, used to record starting point, end point, distance and travel time of vehicle on the national freeway. This study, taking advantage of ETC big data, combined with urban planning theory, attempts to explore various phenomena of inter-city transportation activities. ETC, one of government's open data, is numerous, complete and quick-update. One may recall that living area has been delimited with location, population, area and subjective consciousness. However, these factors cannot appropriately reflect what people’s movement path is in daily life. In this study, the concept of "Living Area" is replaced by "Influence Range" to show dynamic and variation with time and purposes of activities. This study uses data mining with Python and Excel, and visualizes the number of trips with GIS to explore influence range of Tainan city and the purpose of trips, and discuss living area delimited in current. It dialogues between the concepts of "Central Place Theory" and "Living Area", presents the new point of view, integrates the application of big data, urban planning and transportation. The finding will be valuable for resource allocation and land apportionment of spatial planning.

Keywords: Big Data, ITS, influence range, living area, central place theory, visualization

Procedia PDF Downloads 279
37682 Effect of Chemistry Museum Artifacts on Students’ Memory Enhancement and Interest in Radioactivity in Calabar Education Zone, Cross River State, Nigeria

Authors: Hope Amba Neji

Abstract:

The study adopted a quasi-experimental design. Two schools were used for the experimental study, while one school was used for the control. The experimental groups were subjected to treatment for four weeks with chemistry museum artifacts and a visit as made to the museum so that learners would have real-life learning experiences with museum resources, while the control group was taught with the conventional method. The instrument for the study was a 20-item Chemistry Memory Test (CMT) and a 10-item Chemistry Interest Questionnaire (CIQ). The reliability was ascertained using (KR-20) and alpha reliability coefficient, which yielded a reliability coefficient of .83 and .81, respectively. Data obtained was analyzed using Analysis of Covariance (ANCOVA) and Analysis of variance (ANOVA) at 0.05 level of significance. Findings revealed that museum artifacts have a significant effect on students’ memory enhancement and interest in chemistry. It was recommended chemistry learning should be enhanced, motivating and real with museum artifacts, which significantly aid memory enhancement and interest in chemistry.

Keywords: museum artifacts, memory, chemistry, atitude

Procedia PDF Downloads 75
37681 A Comparative Study on South-East Asian Leading Container Ports: Jawaharlal Nehru Port Trust, Chennai, Singapore, Dubai, and Colombo Ports

Authors: Jonardan Koner, Avinash Purandare

Abstract:

In today’s globalized world international business is a very key area for the country's growth. Some of the strategic areas for holding up a country’s international business to grow are in the areas of connecting Ports, Road Network, and Rail Network. India’s International Business is booming both in Exports as well as Imports. Ports play a very central part in the growth of international trade and ensuring competitive ports is of critical importance. India has a long coastline which is a big asset for the country as it has given the opportunity for development of a large number of major and minor ports which will contribute to the maritime trades’ development. The National Economic Development of India requires a well-functioning seaport system. To know the comparative strength of Indian ports over South-east Asian similar ports, the study is considering the objectives of (I) to identify the key parameters of an international mega container port, (II) to compare the five selected container ports (JNPT, Chennai, Singapore, Dubai, and Colombo Ports) according to user of the ports and iii) to measure the growth of selected five container ports’ throughput over time and their comparison. The study is based on both primary and secondary databases. The linear time trend analysis is done to show the trend in quantum of exports, imports and total goods/services handled by individual ports over the years. The comparative trend analysis is done for the selected five ports of cargo traffic handled in terms of Tonnage (weight) and number of containers (TEU’s). The comparative trend analysis is done between containerized and non-containerized cargo traffic in the five selected five ports. The primary data analysis is done comprising of comparative analysis of factor ratings through bar diagrams, statistical inference of factor ratings for the selected five ports, consolidated comparative line charts of factor rating for the selected five ports, consolidated comparative bar charts of factor ratings of the selected five ports and the distribution of ratings (frequency terms). The linear regression model is used to forecast the container capacities required for JNPT Port and Chennai Port by the year 2030. Multiple regression analysis is carried out to measure the impact of selected 34 explanatory variables on the ‘Overall Performance of the Port’ for each of the selected five ports. The research outcome is of high significance to the stakeholders of Indian container handling ports. Indian container port of JNPT and Chennai are benchmarked against international ports such as Singapore, Dubai, and Colombo Ports which are the competing ports in the neighbouring region. The study has analysed the feedback ratings for the selected 35 factors regarding physical infrastructure and services rendered to the port users. This feedback would provide valuable data for carrying out improvements in the facilities provided to the port users. These installations would help the ports’ users to carry out their work in more efficient manner.

Keywords: throughput, twenty equivalent units, TEUs, cargo traffic, shipping lines, freight forwarders

Procedia PDF Downloads 131
37680 Bibliometric Analysis of the Research Progress on Graphene Inks from 2008 to 2018

Authors: Jean C. A. Sousa, Julio Cesar Maciel Santos, Andressa J. Rubio, Edneia A. S. Paccola, Natália U. Yamaguchi

Abstract:

A bibliometric analysis in the Web of Science database was used to identify overall scientific results of graphene inks to date (2008 to 2018). The objective of this study was to evaluate the evolutionary tendency of graphene inks research and to identify its aspects, aiming to provide data that can guide future work. The contributions of different researches, languages, thematic categories, periodicals, place of publication, institutes, funding agencies, articles cited and applications were analyzed. The results revealed a growing number of annual publications, of 258 papers found, 107 were included because they met the inclusion criteria. Three main applications were identified: synthesis and characterization, electronics and surfaces. The most relevant research on graphene inks has been summarized in this article, and graphene inks for electronic devices presented the most incident theme according to the research trends during the studied period. It is estimated that this theme will remain in evidence and will contribute to the direction of future research in this area.

Keywords: bibliometric, coating, nanomaterials, scientometrics

Procedia PDF Downloads 169
37679 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 132
37678 Financial Literacy as an Important Skill for Household Financial Decision Making

Authors: Rimac Smiljanic Ana, Pepur Sandra, Bulog Ivana

Abstract:

Financial decision-making in the household is not simple, and it demands that the decision-maker has proper knowledge and skills. Usually, high uncertainty, risk, and stress surround household financial decision-making since it is extremely important and critical for household wealth accumulation and for the well-being of all household members. Generally, skilful people tend to have higher confidence in certain tasks they perform, and they achieve better results. Therefore, in the household context, the possession of certain skills by the ones who make financial decisions for the household is of particular importance. This paper addresses financial literacy as an important skill for household decision-making. Apart from financial literacy, the paper also considers other factors, such as employment, education, and age, as significant for household financial decision-making. The analysis is based on quantitative individual-level survey data. The data collection was conducted during January and February 2021 in Croatia through an online survey. To reach a wide variety of participants, the snowball sampling method was used. The result revealed interesting and somewhat puzzling results. Our results point to the importance of financial literacy skills for household decision-making.

Keywords: skill, financial literacy, decision-making, household financijal decision making

Procedia PDF Downloads 97
37677 The Influence of Celebrity Endorsement on Consumers’ Attitude and Purchas Intention Towards Skincare Products in Malaysia

Authors: Tew Leh Ghee

Abstract:

The study's goal is to determine how celebrity endorsement affects Malaysian consumers' attitudes and intentions to buy skincare products. Since customers now largely rely on celebrity endorsement to influence purchasing decisions in almost every business, celebrity endorsement is not, in reality, a new phenomenon. Even though the market for skincare products has a vast potential to be exploited, corporations have yet to seize this niche via celebrity endorsement. Basically, there hasn't been much study done to recognize the significance of celebrity endorsement in this industry. This research combined descriptive and quantitative methods with a self-administered survey as the primary data-gathering tool. All of the characteristics under study were measured using a 5-point Likert scale, and the questionnaire was written in English. A convenience sample method was used to choose respondents, and 360 sets of valid questionnaires were gathered for the study's statistical analysis. Preliminary statistical analyses were analyzed using SPSS version 20.0 (Statistical Package for the Social Sciences). The backdrop of the respondents' demographics was examined using descriptive analysis. All concept assessments' validity and reliability were examined using exploratory factor analysis, item-total statistics, and reliability statistics. Pearson correlation and regression analysis were used, respectively, to assess relationships and impacts between the variables under study. The research showed that, apart from competence, celebrity endorsements of skincare products in Malaysia had a favorable impact on attitudes and purchase intentions as evaluated by attractiveness and dependability. The research indicated that the most significant element influencing attitude and buy intention was the credibility of a celebrity endorsement. The study offered implications in order to provide potential improvements of celebrity endorsement in skincare goods in Malaysia. The study's last portion includes its limits and ideas for the future.

Keywords: trustworthiness, influential, phenomenon, celebrity emdorsement

Procedia PDF Downloads 80
37676 Simulation Analysis and Control of the Temperature Field in an Induction Furnace Based on Various Parameters

Authors: Sohaibullah Zarghoon, Syed Yousaf, Cyril Belavy, Stanislav Duris, Samuel Emebu, Radek Matusu

Abstract:

Induction heating is extensively employed in industrial furnaces due to its swift response and high energy efficiency. Designing and optimising these furnaces necessitates the use of computer-aided simulations. This study aims to develop an accurate temperature field model for a rectangular steel billet in an induction furnace by leveraging various parameters in COMSOL Multiphysics software. The simulation analysis incorporated temperature dynamics, considering skin depth, temperature-dependent, and constant parameters of the steel billet. The resulting data-driven model was transformed into a state-space model using MATLAB's System Identification Toolbox for the purpose of designing a linear quadratic regulator (LQR). This controller was successfully implemented to regulate the core temperature of the billet from 1000°C to 1200°C, utilizing the distributed parameter system circuit.

Keywords: induction heating, LQR controller, skin depth, temperature field

Procedia PDF Downloads 44
37675 Urban Ecological Interaction: Air, Water, Light and New Transit at the Human Scale of Barcelona’s Superilles

Authors: Philip Speranza

Abstract:

As everyday transit options are shifting from autocentric to pedestrian and bicycle oriented modes for healthy living, downtown streets are becoming more attractive places to live. However, tools and methods to measure the natural environment at the small scale of streets do not exist. Fortunately, a combination of mobile data collection technology and parametric urban design software now allows an interface to relate urban ecological conditions. This paper describes creation of an interactive tool to measure urban phenomena of air, water, and heat/light at the scale of new three-by-three block pedestrianized areas in Barcelona called Superilles. Each Superilla limits transit to the exterior of the blocks and to create more walkable and bikeable interior streets for healthy living. The research will describe the integration of data collection, analysis, and design output via a live interface using parametric software Rhino Grasshopper and the Human User Interface (UI) plugin.

Keywords: transit, urban design, GIS, parametric design, Superilles, Barcelona, urban ecology

Procedia PDF Downloads 247
37674 The Mayan Calendar: An Ideology Laden and Worldview Changing Discourse

Authors: John Rosswell Cummings III

Abstract:

This research examines the discourse ancient Maya ritual practice manifest and maintained through language in a contemporary society as led by a daykeeper— a Maya spiritual leader— with the objective of discovering if the Maya Calendar has an influence on worldview. Through an ethnography of communication and discursive analysis framework, this research examines the discourse of and around the Maya calendar through original research. Data collected includes the ceremonial performance of the Tzolkin ritual, a ritual that takes place every 13 days to ceremonially welcome one of the 20 Universal Forces. During the ceremony, participants supplicate, sacrifice, and venerate. This ritual, based off the Tzolkin cycle in the Mayan Calendar, contains strong, culture-binding ideologies. This research performs a close analysis of the 20 energies of the Tzolkin and their glyphs so as to gain a better understanding of current ideologies in Maya communities. Through a linguistic relativity frame of reference, including both the strong and weak versions, the 20 Universal Forces are shown to influence ways of life. This research argues that it is not just the native language, but the discourses native to the community as held through the calendar, influence thought and have the potential to offer an alternate worldview, thus shaping the cultural narrative which in return influences identity of the community. Research of this kind, on calendric systems and linguistic relativity, has the power to make great discoveries about the societies of the world and their worldviews.

Keywords: anthropological linguistics, discourse analysis, cultural studies, sociolinguistics

Procedia PDF Downloads 147
37673 Information Technology and Professional Behavior: An Empirical Examination of Auditing and Accounting Tasks

Authors: Michael C. Nwaohia

Abstract:

Whereas anecdotal evidence supports the notion that increase in information technology (IT) know-how may enhance output of professionals in the accounting sector, this has not been systematically explored in the Nigerian context. Against this background, this paper examines the correlation between knowledgeability of IT and level of performance at everyday auditing and accounting tasks. It utilizes primary and secondary data from selected business organizations in Lagos, Nigeria. Accounting staff were administered structured questionnaires which, amongst other things, sought to examine knowledge and exposure to information technology prior to joining the firms and current level of performance based on self-reporting and supervisor comments. In addition, exposure to on-the-job IT training and current level of performance was examined. The statistical analysis of the data was done using the SPSS package. The results strongly suggest that prior exposure to IT skills enabled accounting professionals to better flexibly fit into the dynamic environment in which contemporary business takes place. Ultimately, the paper attempts to explicate some of the implications of these findings for individuals and business firms.

Keywords: accounting, firms, information technology, professional behavior

Procedia PDF Downloads 235
37672 Lithological Mapping and Iron Deposits Identification in El-Bahariya Depression, Western Desert, Egypt, Using Remote Sensing Data Analysis

Authors: Safaa M. Hassan; Safwat S. Gabr, Mohamed F. Sadek

Abstract:

This study is proposed for the lithological and iron oxides detection in the old mine areas of El-Bahariya Depression, Western Desert, using ASTER and Landsat-8 remote sensing data. Four old iron ore occurrences, namely; El-Gedida, El-Haraa, Ghurabi, and Nasir mine areas found in the El-Bahariya area. This study aims to find new high potential areas for iron mineralization around El-Baharyia depression. Image processing methods such as principle component analysis (PCA) and band ratios (b4/b5, b5/b6, b6/b7, and 4/2, 6/7, band 6) images were used for lithological identification/mapping that includes the iron content in the investigated area. ASTER and Landsat-8 visible and short-wave infrared data found to help mapping the ferruginous sandstones, iron oxides as well as the clay minerals in and around the old mines area of El-Bahariya depression. Landsat-8 band ratio and the principle component of this study showed well distribution of the lithological units, especially ferruginous sandstones and iron zones (hematite and limonite) along with detection of probable high potential areas for iron mineralization which can be used in the future and proved the ability of Landsat-8 and ASTER data in mapping these features. Minimum Noise Fraction (MNF), Mixture Tuned Matched Filtering (MTMF), pixel purity index methods as well as Spectral Ange Mapper classifier algorithm have been successfully discriminated the hematite and limonite content within the iron zones in the study area. Various ASTER image spectra and ASD field spectra of hematite and limonite and the surrounding rocks are compared and found to be consistent in terms of the presence of absorption features at range from 1.95 to 2.3 μm for hematite and limonite. Pixel purity index algorithm and two sub-pixel spectral methods, namely Mixture Tuned Matched Filtering (MTMF) and matched filtering (MF) methods, are applied to ASTER bands to delineate iron oxides (hematite and limonite) rich zones within the rock units. The results are validated in the field by comparing image spectra of spectrally anomalous zone with the USGS resampled laboratory spectra of hematite and limonite samples using ASD measurements. A number of iron oxides rich zones in addition to the main surface exposures of the El-Gadidah Mine, are confirmed in the field. The proposed method is a successful application of spectral mapping of iron oxides deposits in the exposed rock units (i.e., ferruginous sandstone) and present approach of both ASTER and ASD hyperspectral data processing can be used to delineate iron-rich zones occurring within similar geological provinces in any parts of the world.

Keywords: Landsat-8, ASTER, lithological mapping, iron exploration, western desert

Procedia PDF Downloads 145
37671 Sea-Level Rise and Shoreline Retreat in Tainan Coast

Authors: Wen-Juinn Chen, Yi-Phei Chou, Jou-Han Wang

Abstract:

Tainan coast is suffering from beach erosion, wave overtopping, and lowland flooding; though most of the shoreline has been protected by seawalls, they still threatened by sea level rise. For coastal resources developing, coastal land utilization, and to draft an appropriate mitigate strategy. Firstly; we must assess the impact of beach erosion under a different scenario of climate change. Here, we have used the meteorological data since 1898 to 2012 to prove that the Tainan area did suffer the impact of climate change. The result shows the temperature has been raised to about 1.7 degrees since 1989. Also, we analyzed the tidal data near the Tainan coast (Anpin site and Junjunn site), it shows sea level rising with a rate about 4.1~4.8 mm/year, this phenomenon will have serious impacts on Tainan coastal area, especially it will worsen coastal erosion. So we have used Bruun rule to calculate the shoreline retreated rate at every two decade period since 2012. Wave data and bottom sand diameter D50 were used to calculate the closure depth that will be used in Bruun formula and the active length of the profile is computed by the beach slope and Dean's equilibrium concept. After analysis, we found that in 2020, the shoreline will be retreated about 3.0 to 12 meters. The maximum retreat is happening at Chigu coast. In 2060, average shoreline retreated distance is 22m, but at Chigu and Tsenwen, shoreline may be backward retreat about 70m and will be reached about 130m at 2100, this will cause a lot of coastal land loss to the sea, protect and mitigate project must be quickly performed.

Keywords: sea level rise, shoreline, coastal erosion, climate change

Procedia PDF Downloads 407
37670 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data

Authors: Muthukumarasamy Govindarajan

Abstract:

Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.

Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine

Procedia PDF Downloads 142
37669 Prevalence of Near Visual Impairment and Associated Factors among School Teachers in Gondar City, North West Ethiopia, 2022

Authors: Bersufekad Wubie

Abstract:

Introduction: Near visual impairment is presenting near visual acuity of the eye worse than N6 at a 40 cm distance. Teachers' regular duties, such as reading books, writing on the blackboard, and recognizing students' faces, need good near vision. If a teacher has near-visual impairment, the work output is unsatisfactory. Objective: The study was aimed to assess the prevalence and associated factors near vision impairment among school teachers at Gondar city Northwest Ethiopia, August 2022. Methods: To select 567 teachers in Gondar city schools, an institutional-based cross-sectional study design with a multistage sampling technique were used. The study was conducted in selected schools from May 1 to May 30, 2022. Trained data collectors used well-structured Amharic and English language questionnaires and ophthalmic instruments for examination. The collected data were checked for completeness and entered into Epi data version 4.6, then exported to SPSS version 26 for further analysis. A binary and multivariate logistic regression model was fitted. And associated factors of the outcome variable. Result: The prevalence of near visual impairment was 64.6%, with a confidence interval of 60.3%–68.4%. Near visual impairment was significantly associated with age >= 35 years (AOR: 4.90 at 95% CI: 3.15, 7.65), having prolonged years of teaching experience (AOR: 3.29 at 95% CI: 1.70, 4.62), having a history of ocular surgery (AOR: 1.96 at 95% CI: 1.10, 4.62), smokers (AOR: 2.21 at 95% CI: 1.22, 4.07), history of ocular trauma (AOR : 1.80 at 95%CI:1.11,3.18 and uncorrected refractive error (AOR:2.01 at 95%CI:1.13,4.03). Conclusion and recommendations: This study showed the prevalence of near vision impairment among school teachers was high, and it is not a problem of the presbyopia age group alone; it also happens at a young age. So teachers' ocular health should be well accommodated in the school's eye health.

Keywords: Gondar, near visual impairment, school, teachers

Procedia PDF Downloads 138
37668 Effects and Coping Strategies of Cyber Bullying in Pakistan: A Gender Response

Authors: Rabia Qusien

Abstract:

New media has emerged as a significant force in the society which connects people across the globe. Where new media brought many advantages for its users, there is a darker aspect of new technology in the form of cyberbullying. Researcher has employed survey method to reach to its targeted audience. Sample of 604 respondents was selected from one of metropolitan city of Pakistan Lahore to collect the data. Equal sample from both genders was selected to apply gender analysis. Results of this study indicate that cyber bullying is having significant psychological and educational effects. Females face more cyber bullying incidents as compared to males so they face more severe effects of cyber bullying. A comprehensive analysis of managing strategies depicts that mostly youth tries to handle this issue personally but at times they seek the support of their family and friends when they face severe issues. Due to privacy concerns females get more upset and they are more likely to seek social support from friends and family.

Keywords: cyber bullying, cyber victims, educational impacts, psychological impacts

Procedia PDF Downloads 145
37667 Factors Affecting in Soil Analysis Technique Adopted by the Southern Region Farmers, Syria

Authors: Moammar Dayoub

Abstract:

The study aimed to know the reality of farmers and determine the extent of adoption of the recommendations of the fertilizer and the difficulties and problems they face. The study was conducted on a random sample of farmers consist of 95 farmers who had analysed their field soil in scientific research centres in agricultural southern region through the form specially prepared for this purpose, the results showed that the rate of adoption of the fertilizer recommendations whole amounted to an average of 36.9% in the southern region, The degree of adoption was 34.7% in the region. The results showed that 41% of farmers did not implement the recommendations because of the non-convenient analysis, and 34% due to neglect, and 15% due to the weather and an environment, while 10% of them for lack of manure in the suitable time. The study also revealed that Independent factors affecting the continuing adoption of soil analysis are: farms experience, sampling method in farmer’s schools, irrigated area, and personal knowledge of farmers in analysing the soil. Also, show that the application of fertilizer recommendations led to increased production by 15-20%, this analysis emphasizes the importance of soil analysis and adherence to the recommendations of the research centres.

Keywords: adoption, recommendations of the fertilizer, soil analysis, southern region

Procedia PDF Downloads 169
37666 High-Throughput, Purification-Free, Multiplexed Profiling of Circulating miRNA for Discovery, Validation, and Diagnostics

Authors: J. Hidalgo de Quintana, I. Stoner, M. Tackett, G. Doran, C. Rafferty, A. Windemuth, J. Tytell, D. Pregibon

Abstract:

We have developed the Multiplexed Circulating microRNA assay that allows the detection of up to 68 microRNA targets per sample. The assay combines particle­based multiplexing, using patented Firefly hydrogel particles, with single­ step RT-PCR signal. Thus, the Circulating microRNA assay leverages PCR sensitivity while eliminating the need for separate reverse transcription reactions and mitigating amplification biases introduced by target­-specific qPCR. Furthermore, the ability to multiplex targets in each well eliminates the need to split valuable samples into multiple reactions. Results from the Circulating microRNA assay are interpreted using Firefly Analysis Workbench, which allows visualization, normalization, and export of experimental data. To aid discovery and validation of biomarkers, we have generated fixed panels for Oncology, Cardiology, Neurology, Immunology, and Liver Toxicology. Here we present the data from several studies investigating circulating and tumor microRNA, showcasing the ability of the technology to sensitively and specifically detect microRNA biomarker signatures from fluid specimens.

Keywords: biomarkers, biofluids, miRNA, photolithography, flowcytometry

Procedia PDF Downloads 369
37665 Sources and Content of Sexual Information among School Going Adolescents in Uganda

Authors: Jonathan Magala

Abstract:

Context: Adolescents in Uganda face significant challenges related to sexual health due to inadequate sexual information. This lack of information puts young people at risk of early pregnancies, sexually transmitted infections, and poverty. Therefore, it is essential to understand the sources, content, and challenges of acquiring sexual information among secondary school-going adolescents in Uganda. Research Aim: The aim of this study was to establish the sources, content, and challenges of acquiring sexual information among secondary school-going adolescents in Luwero Town Council, Uganda. Methodology: This study used a cross-sectional approach with both qualitative and quantitative methods. Questionnaires and in-depth interviews were conducted with 384 school-going adolescents aged between 13-19 years in Luwero Town Council, Uganda. Findings: The results of the study revealed that adolescents receive sexual information from various sources, with schools being the most common source, followed by parents and religious institutions being the least utilized. Adolescents received information on various topics related to sexuality, including puberty and sexual changes, pregnancy and reproduction, STD information, abstinence, and family planning. However, the content of sexual information was inadequate in addressing the challenges facing adolescents, and there were generation gaps, lack of role models, peer influence, and government policies. The male character from all the sources was the least in offering sexual information to adolescents. Theoretical Importance: The study's findings highlight the need for policy implementation to strengthen sexual education in school curriculum, as the sources of sexual information and the content are inadequate. The various topics should be addressed in schools to provide comprehensive education on sexual health for adolescents. Data Collection and Analysis Procedures: Data collection involved questionnaires and in-depth interviews with school-going adolescents. The data gathered were analyzed using descriptive statistics and thematic analysis. Questions Addressed: The study aimed to answer questions about the sources of sexual information among school-going adolescents, the content of sexual information provided, the challenges faced in accessing the information, and the importance of sex education policy implementation. Conclusion: The study concludes that schools are a popular source of sexual information among school-going adolescents in Uganda. However, the content of the information provided is inadequate in addressing the challenges that adolescents face regarding their sexual health. Therefore, policy implementation is essential in strengthening sexual education in the school curriculum and addressing various topics related to sexual health.

Keywords: adolescents, sexual information, schools, reproductive health

Procedia PDF Downloads 76
37664 Verifying Environmental Performance through Inventory and Assessment: Case Study of the Los Alamos National Laboratory Waste Compliance and Tracking System

Authors: Oral S. Saulters, Shanon D. Goldberg, Wendy A. Staples, Ellena I. Martinez, Lorie M. Sanchez, Diego E. Archuleta, Deborah L. Williams, Scot D. Johnson

Abstract:

To address an important set of unverified field conditions, the Los Alamos National Laboratory Waste Compliance and Tracking System (WCATS) Wall-to-Wall Team performed an unprecedented and advanced inventory. This reconciliation involved confirmation analysis for approximately 5850 hazardous, low-level, mixed low-level, and transuranic waste containers located in more than 200 staging and storage areas across 33 technical areas. The interdisciplinary team scoped, planned, and developed the multidimensional assessments. Through coordination with cross-functional site hosts, they were able to verify and validate data while resolving discrepancies identified in WCATS. The results were extraordinary with an updated inventory, tailored outreach, more cohesive communications, and timely closed-loop feedback.

Keywords: circular economy, environmental performance data, social-ecological-technological systems, waste management

Procedia PDF Downloads 128
37663 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators

Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight

Abstract:

In order to better understand the long term implications of the grout wear failure mode in large-diameter plain-sided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the need for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.

Keywords: grouted connection, numerical model, offshore structure, wear, wind energy

Procedia PDF Downloads 454
37662 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 101
37661 Optimizing Telehealth Internet of Things Integration: A Sustainable Approach through Fog and Cloud Computing Platforms for Energy Efficiency

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The swift proliferation of telehealth Internet of Things (IoT) devices has sparked concerns regarding energy consumption and the need for streamlined data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices into a platform based on fog and cloud computing. This integrated system provides a sustainable and robust solution to address the challenges. Our model strategically utilizes fog computing as a localized data processing layer and leverages cloud computing for resource-intensive tasks, resulting in a significant reduction in overall energy consumption. The incorporation of adaptive energy-saving strategies further enhances the efficiency of our approach. Simulation analysis validates the effectiveness of our model in improving energy efficiency for telehealth IoT systems, particularly when integrated with localized fog nodes and both private and public cloud infrastructures. Subsequent research endeavors will concentrate on refining the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability across various healthcare and industry sectors.

Keywords: energy-efficient, fog computing, IoT, telehealth

Procedia PDF Downloads 76
37660 Measuring Digital Literacy in the Chilean Workforce

Authors: Carolina Busco, Daniela Osses

Abstract:

The development of digital literacy has become a fundamental element that allows for citizen inclusion, access to quality jobs, and a labor market capable of responding to the digital economy. There are no methodological instruments available in Chile to measure the workforce’s digital literacy and improve national policies on this matter. Thus, the objective of this research is to develop a survey to measure digital literacy in a sample of 200 Chilean workers. Dimensions considered in the instrument are sociodemographics, access to infrastructure, digital education, digital skills, and the ability to use e-government services. To achieve the research objective of developing a digital literacy model of indicators and a research instrument for this purpose, along with an exploratory analysis of data using factor analysis, we used an empirical, quantitative-qualitative, exploratory, non-probabilistic, and cross-sectional research design. The research instrument is a survey created to measure variables that make up the conceptual map prepared from the bibliographic review. Before applying the survey, a pilot test was implemented, resulting in several adjustments to the phrasing of some items. A validation test was also applied using six experts, including their observations on the final instrument. The survey contained 49 items that were further divided into three sets of questions: sociodemographic data; a Likert scale of four values ranked according to the level of agreement; iii) multiple choice questions complementing the dimensions. Data collection occurred between January and March 2022. For the factor analysis, we used the answers to 12 items with the Likert scale. KMO showed a value of 0.626, indicating a medium level of correlation, whereas Bartlett’s test yielded a significance value of less than 0.05 and a Cronbach’s Alpha of 0.618. Taking all factor selection criteria into account, we decided to include and analyze four factors that together explain 53.48% of the accumulated variance. We identified the following factors: i) access to infrastructure and opportunities to develop digital skills at the workplace or educational establishment (15.57%), ii) ability to solve everyday problems using digital tools (14.89%), iii) online tools used to stay connected with others (11.94%), and iv) residential Internet access and speed (11%). Quantitative results were discussed within six focus groups using heterogenic selection criteria related to the most relevant variables identified in the statistical analysis: upper-class school students; middle-class university students; Ph.D. professors; low-income working women, elderly individuals, and a group of rural workers. The digital divide and its social and economic correlations are evident in the results of this research. In Chile, the items that explain the acquisition of digital tools focus on access to infrastructure, which ultimately puts the first filter on the development of digital skills. Therefore, as expressed in the literature review, the advance of these skills is radically different when sociodemographic variables are considered. This increases socioeconomic distances and exclusion criteria, putting those who do not have these skills at a disadvantage and forcing them to seek the assistance of others.

Keywords: digital literacy, digital society, workforce digitalization, digital skills

Procedia PDF Downloads 67
37659 Implementation of a Non-Poissonian Model in a Low-Seismicity Area

Authors: Ludivine Saint-Mard, Masato Nakajima, Gloria Senfaute

Abstract:

In areas with low to moderate seismicity, the probabilistic seismic hazard analysis frequently uses a Poisson approach, which assumes independence in time and space of events to determine the annual probability of earthquake occurrence. Nevertheless, in countries with high seismic rate, such as Japan, it is frequently use non-poissonian model which assumes that next earthquake occurrence depends on the date of previous one. The objective of this paper is to apply a non-poissonian models in a region of low to moderate seismicity to get a feedback on the following questions: can we overcome the lack of data to determine some key parameters?, and can we deal with uncertainties to apply largely this methodology on an industrial context?. The Brownian-Passage-Time model was applied to a fault located in France and conclude that even if the lack of data can be overcome with some calculations, the amount of uncertainties and number of scenarios leads to a numerous branches in PSHA, making this method difficult to apply on a large scale of low to moderate seismicity areas and in an industrial context.

Keywords: probabilistic seismic hazard, non-poissonian model, earthquake occurrence, low seismicity

Procedia PDF Downloads 62
37658 Variability of Climatic Elements in Nigeria Over Recent 100 Years

Authors: T. Salami, O. S. Idowu, N. J. Bello

Abstract:

Climatic variability is an essential issue when dealing with the issue of climate change. Variability of some climate parameter helps to determine how variable the climatic condition of a region will behave. The most important of these climatic variables which help to determine the climatic condition in an area are both the Temperature and Precipitation. This research deals with Longterm climatic variability in Nigeria. Variables examined in this analysis include near-surface temperature, near surface minimum temperature, maximum temperature, relative humidity, vapour pressure, precipitation, wet-day frequency and cloud cover using data ranging between 1901-2010. Analyses were carried out and the following methods were used: - Regression and EOF analysis. Results show that the annual average, minimum and maximum near-surface temperature all gradually increases from 1901 to 2010. And they are in the same case in a wet season and dry season. Minimum near-surface temperature, with its linear trends are significant for annual, wet season and dry season means. However, the diurnal temperature range decreases in the recent 100 years imply that the minimum near-surface temperature has increased more than the maximum. Both precipitation and wet day frequency decline from the analysis, demonstrating that Nigeria has become dryer than before by the way of rainfall. Temperature and precipitation variability has become very high during these periods especially in the Northern areas. Areas which had excessive rainfall were confronted with flooding and other related issues while area that had less precipitation were all confronted with drought. More practical issues will be presented.

Keywords: climate, variability, flooding, excessive rainfall

Procedia PDF Downloads 385
37657 Factors Determining the Women Empowerment through Microfinance: An Empirical Study in Sri Lanka

Authors: Y. Rathiranee, D. M. Semasinghe

Abstract:

This study attempts to identify the factors influencing on women empowerment of rural area in Sri Lanka through micro finance services. Data were collected from one hundred (100) rural women involving self employment activities through a questionnaire using direct personal interviews. Judgment and Convenience Random sampling technique was used to select the sample size from three Divisional Secretariat divisions of Kandawalai, Poonakari and Karachchi in Kilinochchi District. The factor analysis was performed on fourteen (14) variables for screening and reducing the variables to identify the influencing factors on empowerment. Multiple regression analysis was used to identify the relationship between the three empowerment factors and the impact of micro-finance on overall empowerment of rural women. The result of this study summarized the variables into three factors namely decision making, freedom to mobility and family support and which are positively associated with empowerment. In addition to this the value of adjusted R2 is 0.248 indicates that all the variables extracted can be explained 24.8% of the variation in the women empowerment through microfinance. Independent variables of these three factors have a positive correlation with women empowerment as well as significant values at 5 percent level.

Keywords: influencing factors, micro finance, rural women, women empowerment

Procedia PDF Downloads 474
37656 Applying Multivariate and Univariate Analysis of Variance on Socioeconomic, Health, and Security Variables in Jordan

Authors: Faisal G. Khamis, Ghaleb A. El-Refae

Abstract:

Many researchers have studied socioeconomic, health, and security variables in the developed countries; however, very few studies used multivariate analysis in developing countries. The current study contributes to the scarce literature about the determinants of the variance in socioeconomic, health, and security factors. Questions raised were whether the independent variables (IVs) of governorate and year impact the socioeconomic, health, and security dependent variables (DVs) in Jordan, whether the marginal mean of each DV in each governorate and in each year is significant, which governorates are similar in difference means of each DV, and whether these DVs vary. The main objectives were to determine the source of variances in DVs, collectively and separately, testing which governorates are similar and which diverge for each DV. The research design was time series and cross-sectional analysis. The main hypotheses are that IVs affect DVs collectively and separately. Multivariate and univariate analyses of variance were carried out to test these hypotheses. The population of 12 governorates in Jordan and the available data of 15 years (2000–2015) accrued from several Jordanian statistical yearbooks. We investigated the effect of two factors of governorate and year on the four DVs of divorce rate, mortality rate, unemployment percentage, and crime rate. All DVs were transformed to multivariate normal distribution. We calculated descriptive statistics for each DV. Based on the multivariate analysis of variance, we found a significant effect in IVs on DVs with p < .001. Based on the univariate analysis, we found a significant effect of IVs on each DV with p < .001, except the effect of the year factor on unemployment was not significant with p = .642. The grand and marginal means of each DV in each governorate and each year were significant based on a 95% confidence interval. Most governorates are not similar in DVs with p < .001. We concluded that the two factors produce significant effects on DVs, collectively and separately. Based on these findings, the government can distribute its financial and physical resources to governorates more efficiently. By identifying the sources of variance that contribute to the variation in DVs, insights can help inform focused variation prevention efforts.

Keywords: ANOVA, crime, divorce, governorate, hypothesis test, Jordan, MANOVA, means, mortality, unemployment, year

Procedia PDF Downloads 275
37655 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 58